Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Methods Mol Biol ; 2828: 107-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147974

RESUMEN

Living cells have the ability to detect electric fields and respond to them with directed migratory movements. Many proteomic approaches have been adopted in the past to identify the molecular mechanism behind this cellular phenomenon. However, how the cells sense the electric stimulus and transduce it into directed cell migration is still under discussion. Many eukaryotic cells react to applied electric stimulation, including Dictyostelium discoideum cells. We use them as model system for studying cell migration in electric fields, also known as electrotaxis. Here we report the protocols that we developed for our experiments. Our experimental outcomes helped us to characterize: (i) the memory that cells have in a varying electric field, which we defined as temporal electric persistence; and (ii) the accelerating motion of cells along their paths over the electric exposure time. We also report on the analysis of the role that conditioned medium factor (CMF), a protein secreted by cells when they begin to starve, plays in the mechanism of electric sensing. The results of this study can contribute to the understanding of the electrical sensing of cells and its transduction into directed cell migration.


Asunto(s)
Movimiento Celular , Dictyostelium , Dictyostelium/fisiología , Dictyostelium/metabolismo , Dictyostelium/citología , Electricidad , Estimulación Eléctrica , Taxia/fisiología , Medios de Cultivo Condicionados
2.
Micro Nano Eng ; 242024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39157761

RESUMEN

Aquatic germplasm repositories can play a pivotal role in securing the genetic diversity of natural populations and agriculturally important aquatic species. However, existing technologies for repository development and operation face challenges in terms of accuracy, precision, efficiency, and cost-effectiveness, especially for microdevices used in gamete quality evaluation. Quality management is critical throughout genetic resource protection processes from sample collection to final usage. In this study, we examined the potential of using three-dimensional (3-D) stereolithography resin printing to address these challenges and evaluated the overall capabilities and limitations of a representative industrial 3-D resin printer with a price of US$18,000, a consumer-level printer with a price

3.
ACS Nano ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163414

RESUMEN

Resists that enable high-throughput and high-resolution patterning are essential in driving the semiconductor technology forward. The ultimate patterning performance of a resist in lithography is limited because of the trade-off between resolution, line-width roughness, and sensitivity; improving one or two of these parameters typically leads to a loss in the third. As the patterned feature sizes approach angstrom scale, the trade-off between these three metrics becomes increasingly hard to resolve and calls for a fundamental rethinking of the resist chemistry. Low-molecular-mass monodispersed metal-containing resists of high atom economy can provide not only very high resolution but also very low line-width roughness without sacrificing sensitivity. Here we describe a modular metal-containing resist platform (molecular mass <500 Da) where a molecular resist consists of just two components: a metal and a radical initiator bonded to it. This simple system not only is amenable to high-resolution electron beam lithography (EBL) and extreme ultraviolet lithography (EUVL) but also unites them mechanistically, giving a consolidated perspective of molecular and chemical processes happening during exposure. Irradiation of the resist leads to the production of secondary electrons that generate radicals in the initiator bonded to metal. This brings about an intramolecular rearrangement and causes solubility switch in the exposed resist. We demonstrate record 1.9-2.0 nm isolated patterns and 7 nm half-pitch dense line-space features over a large area using EBL. With EUVL, 12 nm half-pitch line-space features are shown at a dose of 68 mJ/cm2. In both of these patterning techniques, the line-width roughness was found to be ≤2 nm, a record low value for any resist platform, also leading to a low-performance trade-off metric, Z factor, of 0.6 × 10-8 mJ·nm3. With the ultimate resolution limited by instrumental factors, potential patterning at the level of a unit cell can be envisaged, making low-molecular-mass resists best poised for angstrom-scale lithography.

4.
J Phys Condens Matter ; 36(45)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39111335

RESUMEN

We have studied the magnetization dynamics of single Py(t) (t= 20 nm, 50 nm) and trilayer [Py(50)/Pd(tPd)/Py(20)] nanowire arrays fabricated over large areas using deep ultraviolet lithography technique. The dynamic properties are sensitive to the field orientation and magnetic film thicknesses. A single resonant mode corresponding to the excitations at the bulk part of the wire is detected in all the single-layer nanowire arrays. Furthermore, the spacer layer thickness influenced the dynamic properties in trilayer samples due to the different coupling mechanisms. A single resonant mode is observed intPd= 2 nm trilayer nanowires with a sharp frequency jump from 13 GHz to 15 GHz across the reversal regime. This indicates the exchange coupling and the coherence in magnetization precession in the ferromagnetic layers. On the other hand, wires with 10 nm-spacer display two well-resolved modes separated by ∼3 GHz with a gradual change in frequency across the reversal regime from-26mT to-46mT, indicating the presence of long-range dipolar interactions instead of exchange coupling. The spacer layer of the proposed spin-valve-type structure can be tailored for desired microwave splitters or combiners.

5.
ACS Nano ; 18(32): 21504-21511, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39096499

RESUMEN

Multiplexed ultraviolet (UV) metaholograms, which are capable of displaying multiple holographic images from a single-layer device, are promising for enhancing tamper resistance and functioning as optical encryption devices. Despite considerable interest in optical security, the commercialization of UV metaholograms encounters obstacles, such as high-resolution patterning and material choices. Here, we realize spin-multiplexed UV metaholograms using a high-throughput printable platform that incorporates a zirconium dioxide (ZrO2) particle-embedded resin (PER). Utilizing ZrO2 PER, which is transparent and exhibits a refractive index of approximately 1.8 at 320 nm, we fabricated a single device capable of encoding dual holographic information depending on polarization states is fabricated. We demonstrate UV metaholograms achieving efficiencies of 56.23% with left circularly polarized incident beams and 57.28% with right circularly polarized incident beams. These multiplexed UV metaholograms fabricated using a one-step platform enable real-world applications in anticounterfeiting and encryption.

6.
ACS Appl Mater Interfaces ; 16(32): 42947-42956, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39103240

RESUMEN

Organometallic tin-oxo-hydroxo cage compounds offer a promising photoresist platform for extreme ultraviolet photolithography (EUVL). Their reactivity is dominated by the facile breaking of the tin-carbon bonds upon photon or electron irradiation. As the cage is dicationic, it exists as a complex with anions for charge compensation. In the present work, we explore the n-butyltin-oxo cage with two tetrakis(pentafluorophenyl)borate counteranions (TinPFPB). In contrast to the small counterions that are typically used, the bulky PFPB anion absorbs a substantial fraction (∼30%) of the impinging EUV radiation (13.5 nm, 92 eV), and it has its own reactivity upon photoionization. When thin films of the complex are irradiated with EUV radiation at low doses, a positive-tone development is possible, which is rather unique as all other known tin-oxo cage resists show a negative tone (cross-linking) behavior. We propose that the initial positive tone behavior is a result of the chemical modification of the Sn cluster by fragments of the borate anions. For comparison, we include the tetrakis(p-tolyl)borate anion (TB) in the study, which has similar bulkiness, and its complex with the n-butyltin-oxo cage (TinTB) shows the usual negative tone EUV resist behavior. This negative-tone behavior for our control experiment rules out a hypothesis based purely on the steric hindrance of the anion as the cause of the different EUV reactivity.

7.
ChemistryOpen ; : e202400179, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158463

RESUMEN

Interdigital electrodes were prepared using nanoimprint lithography and piezoelectric inkjet printing. These processes are simpler and more cost-effective than the industrially used electron beam lithography because of their purely mechanical process step. For the investigation of material dependence, platinum as well as carbon electrodes were fabricated. Afterwards electrodes with various line widths and spacings were tested for the application as a chemiresistive sensor for ferrocenyl-methanol and the influence of the gap-width and conductor cross-section on the sensitivity was investigated. The general suitability of the systems for the production of such structures could be confirmed. Structures with a limit of detection (LOD) down to 1.2 µM and 35.9 µM could be produced for carbon and platinum, respectively, as well as a response time of 3.6 s was achieved.

8.
Neurophotonics ; 11(Suppl 1): S11514, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39132194

RESUMEN

The continuous exchange between the neuroscience and neuroengineering communities that took place over the past decades has uncovered a multitude of technological solutions to interface with the brain. In this framework, a fascinating approach relies on the integration of multiple activation and monitoring capabilities in the same implantable neural probe to better study the multifaceted nature of neural signaling and related functions in the deep brain regions. We highlight current challenges and perspectives on technological developments that could potentially enable the integration of multiple functionalities on optical fiber-based non-planar implantable neurophotonics probes.

9.
Beilstein J Nanotechnol ; 15: 965-976, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39136040

RESUMEN

In this perspective article, Professor Dan Sameoto outlines his opinion on future opportunities in the field of biomimetic adhesives. Despite over twenty years of excellent academic work by groups all around the world in this subfield, the economic value and impact of these materials is somewhat underwhelming. The question for the field is whether it should have a scientific and engineering focus to create every greater performance and understanding of the materials and hope that "if we build it, they will come". Perhaps we should expand our concept on what could be the desirable end applications for such materials and focus efforts on finding better end applications in which these materials can truly shine; a few of those applications like microfluidics and composites are highlighted in this article. It is time for a next generation of research to look beyond biomimicry and look towards re-engineering applications to make use of these materials' unique properties in economically viable ways.

10.
Nanotechnology ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137800

RESUMEN

Line edge roughness (LER) has been an important issue in the nanofabrication research, especially in integrated circuits. Despite numerous research studies has made efforts on achieving smaller LER value, a strategy to achieve sub-nanometer level LER still remain challenging due to inability to deposit energy with a profile of sub-nanometer LER. In this work, we use scanning helium ion beam to expose hydrogen silsesquioxane (HSQ) resist on SiNx membrane and present the 0.16 nm spatial imaging resolution based on this suspended thin membrane geometric construction, which is characterized by scanning transmission electron microscope (STEM). The suspended membrane serves as an energy filter of helium ion beam and due to the elimination of backscattering induced secondary electrons, we can systematically study the factors that influences the LER of the fabricated nanostructures. Furthermore, we explore the parameters including step size, designed exposure linewidth (DEL), delivered dosage and resist thickness and choosing the high contrast developer, the process window allows to fabricate lines with 0.2nm LER is determined. AFM measurement and simulation work further reveal that at specific beam step size and DEL, the nanostructures with minimum LER can only be fabricated at specific resist thickness and dosage. .

11.
Small ; : e2403169, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973079

RESUMEN

Nanopatterning on biomaterials has attracted significant attention as it can lead to the development of biomedical devices capable of performing diagnostic and therapeutic functions while being biocompatible. Among various nanopatterning techniques, electron-beam lithography (EBL) enables precise and versatile nanopatterning in desired shapes. Various biomaterials are successfully nanopatterned as bioresists by using EBL. However, the use of high-energy electron beams (e-beams) for high-resolutive patterning has incorporated functional materials and has caused adverse effects on biomaterials. Moreover, the scattering of electrons not absorbed by the bioresist leads to proximity effects, thus deteriorating pattern quality. Herein, EBL-based nanopatterning is reported by inducing molecular degradation of amorphous silk fibroin, followed by selectively inducing secondary structures. High-resolution EBL nanopatterning is achievable, even at low-energy e-beam (5 keV) and low doses, as it minimizes the proximity effect and enables precise 2.5D nanopatterning via grayscale lithography. Additionally, integrating nanophotonic structures into fluorescent material-containing silk allows for fluorescence amplification. Furthermore, this post-exposure cross-linking way indicates that the silk bioresist can maintain nanopatterned information stored in silk molecules in the amorphous state, utilizing for the secure storage of nanopatterned information as a security patch. Based on the fabrication technique, versatile biomaterial-based nanodevices for biomedical applications can be envisioned.

12.
Adv Mater ; : e2313694, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023387

RESUMEN

The ongoing reduction in transistor sizes drives advancements in information technology. However, as transistors shrink to the nanometer scale, surface and edge states begin to constrain their performance. 2D semiconductors like transition metal dichalcogenides (TMDs) have dangling-bond-free surfaces, hence achieving minimal surface states. Nonetheless, edge state disorder still limits the performance of width-scaled 2D transistors. This work demonstrates a facile edge passivation method to enhance the electrical properties of monolayer WSe2 nanoribbons, by combining scanning transmission electron microscopy, optical spectroscopy, and field-effect transistor (FET) transport measurements. Monolayer WSe2 nanoribbons are passivated with amorphous WOxSey at the edges, which is achieved using nanolithography and a controlled remote O2 plasma process. The same nanoribbons, with and without edge passivation are sequentially fabricated and measured. The passivated-edge nanoribbon FETs exhibit 10 ± 6 times higher field-effect mobility than the open-edge nanoribbon FETs, which are characterized with dangling bonds at the edges. WOxSey edge passivation minimizes edge disorder and enhances the material quality of WSe2 nanoribbons. Owing to its simplicity and effectiveness, oxidation-based edge passivation could become a turnkey manufacturing solution for TMD nanoribbons in beyond-silicon electronics and optoelectronics.

13.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005331

RESUMEN

Photocrosslinking hydrogels are promising for tissue engineering and regenerative medicine, but challenges in reaction monitoring often leave their optimization subject to trial and error. The stability of crosslinked gels under fluid flow, as in the case of a microfluidic device, is particularly challenging to predict, both because of obstacles inherent to solid-state macromolecular analysis that prevent accurate chemical monitoring, and because stability is dependent on size of the patterned features. To solve both problems, we obtained 1H NMR spectra of cured hydrogels which were enzymatically degraded. This allowed us to take advantage of the high-resolution that solution NMR provides. This unique approach enabled the measurement of degree of crosslinking (DoC) and prediction of material stability under physiological fluid flow. We showed that NMR spectra of enzyme-digested gels successfully reported on DoC as a function of light exposure and wavelength within two classes of photocrosslinkable hydrogels: methacryloyl-modified gelatin and a composite of thiol-modified gelatin and norbornene-terminated polyethylene glycol. This approach revealed that a threshold DoC was required for patterned features in each material to become stable, and that smaller features required a higher DoC for stability. Finally, we demonstrated that DoC was predictive of the stability of architecturally complex features when photopatterning, underscoring the value of monitoring DoC when using light-reactive gels. We anticipate that the ability to quantify chemical crosslinks will accelerate the design of advanced hydrogel materials for structurally demanding applications such as photopatterning and bioprinting.

14.
Nanotechnology ; 35(40)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38981449

RESUMEN

Vertically grown nanowires (NWs) are a research interest in optoelectronics and photovoltaic applications due to their high surface to volume ratio and good light trapping capabilities. This study presents the effects of process and design parameters on self-catalyzed GaAsSbN NWs grown by plasma-assisted molecular beam epitaxy on patterned silicon substrates using electron beam lithography. Vertical alignment of the patterned NWs examined via scanning electron microscopy show the sensitivity of patterned NW growth to the parameters of NW diameter, pitch, dose time, etching techniques and growth plan. Diameters range from 90 nm to 250 nm. Pitch lengths of 200 nm, 400 nm, 600 nm, 800 nm, 1000 nm, and 1200 nm were examined. Dry etching of the oxide layer of the silicon substrate and PMMA coating is performed using reactive ion etching (RIE) for 20 s and 120 s respectively. Comparisons of different HF etch durations performed pre and post PMMA removal are presented. Additionally, the report of an observed surfactant effect in dilute nitride GaAsSbN NWs in comparison to non-nitride GaAsSb is presented. Optimizations to patterning, RIE, and HF etching are presented to obtain higher vertical yield of patterned GaAsSbN NWs, achieving ∼80% of the expected NWµm2. Room temperature and 4 K photoluminescence results show the effect of nitride incorporation for further bandgap tuning, and patterned pitch on the optical characteristics of the NWs which gives insights to the compositional homogeneity for NWs grown at each pitch length.

15.
Adv Sci (Weinh) ; : e2405320, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995232

RESUMEN

The growing importance of submicrometer-structured surfaces across a variety of different fields has driven progress in light manipulation, color diversity, water-repellency, and functional enhancements. To enable mass production, processes like hot-embossing (HE), roll-to-roll replication (R2R), and injection molding (IM) are essential due to their precision and material flexibility. However, these processes are tool-based manufacturing (TBM) techniques requiring metal molds, which are time-consuming and expensive to manufacture, as they mostly rely on galvanoforming using templates made via precision microlithography or two-photon-polymerization (2PP). In this work, a novel approach is demonstrated to replicate amorphous metals from fused silica glass, derived from additive manufacturing and structured using hot embossing and casting, enabling the fabrication of metal insets with features in the range of 300 nm and a surface roughness of below 10 nm. By partially crystallizing the amorphous metal, during the replication process, the insets gain a high hardness of up to 800 HV. The metal molds are successfully used in polymer injection molding using different polymers including polystyrene (PS) and polyethylene (PE) as well as glass nanocomposites. This work is of significant importance to the field as it provides a production method for the increasing demand for sub-micron-structured tooling in the area of polymer replication while substantially reducing their cost of production.

16.
Nanotechnology ; 35(39)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38959870

RESUMEN

Electron beam lithography (EBL) stands out as a powerful direct-write tool offering nanometer-scale patterning capability and is especially useful in low-volume R&D prototyping when coupled with pattern transfer approaches like etching or lift-off. Among pattern transfer approaches, lift-off is preferred particularly in research settings, as it is cost-effective and safe and does not require tailored wet/dry etch chemistries, fume hoods, and/or complex dry etch tools; all-in-all offering convenient, 'undercut-free' pattern transfer rendering it useful, especially for metallic layers and unique alloys with unknown etchant compatibility or low etch selectivity. Despite the widespread use of the lift-off technique and optical/EBL for micron to even sub-micron scales, existing reports in the literature on nanofabrication of metallic structures with critical dimension in the 10-20 nm regime with lift-off-based EBL patterning are either scattered, incomplete, or vary significantly in terms of experimental conditions, which calls for systematic process optimization. To address this issue, beyond what can be found in a typical photoresist datasheet, this paper reports a comprehensive study to calibrate EBL patterning of sub-50 nm metallic nanostructures including gold nanowires and nanogaps based on a lift-off process using bilayer polymethyl-methacrylate as the resist stack. The governing parameters in EBL, including exposure dose, soft-bake temperature, development time, developer solution, substrate type, and proximity effect are experimentally studied through more than 200 EBL runs, and optimal process conditions are determined by field emission scanning electron microscope imaging of the fabricated nanostructures reaching as small as 11 nm feature size.

17.
Sensors (Basel) ; 24(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39065997

RESUMEN

The development of a cost-effective and rapid assay technique for the identification of DNA methylation is one of the most crucial issues in the field of biomedical diagnosis because DNA methylation plays key roles in human health. The plasmonic crystal-based surface-enhanced Raman spectroscopy (SERS) technique is promising for the realization of such an assay method owing to its capability of generating uniformly enhanced electric fields to achieve high reproducibility and accuracy in SERS assays. However, the time and technical costs of fabricating plasmonic crystals are high, owing to the need for nanofabrication equipment. In this study, we developed nanoimprinted plasmonic crystals for cost-effective and rapid DNA methylation assays. Our plasmonic crystals identified methylated DNA with the 40-base pair adenomatous polyposis coli (APC) gene sequence, which is correlated with cell growth and cancer cells.


Asunto(s)
Metilación de ADN , ADN , Espectrometría Raman , Espectrometría Raman/métodos , Metilación de ADN/genética , Humanos , ADN/química , Análisis Costo-Beneficio , Nanopartículas del Metal/química
18.
ACS Appl Mater Interfaces ; 16(31): 41659-41668, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39047062

RESUMEN

Recently, metal-oxo clusters (MOCs) have attracted significant interest in fabricating nanoscale patterns in semiconductors via lithography. However, many MOCs are highly crystalline, making it difficult for them to form films and hindering subsequent nanopatterning processes. In this study, we developed a novel and simple method to enhance the film-forming ability of aromatic tetranuclear Sn-oxo clusters by adding additives. Theoretical calculations and Fourier-transform infrared (FTIR) analysis revealed the formation of intermolecular hydrogen bonds between the Sn-oxo clusters and additives, which induced a crystal-gel phase transition at -20 °C, thereby inhibiting the easy crystallization of the Sn-oxo clusters. High-quality and uniform thin films with surface roughness below 0.3 nm were prepared via spin coating. The obtained thin films exhibited good lithographic performance under deep ultraviolet (DUV), electron beam, and extreme-ultraviolet irradiation without a photo acid generator/photoinitiator, and 13- and 21 nm-wide line patterns were obtained on the films via electron-beam and extreme-ultraviolet lithographies. This study will pave the way for the further investigation of novel MOCs for advanced lithography and other thin-film applications.

19.
Nano Lett ; 24(33): 10032-10039, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-38950386

RESUMEN

Mass photometry (MP) is a rapidly growing optical technique for label-free mass measurement of single biomolecules in solution. The underlying measurement principle provides numerous advantages over ensemble-based methods but has been limited to low analyte concentrations due to the need to uniquely and accurately quantify the binding of individual molecules to the measurement surface, which results in diffraction-limited spots. Here, we combine nanoparticle lithography with surface PEGylation to substantially lower surface binding, resulting in a 2 orders of magnitude improvement in the upper concentration limit associated with mass photometry. We demonstrate the facile tunability of degree of passivation, enabling measurements at increased analyte concentrations. These advances provide access to protein-protein interactions in the high nanomolar to low micromolar range, substantially expanding the application space of mass photometry.


Asunto(s)
Fotometría , Polietilenglicoles , Polietilenglicoles/química , Fotometría/métodos , Propiedades de Superficie , Nanopartículas/química , Proteínas/química , Proteínas/análisis
20.
Micromachines (Basel) ; 15(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39064352

RESUMEN

The following study involved the utilization of dispersion polymerization to synthesize micron/nano-sized polystyrene (PS) spheres, which were then deposited onto a silicon substrate using the floating assembly method to form a long-range monolayer. Subsequently, dry etching techniques were utilized to create subwavelength structures. The adjustment of the stabilizer polyvinylpyrrolidone (PVP), together with changes in the monomer concentration, yielded PS spheres ranging from 500 nm to 5.6 µm in diameter. These PS spheres were suspended in a mixture of alcohol and deionized water before being arranged using the floating assembly method. The resulting tightly packed particle arrangement is attributed to van der Waals forces, Coulomb electrostatic forces between the PS spheres, and surface tension effects. The interplay of these forces was analyzed to comprehend the resulting structure. Dry etching, utilizing the PS spheres as masks, enabled the exploration of the effects of etching parameters on the resultant structures. Unlike traditional dry etching methods controlling RF power and etching gases, in the present study, we focused on adjusting the oxygen flow rate to achieve cylindrical, conical, and parabolic etched structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA