Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38228267

RESUMEN

Seasonal reproduction is a widely used breeding strategy in wildlife, especially vertebrates inhabiting temperate regions. Generally, ambient temperature is considered a significant factor influencing the reproductive status of animals. In the present study, wild ground squirrels (Spermophilus dauricus), typical seasonal breeders, were used as an animal model to investigate the mechanism behind the impact of low ambient temperature on testicular function. To simulate the winter environment of wild ground squirrels, we lowered the temperature gradient in the rearing environment to 4 °C. At sampling, the body surface temperature of the squirrels reared under normal ambient temperature (22 °C, NAT group) and the low ambient temperature (4 °C, LAT group) were 31.5 °C and 22.8 °C, respectively. Subsequently, we conducted immunohistochemical assays, qPCR, and enzyme-linked immunosorbent assays (ELISA) to examine the variations in testicular functions, as well as the dynamics and functions of mitochondria, in the squirrels of NAT and LAT groups. As a result, the levels of positive immunostaining for PCNA, P21, and P27 were significantly lower in the testes of LAT group, while the levels of immunostaining for Cleaved Caspase-3 and TUNEL were significantly higher. In addition, the low-temperature treatment reduced the expression level of steroidogenesis-related genes, including LHR, FSHR, GATA-4, P450scc, and P450arom, and decreased the testosterone concentration. Moreover, markers of mitochondrial fission and fusion, DRP1 and MFN2, respectively, were increased in the testes of LAT group. Additionally, the mRNA level of SOD1 was notably higher in the testes of LAT group. In conclusion, the low ambient temperature inhibited spermatogenesis, steroidogenesis, as well as mitochondrial dynamics and functions in the testes of wild ground squirrels.


Asunto(s)
Sciuridae , Testículo , Masculino , Animales , Testículo/metabolismo , Sciuridae/fisiología , Temperatura , Testosterona/metabolismo , Espermatogénesis , Estaciones del Año
2.
Plant Commun ; 4(4): 100570, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-36864727

RESUMEN

Flowering is the primary stage of the plant developmental transition and is tightly regulated by environmental factors such as light and temperature. However, the mechanisms by which temperature signals are integrated into the photoperiodic flowering pathway are still poorly understood. Here, we demonstrate that HOS15, which is known as a GI transcriptional repressor in the photoperiodic flowering pathway, controls flowering time in response to low ambient temperature. At 16°C, the hos15 mutant exhibits an early flowering phenotype, and HOS15 acts upstream of photoperiodic flowering genes (GI, CO, and FT). GI protein abundance is increased in the hos15 mutant and is insensitive to the proteasome inhibitor MG132. Furthermore, the hos15 mutant has a defect in low ambient temperature-mediated GI degradation, and HOS15 interacts with COP1, an E3 ubiquitin ligase for GI degradation. Phenotypic analyses of the hos15 cop1 double mutant revealed that repression of flowering by HOS15 is dependent on COP1 at 16°C. However, the HOS15-COP1 interaction was attenuated at 16°C, and GI protein abundance was additively increased in the hos15 cop1 double mutant, indicating that HOS15 acts independently of COP1 in GI turnover at low ambient temperature. This study proposes that HOS15 controls GI abundance through multiple modes as an E3 ubiquitin ligase and transcriptional repressor to coordinate appropriate flowering time in response to ambient environmental conditions such as temperature and day length.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Flores/genética , Temperatura , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
3.
J Hazard Mater ; 449: 131011, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-36801719

RESUMEN

The emission of fine particles (PM2.5) from diesel trucks is enhanced by low ambient temperatures, which is a fact that has attracted considerable attention. Carbonaceous matter and polycyclic aromatic hydrocarbons (PAHs) are the dominant hazardous materials in PM2.5. These materials induce severe adverse effects on air quality and human health and contribute to climate change. The emissions from heavy- and light-duty diesel trucks were tested at an ambient temperature of - 20 to - 13 â„ƒ and 18-24 â„ƒ. This is the first study to quantify the enhanced carbonaceous matter and PAH emissions from diesel trucks at very low ambient temperatures based on an on-road emission test system. Features affecting diesel emissions, including driving speed, vehicle type, and engine certification level, were considered. The emissions of organic carbon, elemental carbon, and PAHs significantly increased from - 20 to - 13 â„ƒ. The empirical results revealed that intensive abatement of diesel emissions at low ambient temperatures could benefit human health and have a positive influence on climate change. Considering the widespread applications worldwide, an investigation into diesel emissions of carbonaceous matter and PAHs in fine particles at low ambient temperatures is urgently required.

4.
Animals (Basel) ; 12(20)2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36290125

RESUMEN

Ambient temperature (Ta) fluctuation is a key factor affecting the growth performance and economic returns of pigs. However, whether the response of intestinal structure and function are related to pig breeds in low Ta has not been investigated yet. In this study, Large White (LW) pigs, Jinfen White (JFW) pigs and Mashen (MS) pigs were raised in artificial climate chambers under normal Ta (25 °C) and low Ta (4 °C) for 96 h. Afterwards, the decrease in body temperature and complete blood counts (CBC) of all pigs were measured. Hematoxylin-eosin, immunohistochemical staining, qPCR and ELISA were used to investigate their intestinal mucosa integrity and inflammatory response. The results showed that MS pigs could maintain a normal body temperature and villus structure after 4 °C stimulation compared with those of LW and JFW pigs. Villus height and villus height/crypt depth of MS pigs were significantly higher than those of LW and JFW pigs at 4 °C. Low-Ta stimulation increased the digestion of carbohydrates of all pigs. Meanwhile, low Ta enhanced the activity of lipase in LW pigs and increased trypsin activity in MS and JFW pigs. Furthermore, low-Ta stimulation significantly downregulated the protein of tight junction and upregulated the mRNA expression of inflammatory cytokines in MS pigs. MS pigs also showed stronger spleen immune function at 4 °C. These results indicated that the local MS pig breed had stronger intestinal function in low Ta by producing a stronger inflammatory response, which lays the foundation for further study on the mechanism of cold tolerance in pigs.

5.
Sci Total Environ ; 834: 155514, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35472344

RESUMEN

Growing evidence suggests that cold exposure is to some extent a potential risk factor for ischemic stroke. At present, although the mechanism by which cold exposure induces ischemic stroke is not fully understood, some potential mechanisms have been mentioned. First, the seasonal and temperature variability of cerebrovascular risk factors (hypertension, hyperglycemia, hyperlipidemia, atrial fibrillation) may be involved. Moreover, the activation of sympathetic nervous system and renin-angiotensin system and their downstream signaling pathways (pro-inflammatory AngII, activated platelets, and dysfunctional immune cells) are also major contributors. Finally, the influenza epidemics induced by cold weather are also influencing factors that cannot be ignored. This article is the first to systematically and comprehensively describe the underlying mechanism of cold-induced ischemic stroke, aiming to provide more preventive measures and medication guidance for stroke-susceptible individuals in cold season, and also provide support for the formulation of public health policies.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Frío , Humanos , Factores de Riesgo , Estaciones del Año , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/etiología
6.
Sci Total Environ ; 810: 152229, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890653

RESUMEN

BACKGROUND: The seasonal variation of oral diseases has been observed in life, but the influences of oral diseases associated with non-optimal ambient temperature were unknown. OBJECTIVE: To examine whether non-optimum ambient temperature is associated with increased risks of oral diseases. METHODS: We conducted a time series study based on outpatient data from the Shanghai Health Information Center, containing all public hospitals in Shanghai from 2016 to 2019. Generalized additive models with distributed lagged nonlinear models were applied to fit the data. RESULT: A total of 3,882,636 outpatient cases of oral diseases were collected. Low temperature (<7 °C) posed increased risks for oral diseases. Daily temperature above 7 °C had no effect on oral diseases. The excess risks were present on the lag 1 day and lasted till lag 7 day. Relative to referent temperatures, the cumulative risks of total oral diseases, pulpitis, periodontitis, gum pain, stomatitis, and glossitis at extreme low temperature (-3 °C, 1st percentile) over lag 0-7 day were 1.92 (95% confidence interval, CI: 1.40, 2.63), 2.40 (95% CI: 1.78, 3.25), 1.62 (95% CI: 1.15, 2.29), 1.75 (95% CI: 1.08, 2.83), 1.81 (95% CI: 1.30, 2.53), and 2.22 (95% CI: 1.23, 3.99). These associations were larger in patients who were above age 60. CONCLUSION: This study provided novel epidemiological evidence that low ambient temperature may increase the risks of oral diseases. The temperature thresholds for eight oral diseases range from 3 to 7 °C. The excess risks could last for 7 days and were larger in older patients.


Asunto(s)
Frío , Calor , Anciano , China/epidemiología , Humanos , Persona de Mediana Edad , Factores de Riesgo , Estaciones del Año , Temperatura
7.
Adv Physiol Educ ; 46(1): 145-157, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34882486

RESUMEN

In endothermic mammals total energy expenditure (EE) is composed of basal metabolic rate (BMR), energy spent for muscle activity, thermoregulation, any kind of production (such as milk, meat, or egg production), and the thermic effect of feeding. The BMR is predominantly determined by body mass and the surface-to-volume ratio of the body. The EE can be quantified by either direct or indirect calorimetry. Direct calorimetry measures the rate of heat loss from the body, whereas indirect calorimetry measures oxygen consumption and carbon dioxide production and calculates heat production from oxidative nutrient combustion. A deep and sustainable understanding of EE in animals is crucial for veterinarians to properly calculate and evaluate feed rations during special circumstances such as anesthesia or in situations with increased energy demands as commonly seen in high-yielding livestock. The practical class described in this article provides an experimental approach to understanding how EE can be measured and calculated by indirect calorimetry. Two important factors that affect the EE of animals (the thermic effect of feeding and the effect of ambient temperature) are measured. A profound knowledge about the energy requirements of animal life and its measurement is also relevant for education in general biology, animal and human physiology, and nutrition. Therefore, this teaching unit can equally well be implemented in other areas of life sciences.


Asunto(s)
Metabolismo Energético , Consumo de Oxígeno , Animales , Regulación de la Temperatura Corporal , Calorimetría Indirecta , Humanos , Ratones , Estudiantes
8.
Plant Cell Physiol ; 63(3): 326-339, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-34950951

RESUMEN

Leaf senescence is an active developmental process that is tightly regulated through extensive transcriptional and metabolic reprogramming events, which underlie controlled degradation and relocation of nutrients from aged or metabolically inactive leaves to young organs. The onset of leaf senescence is coordinately modulated by intrinsic aging programs and environmental conditions, such as prolonged darkness and temperature extremes. Seedlings growing under light deprivation, as often experienced in severe shading or night darkening, exhibit an accelerated senescing process, which is mediated by a complex signaling network that includes sugar starvation responses and light signaling events via the phytochrome B (phyB)-PHYTOCHROME-INTERACTING FACTOR (PIF) signaling routes. Notably, recent studies indicate that nonstressful ambient temperatures profoundly influence the onset and progression of leaf senescence in darkness, presumably mediated by the phyB-PIF4 signaling pathways. However, it is not fully understood how temperature signals regulate leaf senescence at the molecular level. Here, we demonstrated that low ambient temperatures repress the nuclear export of phyB and the nuclear phyB suppresses the transcriptional activation activity of ethylene signaling mediator ETHYLENE INSENSITIVE3 (EIN3), thus delaying leaf senescence. Accordingly, leaf senescence was insensitive to low ambient temperatures in transgenic plants overexpressing a constitutively nuclear phyB form, as observed in ein3 eil1 mutants. In contrast, leaf senescence was significantly promoted in phyB-deficient mutants under identical temperature conditions. Our data indicate that phyB coordinately integrates light and temperature cues into the EIN3-mediated ethylene signaling pathway that regulates leaf senescence under light deprivation, which would enhance plant fitness under fluctuating natural environments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Señales (Psicología) , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Luz , Fitocromo/metabolismo , Fitocromo B/metabolismo , Senescencia de la Planta , Temperatura
9.
Mil Med Res ; 8(1): 53, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34663467

RESUMEN

The present study demonstrates that the down-regulation of peroxisome proliferator-activated receptor-α (PPARα) results in chronic low ambient temperature (LT) exposure-induced cardiac dysfunction and remodeling, emphasizing the therapeutic potential of PPARα activation strategies (e.g. fenofibrate treatment) in LT-associated cardiac injury.


Asunto(s)
Fenofibrato , Cardiopatías , Fenofibrato/farmacología , Fenofibrato/uso terapéutico , Cardiopatías/etiología , Humanos , PPAR alfa , Temperatura
10.
Hypertens Res ; 44(6): 662-673, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33742169

RESUMEN

Increased blood pressure (BP) caused by exposure to cold temperatures can partially explain the increased incidence of cardiovascular events in winter. However, the physiological mechanisms involved in cold-induced high BP are not well established. Many studies have focused on physiological responses to severe cold exposure. In this study, we aimed to perform a comprehensive analysis of cardiovascular autonomic function and sleep patterns in rats during exposure to mild cold, a condition relevant to humans in subtropical areas, to clarify the physiological mechanisms underlying mild cold-induced hypertension. BP, electroencephalography, electromyography, electrocardiography, and core body temperature were continuously recorded in normotensive Wistar-Kyoto rats over 24 h. All rats were housed in thermoregulated chambers at ambient temperatures of 23, 18, and 15 °C in a randomized crossover design. These 24-h physiological recordings either with or without sleep scoring showed that compared with the control temperature of 23 °C, the lower ambient temperatures of 18 and 15 °C not only increased BP, vascular sympathetic activity, and heart rate but also decreased overall autonomic activity, parasympathetic activity, and baroreflex sensitivity in rats. In addition, cold exposure reduced the delta power percentage and increased the incidence of interruptions during sleep. Moreover, a correlation analysis revealed that all of these cold-induced autonomic dysregulation and sleep problems were associated with elevation of BP. In conclusion, mild cold exposure elicits autonomic dysregulation and poor sleep quality, causing BP elevation, which may have critical implications for cold-related cardiovascular events.


Asunto(s)
Sistema Nervioso Autónomo , Frío , Hipertensión , Sueño , Animales , Ratas , Sistema Nervioso Autónomo/fisiología , Barorreflejo , Presión Sanguínea/fisiología , Frío/efectos adversos , Estudios Cruzados , Frecuencia Cardíaca/fisiología , Hipertensión/etiología , Ratas Endogámicas WKY , Sueño/fisiología
11.
Plant Mol Biol ; 106(1-2): 21-32, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33554307

RESUMEN

KEY MESSAGE: This paper demonstrates that BBX28 and BBX29 proteins in Arabidopsis promote flowering in association with the CO-FT regulatory module at low ambient temperature under LD conditions. Flowering plants integrate internal developmental signals with external environmental stimuli for precise flowering time control. The expression of BBX29 is up-regulated by low temperature treatment, but the biological function of BBX29 in low temperature response is unknown. In the current study, we examined the biological role of BBX29 and its close-related protein BBX28 in flowering time control under long-day conditions. Although neither BBX28 single mutant nor BBX29 single mutant has a flowering-associated phenotype, the bbx28 bbx29 double mutant plants have an obvious delayed flowering phenotype grown at low ambient temperature (16°C) compared to the wild-type (WT) plants. The expression of FT and TSF was lower in bbx28 bbx29 double mutant plants than in wild-type plants at 16°C. Both BBX28 and BBX29 interact with CONSTANS (CO), an important flowering integrator that directly binds to the FLOWERING LOCUS T (FT) promoter. In the effector-reporter assays, transcriptional activation activity of CO on the FT promoter was reduced in bbx28 bbx29 double mutant plants compared to that in WT plants. Taken together, our results reveal that BBX28 and BBX29 are promoters of flowering in Arabidopsis, especially at low ambient temperature.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Flores/fisiología , Temperatura , Factores Generales de Transcripción/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Mutación con Pérdida de Función/genética , Regiones Promotoras Genéticas , Unión Proteica , Dominios Proteicos , Factores de Tiempo , Factores de Transcripción/química , Factores de Transcripción/genética , Factores Generales de Transcripción/química , Factores Generales de Transcripción/genética , Transcripción Genética , Regulación hacia Arriba/genética
12.
J Anim Sci Technol ; 61(6): 305-312, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31844540

RESUMEN

This study was carried out to investigate the effects of dietary energy levels on growth performance, blood parameter, and intestinal morphology of Pekin ducks in low temperature. A total of 500, 21-d-old Pekin ducks (initial BW = 1,089 ± 5.21 g) were evenly assigned to five dietary treatments (2,950, 3,000, 3,050, 3,100, or 3,150 kcal AME/kg, calculated on an as-is basis) with four replicates (pens) for each treatment (25 ducks per pen). During the experiment, hens were provided with feed and water ad libitum. Overall, increasing dietary energy levels corresponded to an increase of final body weight and body weight gain (linear, p < 0.01). Feed intake decreased (linear, p < 0.01) and feed conversion ratio increased (linear, p < 0.01) with increasing levels of energy. There were no significant differences (p < 0.05) in the level of leukocytes between groups. However, heterophils decreased (quadratic, p < 0.05) and lymphocytes increased (linear, p < 0.01) as inclusion of dietary energy levels increased. The H/L ratio increased (linear, p < 0.01) with increasing dietary energy levels while serum corticosterone levels decreased at overall experimental periods. Triglycerides increased (linear and quadratic, p < 0.05) with increasing dietary energy levels. There were no significant changes in villus height or crypt depth of the jejunum at overall experimental. In conclusion, increasing concentrations of dietary energy levels up to 2,950-3,150 kcal/kg in diet. Additionally, 3,150 kcal/kg dietary energy had been revealed more beneficial and could be practiced as protective management for the Pekin ducks reared under low ambient temperature (8°C to 10°C).

13.
BMC Public Health ; 19(1): 1445, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31684915

RESUMEN

BACKGROUND: In the winter of 2016-2017, the number of deaths recorded in the north-west Europe was significantly higher than that in previous years. This spike in mortality was attributed principally to an influenza epidemic, but the contribution of air pollution and cold temperature has not been investigated. Information on the combined effect of low temperatures, influenza epidemic, and air pollution on mortality is inadequate. The objective of this study was to estimate the excess mortality in the winter of 2016-2017 in the metropolitan area of Milan, and to evaluate the independent short-term effect of 3 risk factors: low temperatures, the influenza epidemic, and air pollution. METHODS: We used a case-crossover, time-stratified study design. Mortality data were collected on all people aged > 65 years who died of natural causes, due to respiratory diseases or cardiovascular diseases, between December 1, 2016 and February 15, 2017. Environmental data were extracted from the Regional Environmental Protection Agency. The National Surveillance Network provided data on influenza epidemic. RESULTS: Among the 7590 natural deaths in people aged > 65 years, 965 (13%) were caused by respiratory conditions, and 2688 (35%) were caused by cardiovascular conditions. There were statistically significant associations between the minimum recorded temperature and deaths due to natural causes (OR = 0.966, 95% CI: 0.944-0.989), and cardiovascular conditions (OR = 0.961, 95% CI: 0.925-0.999). There were also statistically significant association between the influenza epidemic and deaths due to natural causes (OR = 1.198, 95% CI: 1.156-1.241), cardiovascular conditions (OR = 1.153, 95% CI: 1.088-1.223), and respiratory conditions (OR = 1.303, 95% CI: 1.166-1.456). High levels of PM10 (60 and 70 µg/m3) were associated with a statistically significant increase in natural and cause-specific mortality. There were statistically significant interactions between PM10 and influenza for cardiovascular-related mortality, and between influenza and temperature for deaths due to natural causes. CONCLUSIONS: Excess of mortality in Milan during winter 2016-2017 was associated with influenza epidemic and concomitant environmental exposures, specifically, the combined effect of air pollution and low temperatures. Policies mitigating the effects of environmental risk factors should be implemented to prevent future excess mortality.


Asunto(s)
Contaminación del Aire/efectos adversos , Frío/efectos adversos , Epidemias , Gripe Humana/epidemiología , Mortalidad/tendencias , Anciano , Ciudades , Estudios Cruzados , Humanos , Italia/epidemiología , Factores de Riesgo , Estaciones del Año
14.
Front Plant Sci ; 9: 1873, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30619428

RESUMEN

Boreal and temperate woody perennials are highly adapted to their local climate, which delimits the length of the growing period. Moreover, seasonal control of growth-dormancy cycles impacts tree productivity and geographical distribution. Therefore, traits related to phenology are of great interest to tree breeders and particularly relevant in the context of global warming. The recent application of transcriptional profiling and genetic association studies to poplar species has provided a robust molecular framework for investigating molecules with potential links to phenology. The environment dictates phenology by modulating the expression of endogenous molecular switches, the identities of which are currently under investigation. This review outlines the current knowledge of these molecular switches in poplar and covers several perspectives concerning the environmental control of growth-dormancy cycles. In the process, we highlight certain genetic pathways which are affected by short days, low temperatures and cold-induced signaling.

15.
Int J Biometeorol ; 60(8): 1193-203, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26732578

RESUMEN

This study examined the effects of dietary DL-2-hydroxy-4(methylthio)butanoic acid (DL-HMTBA) supplementation on growth performance, antioxidant capacity, and ascites syndrome (AS) in broilers reared at low ambient temperature (LAT) from 7 to 28 days of age. Eight hundred 7-day-old broilers were randomly assigned to two ambient temperatures (LAT and normal ambient temperature [NAT]), four supplemental DL-HMTBA levels (0.17, 0.34, 0.51, and 0.68 %) of the basal diet in a 2 × 4 factorial arrangement (ten replicate pens; ten birds/pen). LAT and NAT indicate temperatures of 12-14 and 24-26 °C in two chambers, respectively, and broilers were reared at these temperatures from 7 to 28 days of age. LAT significantly decreased body weight gain (P < 0.001), serum glutathione (GSH) content (day 14, P = 0.02; day 28, P = 0.045), glutathione peroxidase (GSH-Px) activity, and total antioxidant capacity (T-AOC) at 21 days (P = 0.001, 0.015) and 28 days (P = 0.017, 0.010) and increased feed conversion ratio (FCR) (P < 0.001), serum malondialdehyde (day 21, P = 0.000) and protein carbonyl Level (day 14, P = 0.003; day 21, P = 0.035). As for incidence of AS, there were significant effects of LAT on red blood cell (RBC) count (P < 0.05), hematocrit (HCT) (P < 0.05), and the right to total ventricular weight ratio (RV/TV) at 21 days (P = 0.012) and 28 days (P = 0.046). Supplementation of DL-HMTBA markedly decreased RV/TV at day 28 (P = 0.021), RBC (day 21, P = 0.008), HCT (day 21, P < 0.001), mean cell hemoglobin (day 14, P = 0.035; day 21, P = 0.003), and serum protein carbonyl level (day 21, P = 0.009), while significantly increased serum GSH content (day 14, P = 0.022; day 28, P = 0.001), SOD and GSH-Px activities at 21 days of age (P < 0.001 and P = 0.037). The optimal supplemental DL-HMTBA levels in basal diet of broilers aged from 7 to 28 days under low or normal temperatures were similar, so the authors recommended supplemental of DL-HMTBA level was 0.46 %.


Asunto(s)
Pollos , Suplementos Dietéticos , Metionina/análogos & derivados , Temperatura , Animales , Ascitis , Pollos/sangre , Pollos/crecimiento & desarrollo , Glutatión/sangre , Glutatión Peroxidasa/sangre , Pruebas Hematológicas , Masculino , Malondialdehído/sangre , Metionina/farmacología
16.
Poult Sci ; 93(4): 898-905, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24706967

RESUMEN

The study was conducted to determine the effects of low ambient temperature (LAT) and a vitamin C (VC) dietary supplement on the growth performance, blood parameters, and antioxidant capacity of 21-d-old broilers. A total of 400 one-day-old male Cobb broilers were assigned to 1 of 4 treatments as follows: 1) LAT and a basal diet; 2) LAT and a basal diet supplemented with 1,000 mg of VC/kg (LAT + VC); 3) normal ambient temperature (NAT) and a basal diet; 4) NAT and a basal diet supplemented with 1,000 mg of VC/kg (NAT + VC). All birds were fed to 21 d of age. Broilers in groups 1 and 2 were raised at 24 to 26°C during 1 to 7 d, and at 9 to 11°C during 8 to 21 d, whereas groups 3 and 4 were raised at 29 to 31°C during 1 to 7 d and at 24 to 26°C during 8 to 21 d. The LAT increased the feed conversion ratio during the whole experimental period (P < 0.01), whereas it increased heart index at 21 d (P < 0.05) and hematocrit and hemoglobin level at 14 d (P < 0.05). Supplementing the diet with VC increased hematocrit, hemoglobin, and red blood cell count at 21 d (P < 0.05). At 21 d, LAT conditions decreased total antioxidant capacity in the serum, liver, and lungs (P < 0.05), and it also increased the levels of VC in the serum and liver, the amount of protein carbonylation in liver and lungs, and the malondialdehyde level in the lungs (P < 0.05). The addition of VC tended to increase the total antioxidant capacity level in serum (P < 0.1). Low ambient temperature resulted in oxidative stress for broilers that were fed from 1 to 21 d of age, whereas no significant effect was found on the antioxidant activity by dietary VC supplementation.


Asunto(s)
Antioxidantes/fisiología , Ascitis/veterinaria , Ácido Ascórbico/farmacología , Pollos , Enfermedades de las Aves de Corral/prevención & control , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Antioxidantes/administración & dosificación , Antioxidantes/metabolismo , Ascitis/etiología , Ascitis/prevención & control , Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/sangre , Análisis Químico de la Sangre/veterinaria , Pollos/crecimiento & desarrollo , Frío , Dieta/veterinaria , Suplementos Dietéticos/análisis , Pruebas Hematológicas/veterinaria , Masculino , Enfermedades de las Aves de Corral/etiología
17.
Plant J ; 78(3): 468-80, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24635058

RESUMEN

Low temperature (LT) is one of the most prevalent factors limiting the productivity and geographical distribution of rice (Oryza sativa L.). Although significant progress has been made in elucidating the effect of LT on seed germination and reproductive development in rice, the genetic component affecting vegetative growth under LT remains poorly understood. Here, we report that rice cultivars harboring the dominant LTG1 (Low Temperature Growth 1) allele are more tolerant to LT (15-25°C, a temperature range prevalent in high-altitude, temperate zones and high-latitude areas), than those with the ltg1 allele. Using a map-based cloning strategy, we show that LTG1 encodes a casein kinase I. A functional nucleotide polymorphism was identified in the coding region of LTG1, causing a single amino acid substitution (I357K) that is associated with the growth rate, heading date and yield of rice plants grown at LT. We present evidence that LTG1 affects rice growth at LT via an auxin-dependent process(es). Furthermore, phylogenetic analysis of this locus suggests that the ltg1 haplotype arose before the domestication of rice in tropical climates. Together, our data demonstrate that LTG1 plays an important role in the adaptive growth and fitness of rice cultivars under conditions of low ambient temperature.


Asunto(s)
Adaptación Fisiológica , Oryza/fisiología , Proteínas de Plantas/metabolismo , Alelos , Sustitución de Aminoácidos , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Clonación Molecular , Frío , Regulación de la Expresión Génica de las Plantas , Haplotipos , Ácidos Indolacéticos/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polimorfismo Genético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA