Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
1.
Front Immunol ; 15: 1395427, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007135

RESUMEN

Systemic lupus erythematosus (SLE, lupus) is a debilitating, multisystem autoimmune disease that can affect any organ in the body. The disease is characterized by circulating autoantibodies that accumulate in organs and tissues, which triggers an inflammatory response that can cause permanent damage leading to significant morbidity and mortality. Lyn, a member of the Src family of non-receptor protein tyrosine kinases, is highly implicated in SLE as remarkably both mice lacking Lyn or expressing a gain-of-function mutation in Lyn develop spontaneous lupus-like disease due to altered signaling in B lymphocytes and myeloid cells, suggesting its expression or activation state plays a critical role in maintaining tolerance. The past 30 years of research has begun to elucidate the role of Lyn in a duplicitous signaling network of activating and inhibitory immunoreceptors and related targets, including interactions with the interferon regulatory factor family in the toll-like receptor pathway. Gain-of-function mutations in Lyn have now been identified in human cases and like mouse models, cause severe systemic autoinflammation. Studies of Lyn in SLE patients have presented mixed findings, which may reflect the heterogeneity of disease processes in SLE, with impairment or enhancement in Lyn function affecting subsets of SLE patients that may be a means of stratification. In this review, we present an overview of the phosphorylation and protein-binding targets of Lyn in B lymphocytes and myeloid cells, highlighting the structural domains of the protein that are involved in its function, and provide an update on studies of Lyn in SLE patients.


Asunto(s)
Lupus Eritematoso Sistémico , Transducción de Señal , Familia-src Quinasas , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/genética , Familia-src Quinasas/metabolismo , Familia-src Quinasas/genética , Humanos , Animales , Linfocitos B/inmunología , Ratones
2.
Cell Commun Signal ; 22(1): 307, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831315

RESUMEN

BACKGROUND: Interleukin 24 (IL-24) has been implicated in the nociceptive signaling. However, direct evidence and the precise molecular mechanism underlying IL-24's role in peripheral nociception remain unclear. METHODS: Using patch clamp recording, molecular biological analysis, immunofluorescence labeling, siRNA-mediated knockdown approach and behavior tests, we elucidated the effects of IL-24 on sensory neuronal excitability and peripheral pain sensitivity mediated by T-type Ca2+ channels (T-type channels). RESULTS: IL-24 enhances T-type channel currents (T-currents) in trigeminal ganglion (TG) neurons in a reversible and dose-dependent manner, primarily by activating the interleukin-22 receptor 1 (IL-22R1). Furthermore, we found that the IL-24-induced T-type channel response is mediated through tyrosine-protein kinase Lyn, but not its common downstream target JAK1. IL-24 application significantly activated protein kinase A; this effect was independent of cAMP and prevented by Lyn antagonism. Inhibition of PKA prevented the IL-24-induced T-current response, whereas inhibition of protein kinase C or MAPK kinases had no effect. Functionally, IL-24 increased TG neuronal excitability and enhanced pain sensitivity to mechanical stimuli in mice, both of which were suppressed by blocking T-type channels. In a trigeminal neuropathic pain model induced by chronic constriction injury of the infraorbital nerve, inhibiting IL-22R1 signaling alleviated mechanical allodynia, which was reversed by blocking T-type channels or knocking down Cav3.2. CONCLUSION: Our findings reveal that IL-24 enhances T-currents by stimulating IL-22R1 coupled to Lyn-dependent PKA signaling, leading to TG neuronal hyperexcitability and pain hypersensitivity. Understanding the mechanism of IL-24/IL-22R1 signaling in sensory neurons may pave the way for innovative therapeutic strategies in pain management.


Asunto(s)
Canales de Calcio Tipo T , Proteínas Quinasas Dependientes de AMP Cíclico , Receptores de Interleucina , Células Receptoras Sensoriales , Transducción de Señal , Ganglio del Trigémino , Familia-src Quinasas , Animales , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/genética , Familia-src Quinasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ganglio del Trigémino/metabolismo , Masculino , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Receptores de Interleucina/metabolismo , Ratones , Ratones Endogámicos C57BL , Interleucinas/metabolismo
3.
Pharmacol Rep ; 76(4): 793-806, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38739359

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most difficult to treat tumors. The Src (sarcoma) inhibitor dasatinib (DASA) has shown promising efficacy in preclinical studies of PDAC. However, clinical confirmation could not be achieved. Overall, our aim was to deliver arguments for the possible reinitiating clinical testing of this compound in a biomarker-stratifying therapy trial for PDAC patients. We tested if the nanofunctionalization of DASA can increase the drug efficacy and whether certain Src members can function as clinical predictive biomarkers. METHODS: Methods include manufacturing of poly(vinyl alcohol) stabilized gold nanoparticles and their drug loading, dynamic light scattering, transmission electron microscopy, thermogravimetric analysis, Zeta potential measurement, sterile human cell culture, cell growth quantification, accessing and evaluating transcriptome and clinical data from molecular tumor dataset TCGA, as well as various statistical analyses. RESULTS: We generated homo-dispersed nanofunctionalized DASA as an AuNP@PVA-DASA conjugate. The composite did not enhance the anti-growth effect of DASA on PDAC cell lines. The cell model with high LYN expression showed the strongest response to the therapy. We confirm deregulated Src kinetome activity as a prevalent feature of PDAC by revealing mRNA levels associated with higher malignancy grade of tumors. BLK (B lymphocyte kinase) expression predicts shorter overall survival of diabetic PDAC patients. CONCLUSIONS: Nanofunctionalization of DASA needs further improvement to overcome the therapy resistance of PDAC. LYN mRNA is augmented in tumors with higher malignancy and can serve as a predictive biomarker for the therapy resistance of PDAC cells against DASA. Studying the biological roles of BLK might help to identify underlying molecular mechanisms associated with PDAC in diabetic patients.


Asunto(s)
Carcinoma Ductal Pancreático , Dasatinib , Resistencia a Antineoplásicos , Nanopartículas del Metal , Neoplasias Pancreáticas , Familia-src Quinasas , Dasatinib/farmacología , Dasatinib/administración & dosificación , Humanos , Familia-src Quinasas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Oro/química , Proliferación Celular/efectos de los fármacos
4.
Biochem Biophys Res Commun ; 723: 150177, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38810320

RESUMEN

PURPOSE: We found a novel lncRNA named lncAC138150.2 related to the overall survival and staging of patients with colorectal cancer (CRC) by bioinformatic analysis using data from the Cancer Genome Atlas (TCGA), and the study aimed to elucidate the function of lncAC138150.2 and underlying mechanisms. METHODS: Target molecules were knocked down by transfection with antisense oligonucleotides (ASOs), siRNAs, or lentiviruses and overexpressed by transfection with plasmids. The function of lncAC138150.2 was determined using histological, cytological, and molecular biology methods. The underlying mechanism of lncAC138150.2 function was investigated using RNA-seq, bioinformatics analysis, and molecular biology methods. RESULTS: The expression of lncAC138150.2 was increased in colorectal tissues compared with paired normal tissues. The lncAC138150.2 knockdown increased apoptosis but did not change the cell proliferation, cell cycle distribution, or cell migration ability of CRC cells, while lncAC138150.2 overexpression decreased CRC apoptosis. lncAC138150.2 was mainly located in the cell nucleus, and each lncAC138150.2 transcript knockdown increased CRC apoptosis. BCL-2 pathway was significantly altered in apoptosis induced by lncAC138150.2 knockdown, which was alleviated by BAX knockdown. The expression of LYN was significantly decreased with lncAC138150.2 knockdown, LYN knockdown increased CRC apoptosis, and its overexpression completely alleviated CRC apoptosis induced by lncAC138150.2 knockdown. CONCLUSION: lncAC138150.2 significantly inhibited CRC apoptosis and affected the prognosis of patients with CRC, through the LYN/BCL-2 pathway.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-bcl-2 , ARN Largo no Codificante , Transducción de Señal , Familia-src Quinasas , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Apoptosis/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Pronóstico , Familia-src Quinasas/metabolismo , Familia-src Quinasas/genética , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Masculino , Movimiento Celular/genética
5.
Clin Immunol ; 263: 110222, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636889

RESUMEN

It is easily understood that studying the physiology and pathophysiology of the BCRtriggered cascade is of importance, particularly in such diseases as systemic lupus erythematosus (SLE) that are considered by many as a "B cell disease". Even though B cells are not considered as the only players in lupus pathogenesis, and other immune and non-immune cells are certainly involved, it is the success of recent B cell-targeting treatment strategies that ascribe a critical role to the lupus B cell.


Asunto(s)
Linfocitos B , Lupus Eritematoso Sistémico , Receptores de Antígenos de Linfocitos B , Transducción de Señal , Lupus Eritematoso Sistémico/inmunología , Humanos , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/inmunología , Transducción de Señal/inmunología , Linfocitos B/inmunología , Animales
6.
Bioorg Med Chem Lett ; 102: 129674, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38408513

RESUMEN

Fyn, Blk, and Lyn are part of a group of proteins called Src family kinases. They are crucial in controlling cell communication and their response to the growth, changes, and immune system. Blocking these proteins with inhibitors can be a way to treat diseases where these proteins are too active. The primary mode of action of these inhibitors is to inhibit the phosphorylation of Fyn, Blk, and Lyn receptors, which in turn affects how signals pass within the cells. This review shows the structural and functional aspects of Fyn, Blk, and Lyn kinases, highlighting the significance of their dysregulation in diseases such as cancer and autoimmune disorders. The discussion encompasses the design strategies, SAR analysis, and chemical characteristics of effective inhibitors, shedding light on their specificity and potency. Furthermore, it explores the progress of clinical trials of these inhibitors, emphasizing their potential therapeutic applications.


Asunto(s)
Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Familia-src Quinasas , Fosforilación
7.
Dis Model Mech ; 17(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38149669

RESUMEN

LYN kinase is expressed in BRCA1 loss-of-function-dependent mouse mammary tumours, in the cells of origin of such tumours, and in human breast cancer. Suppressing LYN kinase activity in BRCA1-defective cell lines as well as in in vitro cultures of Brca1-null mouse mammary tumours is deleterious to their growth. Here, we examined the interaction between LYN kinase and BRCA1 loss-of-function in an in vivo mouse mammary tumour model, using conditional knockout Brca1 and Lyn alleles. Comparison of Brca1 tumour cohorts showed little difference in mammary tumour formation between animals that were wild type, heterozygous or homozygous for the conditional Lyn allele, although this was confounded by factors including incomplete Lyn recombination in some tumours. RNA-sequencing analysis demonstrated that tumours with high levels of Lyn gene expression had a slower doubling time, but this was not correlated with levels of LYN staining in tumour cells themselves. Rather, high Lyn expression and slower tumour growth were likely a result of B-cell infiltration. The multifaceted role of LYN indicates that it is likely to present difficulties as a therapeutic target in breast cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias Mamarias Animales , Animales , Femenino , Humanos , Ratones , Proteína BRCA1/genética , Mama/patología , Neoplasias de la Mama/genética , Línea Celular , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/patología , Ratones Noqueados
8.
Respir Res ; 24(1): 314, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098035

RESUMEN

Recent data from human studies and animal models have established roles for type II alveolar epithelial cell (AEC2) injury/apoptosis and monocyte/macrophage accumulation and activation in progressive lung fibrosis. Although the link between these processes is not well defined, we have previously shown that CD36-mediated uptake of apoptotic AEC2s by lung macrophages is sufficient to drive fibrosis. Importantly, apoptotic AEC2s are rich in oxidized phospholipids (oxPL), and amongst its multiple functions, CD36 serves as a scavenger receptor for oxPL. Recent studies have established a role for oxPLs in alveolar scarring, and we hypothesized that uptake and accrual of oxPL by CD36 would cause a macrophage phenotypic change that promotes fibrosis. To test this hypothesis, we treated wild-type and CD36-null mice with the oxPL derivative oxidized phosphocholine (POVPC) and found that CD36-null mice were protected from oxPL-induced scarring. Compared to WT mice, fewer macrophages accumulated in the lungs of CD36-null animals, and the macrophages exhibited a decreased accumulation of intracellular oxidized lipid. Importantly, the attenuated accrual of oxPL in CD36-null macrophages was associated with diminished expression of the profibrotic mediator, TGFß. Finally, the pathway linking oxPL uptake and TGFß expression was found to require CD36-mediated activation of Lyn kinase. Together, these observations elucidate a causal pathway that connects AEC2 injury with lung macrophage activation via CD36-mediated uptake of oxPL and suggest several potential therapeutic targets.


Asunto(s)
Fibrosis Pulmonar , Ratones , Humanos , Animales , Fibrosis Pulmonar/metabolismo , Fosfolípidos/metabolismo , Cicatriz/metabolismo , Macrófagos/metabolismo , Ratones Noqueados , Fibrosis , Factor de Crecimiento Transformador beta/metabolismo
9.
Front Oncol ; 13: 1322403, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107067

RESUMEN

Acute myeloid leukemia (AML) is a malignant disease of myeloid hematopoietic stem/progenitor cells characterized by the abnormal proliferation of primitive and naive random cells in the bone marrow and peripheral blood. Acute promyelocytic leukemia (APL) is a type (AML-M3) of AML. Most patients with APL have the characteristic chromosomal translocation t(15; 17)(q22; q12), forming PML::RARA fusion. The occurrence and progression of AML are often accompanied by the emergence of gene fusions such as PML::RARA, CBFß::MYH11, and RUNX1::RUNX1T1, among others. Gene fusions are the main molecular biological abnormalities in acute leukemia, and all fusion genes act as crucial oncogenic factors in leukemia. Herein, we report the first case of LYN::LINC01900 fusion transcript in AML with a promyelocytic phenotype and TP53 mutation. Further studies should address whether new protein products may result from this fusion, as well as the biological function of these new products in disease occurrence and progression.

10.
ACS Biomater Sci Eng ; 9(12): 6835-6848, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38015076

RESUMEN

Increased fibrotic extracellular matrix (ECM) deposition promotes tumor invasion, which is the first step of the metastatic cascade. Yet, the underlying mechanisms are poorly understood as conventional studies of tumor cell migration are often performed in 2D cultures lacking the compositional and structural complexity of native ECM. Moreover, these studies frequently focus on select candidate pathways potentially overlooking other relevant changes in cell signaling. Here, we combine a cell-derived matrix (CDM) model with phosphotyrosine phosphoproteomic analysis to investigate tumor cell migration on fibrotic ECM relative to standard tissue culture plastic (TCP). Our results suggest that tumor cells cultured on CDMs migrate faster and in a more directional manner than their counterparts on TCP. These changes in migration correlate with decreased cell spreading and increased cell elongation. While the formation of phosphorylated focal adhesion kinase (pFAK)+ adhesion complexes did not vary between TCP and CDMs, time-dependent phosphoproteomic analysis identified that the SRC family kinase LYN may be differentially regulated. Pharmacological inhibition of LYN decreased tumor cell migration and cytoskeletal rearrangement on CDMs and also on TCP, suggesting that LYN regulates tumor cell migration on CDMs in combination with other mechanisms. These data highlight how the combination of physicochemically complex in vitro systems with phosphoproteomics can help identify signaling mechanisms by which the fibrotic ECM regulates tumor cell migration.


Asunto(s)
Citoesqueleto , Matriz Extracelular , Movimiento Celular/fisiología , Matriz Extracelular/metabolismo , Citoesqueleto/metabolismo , Transducción de Señal
11.
Ren Fail ; 45(2): 2272717, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37870491

RESUMEN

BACKGROUND: The role of inflammation in the pathogenesis of type 2 diabetes mellitus (T2DM) is well established. Lyn, a member of the nonreceptor protein tyrosine kinase Src family, has been reported to modulate inflammatory signaling pathways. METHODS: Lyn expression was assessed in kidney biopsies of 11 patients with diabetic kidney disease (DKD) and in kidney tissues of streptozotocin (STZ)-induced DKD mice. 102 recruited T2DM patients were divided into three groups: normoalbuminuria, microalbuminuria and macroalbuminuria. Twenty-one healthy volunteers were recruited as a control group. Clinical data, blood and urine samples of all individuals were collected for analysis. RESULTS: Lyn expression was augmented in the kidneys of DKD patients and STZ-induced diabetic mice. Compared with control and normoalbuminuria groups, both mRNA and protein expression of Lyn in peripheral blood mononuclear cells (PBMCs) in the macroalbuminuria group were significantly increased (p < .05). Elevated Lyn levels were independently related to urine albumin/urine creatinine ratio and were positively associated with key inflammatory factors, namely interleukin-1ß, monocyte chemoattractant protein-1, and tumor necrosis factor-α. Additionally, Lyn exhibited a noteworthy connection with renal tubular injury indicators, specifically urinary neutrophil gelatinase-associated lipocalin and urinary retinol binding protein. ROC curve analysis showed that Lyn could predict albuminuria in diabetic patients with an area under the curve of 0.844 (95% CI: 0.764-0.924). CONCLUSION: Lyn levels in PBMCs exhibited a positive correlation with the severity of albuminuria, renal tubular damage, and inflammatory responses. Hence, Lyn may be a compelling candidate for predicting albuminuria levels in diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Humanos , Animales , Ratones , Regulación hacia Arriba , Leucocitos Mononucleares/metabolismo , Albuminuria/etiología , Albuminuria/orina , Proteínas Quinasas/metabolismo , Diabetes Mellitus Experimental/complicaciones , Biomarcadores , Riñón/metabolismo
12.
FEBS Lett ; 597(19): 2433-2445, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37669828

RESUMEN

Although signal-transducing adaptor protein-2 (STAP-2) acts in certain immune responses, its role in B cell receptor (BCR)-mediated signals remains unknown. In this study, we have revealed that BCR-mediated signals, cytokine production and antibody production were increased in STAP-2 knockout (KO) mice compared with wild-type (WT) mice. Phosphorylation of tyrosine-protein kinase LYN Y508 was reduced in STAP-2 KO B cells after BCR stimulation. Mechanistic analysis revealed that STAP-2 directly binds to LYN, dependently of STAP-2 Y250 phosphorylation by LYN. Furthermore, phosphorylation of STAP-2 enhanced interactions between LYN and tyrosine-protein kinase CSK, resulting in enhanced CSK-mediated LYN Y508 phosphorylation. These results suggest that STAP-2 is crucial for controlling BCR-mediated signals and antibody production by enhanced CSK-mediated feedback regulation of LYN.


Asunto(s)
Transducción de Señal , Familia-src Quinasas , Ratones , Animales , Proteína Tirosina Quinasa CSK/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Fosforilación , Linfocitos B/metabolismo , Ratones Noqueados
13.
Front Immunol ; 14: 1224520, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680627

RESUMEN

The Src family kinases (SFKs) Lck and Lyn are crucial for lymphocyte development and function. Albeit tissue-restricted expression patterns the two kinases share common functions; the most pronounced one being the phosphorylation of ITAM motifs in the cytoplasmic tails of antigenic receptors. Lck is predominantly expressed in T lymphocytes; however, it can be ectopically found in B-1 cell subsets and numerous pathologies including acute and chronic B-cell leukemias. The exact impact of Lck on the B-cell signaling apparatus remains enigmatic and is followed by the long-lasting question of mechanisms granting selectivity among SFK members. In this work we sought to investigate the mechanistic basis of ectopic Lck function in B-cells and compare it to events elicited by the predominant B-cell SFK, Lyn. Our results reveal substrate promiscuity displayed by the two SFKs, which however, is buffered by their differential susceptibility toward regulatory mechanisms, revealing a so far unappreciated aspect of SFK member-specific fine-tuning. Furthermore, we show that Lck- and Lyn-generated signals suffice to induce transcriptome alterations, reminiscent of B-cell activation, in the absence of receptor/co-receptor engagement. Finally, our analyses revealed a yet unrecognized role of SFKs in tipping the balance of cellular stress responses, by promoting the onset of ER-phagy, an as yet completely uncharacterized process in B lymphocytes.


Asunto(s)
Transducción de Señal , Familia-src Quinasas , Familia-src Quinasas/genética , Perfilación de la Expresión Génica , Fosforilación , Transcriptoma
14.
Int J Biol Sci ; 19(10): 3209-3225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37416766

RESUMEN

Background: Glioblastoma multiforme (GBM) is the most lethal malignancy in brain, which is surrounded by the blood-brain barrier (BBB), which limits the efficacy of standard treatments. Developing an effective drug that can penetrate the blood-brain barrier (BBB) remains a critical challenge in the fight against GBM. CC12 (NSC749232) is an anthraquinone tetraheterocyclic homolog with a lipophilic structure that may facilitate penetration of the brain area. Methods: We used temozolomide sensitive and resistance GBM cells and animal model to identify the CC12 delivery, anti-tumor potential and its underlying mechanism. Results: Importantly, toxicity triggered by CC12 was not associated with the methyl guanine-DNA methyl transferase (MGMT) methylation status which revealed a greater application potential compared to temozolomide. Alexa F488 cadaverine-labelled CC12 successfully infiltrated into the GBM sphere; in addition, 68Ga-labeled CC12 was also found in the orthotopic GBM area. After passing BBB, CC12 initiated both caspase-dependent intrinsic/extrinsic apoptosis pathways and apoptosis-inducing factor, EndoG-related caspase-independent apoptosis signaling in GBM. RNA sequence analysis from The Cancer Genome Atlas indicated that LYN was overexpressed in GBM is associated with poorer overall survival. We proved that targeting of LYN by CC12 may diminish GBM progression and suppress it downstream factors such as signal transduction and activator of extracellular signal-regulated kinases (ERK)/transcription 3 (STAT3)/nuclear factor (NF)-κB. CC12 was also found to participate in suppressing GBM metastasis and dysregulation of the epithelial-mesenchymal transition (EMT) through inactivation of the LYN axis. Conclusion: CC12, a newly developed BBB-penetrating drug, was found to possess an anti-GBM capacity via initiating an apoptotic mechanism and disrupting LYN/ERK/STAT3/NF-κB-regulated GBM progression.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Temozolomida/farmacología , Línea Celular Tumoral , Neoplasias Encefálicas/genética , Glioblastoma/metabolismo , FN-kappa B/metabolismo , Apoptosis , Caspasas
15.
Phytother Res ; 37(9): 4236-4250, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37329155

RESUMEN

Mast cells (MCs) are important therapeutic targets for allergic diseases. High-affinity immunoglobulin E (IgE) Fc receptors (FcεRI) trigger abnormal activation of MCs. Allergic rhinitis (AR) is an IgE-mediated antigen inhalation reaction that occurs in the nasal mucosa. MC aggravation and dysfunction were observed during the early stages of AR pathogenesis. Herb-derived dictamnine exhibits anti-inflammatory effects. Here, we investigated the pharmacological effects of herb-derived dictamnine on IgE-induced activation of MCs and an ovalbumin (OVA)-induced murine AR model. The results indicated that dictamnine attenuated OVA-induced local allergic reactions and reduced body temperature in OVA-challenged mice with active systemic anaphylaxis. Additionally, dictamnine decreased the frequency of nasal rubbing and sneezing in an OVA-induced murine AR model. Moreover, dictamnine inhibited FcεRI-activated MC activation in a dose-dependent manner without causing cytotoxicity, reduced the activation of the tyrosine kinase LYN in LAD2 cells, and downregulated the phosphorylation of PLCγ1, IP3R, PKC, Erk1/2, and Akt, which are downstream of LYN. In conclusion, dictamnine suppressed the OVA-stimulated murine model of AR and activated IgE-induced MCs via the LYN kinase-mediated molecular signaling pathway, suggesting that dictamnine may be a promising treatment for AR.


Asunto(s)
Mastocitos , Rinitis Alérgica , Ratones , Animales , Ovalbúmina , Inmunoglobulina E/metabolismo , Transducción de Señal , Rinitis Alérgica/tratamiento farmacológico , Antiinflamatorios/farmacología , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
16.
Mil Med Res ; 10(1): 25, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37271807

RESUMEN

BACKGROUND: Globally, despite prostate cancer (PCa) representing second most prevalent malignancy in male, the precise molecular mechanisms implicated in its pathogenesis remain unclear. Consequently, elucidating the key molecular regulators that govern disease progression could substantially contribute to the establishment of novel therapeutic strategies, ultimately advancing the management of PCa. METHODS: A total of 49 PCa tissues and 43 adjacent normal tissues were collected from January 2017 to December 2021 at Zhongnan Hospital of Wuhan University. The advanced transcriptomic methodologies were employed to identify differentially expressed mRNAs in PCa. The expression of aspartoacylase (ASPA) in PCa was thoroughly evaluated using quantitative real-time PCR and Western blotting techniques. To elucidate the inhibitory role of ASPA in PCa cell proliferation and metastasis, a comprehensive set of in vitro and in vivo assays were conducted, including orthotopic and tumor-bearing mouse models (n = 8 for each group). A combination of experimental approaches, such as Western blotting, luciferase assays, immunoprecipitation assays, mass spectrometry, glutathione S-transferase pull-down experiments, and rescue studies, were employed to investigate the underlying molecular mechanisms of ASPA's action in PCa. The Student's t-test was employed to assess the statistical significance between two distinct groups, while one-way analysis of variance was utilized for comparisons involving more than two groups. A two-sided P value of less than 0.05 was deemed to indicate statistical significance. RESULTS: ASPA was identified as a novel inhibitor of PCa progression. The expression of ASPA was found to be significantly down-regulated in PCa tissue samples, and its decreased expression was independently associated with patients' prognosis (HR = 0.60, 95% CI 0.40-0.92, P = 0.018). Our experiments demonstrated that modulation of ASPA activity, either through gain- or loss-of-function, led to the suppression or enhancement of PCa cell proliferation, migration, and invasion, respectively. The inhibitory role of ASPA in PCa was further confirmed using orthotopic and tumor-bearing mouse models. Mechanistically, ASPA was shown to directly interact with the LYN and inhibit the phosphorylation of LYN as well as its downstream targets, JNK1/2 and C-Jun, in both PCa cells and mouse models, in an enzyme-independent manner. Importantly, the inhibition of LYN activation by bafetinib abrogated the promoting effect of ASPA knockdown on PCa progression in both in vitro and in vivo models. Moreover, we observed an inverse relationship between ASPA expression and LYN activity in clinical PCa samples, suggesting a potential regulatory role of ASPA in modulating LYN signaling. CONCLUSION: Our findings provide novel insights into the tumor-suppressive function of ASPA in PCa and highlight its potential as a prognostic biomarker and therapeutic target for the management of this malignancy.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Amidohidrolasas/uso terapéutico , MicroARNs/uso terapéutico , Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
17.
Cell Rep ; 42(5): 112490, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37163374

RESUMEN

Growth hormone (GH) acts via JAK2 and LYN to regulate growth, metabolism, and neural function. However, the relationship between these tyrosine kinases remains enigmatic. Through an interdisciplinary approach combining cell biology, structural biology, computation, and single-particle tracking on live cells, we find overlapping LYN and JAK2 Box1-Box2-binding regions in GH receptor (GHR). Our data implicate direct competition between JAK2 and LYN for GHR binding and imply divergent signaling profiles. We show that GHR exhibits distinct mobility states within the cell membrane and that activation of LYN by GH mediates GHR immobilization, thereby initiating its nanoclustering in the membrane. Importantly, we observe that LYN mediates cytokine receptor degradation, thereby controlling receptor turnover and activity, and this applies to related cytokine receptors. Our study offers insight into the molecular interactions of LYN with GHR and highlights important functions for LYN in regulating GHR nanoclustering, signaling, and degradation, traits broadly relevant to many cytokine receptors.


Asunto(s)
Hormona de Crecimiento Humana , Receptores de Somatotropina , Receptores de Somatotropina/metabolismo , Janus Quinasa 2/metabolismo , Transducción de Señal , Hormona del Crecimiento/metabolismo , Hormona de Crecimiento Humana/metabolismo , Tirosina/metabolismo , Fosforilación
18.
J Cell Mol Med ; 27(12): 1664-1681, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37132040

RESUMEN

The pro-inflammatory phenotype of microglia usually induces neuroinflammatory reactions in neuropathic pain. Glycometabolism shift to glycolysis can promote the pro-inflammatory phenotype transition of microglia. The omics data analysis suggest a critical role for Lyn dysregulation in neuropathic pain. The present study aimed at exploring the mechanism of Lyn-mediated glycolysis enhancement of microglia in neuropathic pain. Neuropathic pain model was established by chronic constriction injury (CCI), then pain thresholds and Lyn expression were measured. Lyn inhibitor Bafetinib and siRNA-lyn knockdown were administrated intrathecally to evaluate the effects of Lyn on pain thresholds, glycolysis and interferon regulatory factor 5 (IRF5) nuclear translocation of microglia in vivo and in vitro. ChIP was carried out to observe the binding of transcription factors SP1, PU.1 to glycolytic gene promoters by IRF5 knockdown. Finally, the relationship between glycolysis and pro-inflammatory phenotype transition of microglia was evaluated. CCI led to the upregulation of Lyn expression and glycolysis enhancement in microglia of spinal dorsal horn. Bafetinib or siRNA-lyn knockdown intrathecally alleviated pain hyperalgesia, suppressed glycolysis enhancement and inhibited nuclear translocation of IRF5 in CCI mice. Also, IRF5 promoted the binding of transcription factors SP1, PU.1 to glycolytic gene promoters, and then the enhanced glycolysis facilitated the proliferation and pro-inflammatory phenotype transition of microglia and contributed to neuropathic pain. Lyn-mediated glycolysis enhancement of microglia contributes to neuropathic pain through facilitating IRF5 nuclear translocation in spinal dorsal horn.


Asunto(s)
Neuralgia , Médula Espinal , Animales , Ratones , Factores Reguladores del Interferón/metabolismo , Microglía/metabolismo , Neuralgia/metabolismo , Ratas Sprague-Dawley , Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Ratas
19.
Eur J Immunol ; 53(8): e2250300, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37134326

RESUMEN

Systemic Lupus Erythematosus (SLE) is characterized by pathogenic autoantibodies against nucleic acid-containing antigens. Understanding which B-cell subsets give rise to these autoantibodies may reveal therapeutic approaches for SLE that spare protective responses. Mice lacking the tyrosine kinase Lyn, which limits B and myeloid cell activation, develop lupus-like autoimmune diseases characterized by increased autoreactive plasma cells (PCs). We used a fate-mapping strategy to determine the contribution of T-bet+ B cells, a subset thought to be pathogenic in lupus, to the accumulation of PCs and autoantibodies in Lyn-/- mice. Approximately, 50% of splenic PCs in Lyn-/- mice originated from T-bet+ cells, a significant increase compared to WT mice. In vitro, splenic PCs derived from T-bet+ B cells secreted both IgM and IgG anti-dsDNA antibodies. To determine the role of these cells in autoantibody production in vivo, we prevented T-bet+ B cells from differentiating into PCs or class switching in Lyn-/- mice. This resulted in a partial reduction in splenic PCs and anti-dsDNA IgM and complete abrogation of anti-dsDNA IgG. Thus, T-bet+ B cells make an important contribution to the autoreactive PC pool in Lyn-/- mice.


Asunto(s)
Lupus Eritematoso Sistémico , Células Plasmáticas , Animales , Ratones , Autoanticuerpos , Inmunoglobulina G , Inmunoglobulina M , Familia-src Quinasas/genética
20.
Biochem Pharmacol ; 211: 115523, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37003346

RESUMEN

Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening condition associated with high mortality and morbidity. However, the underlying pathogenesis of SA-AKI is still unclear. Lyn belongs to Src family kinases (SFKs), which exert numerous biological functions including modulation in receptor-mediated intracellular signaling and intercellular communication. Previous studies demonstrated that Lyn gene deletion obviously aggravates LPS-induced lung inflammation, but the role and possible mechanism of Lyn in SA-AKI have not been reported yet. Here, we found that Lyn protected against renal tubular injury in cecal ligation and puncture (CLP) induced AKI mouse model by inhibition of signal transducer and activator of transcription 3 (STAT3) phosphorylation and cell apoptosis. Moreover, Lyn agonist MLR-1023 pretreatment improved renal function, inhibited STAT3 phosphorylation and decreased cell apoptosis. Thus, Lyn appears to play a crucial role in orchestrating STAT3-mediated inflammation and cell apoptosis in SA-AKI. Hence, Lyn kinase may be a promising therapeutic target for SA-AKI.


Asunto(s)
Lesión Renal Aguda , Sepsis , Ratones , Animales , Factor de Transcripción STAT3/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Riñón/metabolismo , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Sepsis/patología , Apoptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA