Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.851
Filtrar
1.
Indian J Thorac Cardiovasc Surg ; 40(6): 719-724, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39416336

RESUMEN

Fabry disease (FD) is a rare genetic disorder that affects various organs and systems in the body. The disease is caused by a deficiency in the lysosomal enzyme α-galactosidase A (AGAL), which leads to the accumulation of globotriaosylceramide (Gb3) within lysosomes. This accumulation can cause damage to cells and organ systems, leading to a wide range of symptoms and complications. FD is a heterogeneous disorder, with a wide range of clinical phenotypes, ranging from the classic form, which is severe and associated with early onset, to milder non-classical forms, which are often limited to one organ and manifest later in life. We describe the case of a 23-year-old FD patient who was admitted as an emergency transfer due to newly discovered severe aortic regurgitation and suspected aortic valve endocarditis with vegetations of high embolic potential. Three years ago, the patient underwent a living donor kidney transplantation-the kidney graft lost its function 1 year after transplantation, and a chronic hemodialysis program was reinstituted. Supplementary Information: The online version contains supplementary material available at 10.1007/s12055-024-01717-6.

2.
Proc Natl Acad Sci U S A ; 121(43): e2403601121, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39418309

RESUMEN

The major organelles of the endomembrane system were in place by the time of the last eukaryotic common ancestor (LECA) (~1.5 billion years ago). Their acquisitions were defining milestones during eukaryogenesis. Comparative cell biology and evolutionary analyses show multiple instances of homology in the protein machinery controlling distinct interorganelle trafficking routes. Resolving these homologous relationships allows us to explore processes underlying the emergence of additional, distinct cellular compartments, infer ancestral states predating LECA, and explore the process of eukaryogenesis itself. Here, we undertake a molecular evolutionary analysis (including providing a transcriptome of the jakobid flagellate Reclinomonas americana), exploring the origins of the machinery responsible for the biogenesis of lysosome-related organelles (LROs), the Biogenesis of LRO Complexes (BLOCs 1,2, and 3). This pathway has been studied only in animals and is not considered a feature of the basic eukaryotic cell plan. We show that this machinery is present across the eukaryotic tree of life and was likely in place prior to LECA, making it an underappreciated facet of eukaryotic cellular organisation. Moreover, we resolve multiple points of ancient homology between all three BLOCs and other post-endosomal retrograde trafficking machinery (BORC, CCZ1 and MON1 proteins, and an unexpected relationship with the "homotypic fusion and vacuole protein sorting" (HOPS) and "Class C core vacuole/endosomal tethering" (CORVET) complexes), offering a mechanistic and evolutionary unification of these trafficking pathways. Overall, this study provides a comprehensive account of the rise of the LROs biogenesis machinery from before the LECA to current eukaryotic diversity, integrating it into the larger mechanistic framework describing endomembrane evolution.


Asunto(s)
Evolución Molecular , Lisosomas , Transporte de Proteínas , Lisosomas/metabolismo , Filogenia , Endosomas/metabolismo , Eucariontes/metabolismo , Eucariontes/genética , Orgánulos/metabolismo , Evolución Biológica
3.
Immunity ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39406246

RESUMEN

Nutrient availability and organelle biology direct tissue homeostasis and cell fate, but how these processes orchestrate tissue immunity remains poorly defined. Here, using in vivo CRISPR-Cas9 screens, we uncovered organelle signaling and metabolic processes shaping CD8+ tissue-resident memory T (TRM) cell development. TRM cells depended on mitochondrial translation and respiration. Conversely, three nutrient-dependent lysosomal signaling nodes-Flcn, Ragulator, and Rag GTPases-inhibited intestinal TRM cell formation. Depleting these molecules or amino acids activated the transcription factor Tfeb, thereby linking nutrient stress to TRM programming. Further, Flcn deficiency promoted protective TRM cell responses in the small intestine. Mechanistically, the Flcn-Tfeb axis restrained retinoic acid-induced CCR9 expression for migration and transforming growth factor ß (TGF-ß)-mediated programming for lineage differentiation. Genetic interaction screening revealed that the mitochondrial protein Mrpl52 enabled early TRM cell formation, while Acss1 controlled TRM cell development under Flcn deficiency-associated lysosomal dysregulation. Thus, the interplay between nutrients, organelle signaling, and metabolic adaptation dictates tissue immunity.

4.
Sci Rep ; 14(1): 24008, 2024 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-39402130

RESUMEN

BACKGROUND: Microplastics (MPs), plastic particles < 5 mm in size, are prevalent in the environment, and human exposure to them is inevitable. To assess the potential risk of MPs on human health, it is essential to consider the physicochemical properties of environmental MPs, including polymer types, size, shape, and surface chemical modifications. Notably, environmental MPs undergo degradation due to external factors such as ultraviolet (UV) rays and waves, leading to changes in their surface characteristics. However, limited knowledge exists regarding the health effects of MPs, with a specific focus on their surface degradation. This study concentrates on cytotoxic MPs with surface degradation through UV irradiation, aiming to identify the mechanisms underlying their cell toxicity. RESULTS: Polyethylene (PE) and surface-degraded PE achieved through UV light irradiation were employed as model MPs in this study. We explored the impact of PE and degraded PE on cell death in murine macrophage cell line RAW264.7 cells and human monocyte cell line THP-1 cells. Flow cytometric analysis revealed that degraded PE induced programmed cell death without activating caspase 3, while non-degraded PE did not trigger programmed cell death. These findings suggest that degraded PE might induce programmed cell death through mechanisms other than caspase-driven apoptosis. To understand the mechanisms of cell death, we investigated how cells responded to degraded PE-induced cellular stress. Immunofluorescence and western blotting analyses demonstrated that degraded PE induced autophagosome formation and increased p62 expression, indicating inhibited autophagy flux after exposure to degraded PE. Furthermore, degraded PE exposure led to a decrease in acidic lysosomes, indicating lysosomal dysregulation. These results imply that degraded PE induces lysosomal dysfunction, subsequently causing autophagy dysregulation and cell death. CONCLUSIONS: This study unveils that UV-induced degradation of PE results in cell death attributed to lysosomal dysfunction. The findings presented herein provide novel insights into the effects of surface-degraded MPs on biological responses.


Asunto(s)
Apoptosis , Lisosomas , Microplásticos , Polietileno , Rayos Ultravioleta , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Rayos Ultravioleta/efectos adversos , Humanos , Microplásticos/toxicidad , Ratones , Animales , Células RAW 264.7 , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Células THP-1 , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación
5.
PeerJ ; 12: e18209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39403192

RESUMEN

Cardiovascular disease (CVD) remains the major cause of morbidity and mortality around the world. Transcription factor EB (TFEB) is a master regulator of lysosome biogenesis and autophagy. Emerging studies revealed that TFEB also mediates cellular adaptation responses to various stimuli, such as mitochondrial dysfunction, pathogen infection and metabolic toxin. Based on its significant capability to modulate the autophagy-lysosome process (ALP), TFEB plays a critical role in the development of CVD. In this review, we briefly summarize that TFEB regulates cardiac dysfunction mainly through ameliorating lysosomal and mitochondrial dysfunction and reducing inflammation.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Enfermedades Cardiovasculares , Lisosomas , Humanos , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Autofagia/efectos de los fármacos , Lisosomas/metabolismo , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Inflamación/metabolismo , Inflamación/tratamiento farmacológico
6.
Mol Pharm ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39368111

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) within cells proves exceptionally challenging to eradicate using conventional antimicrobials, resulting in recurring infections and heightened resistance. Herein, we reported an innovative mannosylated lipid-coated photodynamic/photothermal calcium phosphate nanoparticle (MAN-LCaP@ICG) for eradicating intracellular MRSA. The MAN-LCaP functioned as the vehicle for drug delivery, exhibiting preferential uptake by macrophages and facilitating the transport of ICG to intracellular pathogens. The MAN units integrated into MAN-LCaP@ICG could promote binding with MAN residuals on macrophage cells, as evidenced by cellular uptake assays using fluorescence microscopy and flow cytometry. Following its targeted accumulation, MAN-LCaP@ICG could enter into the cytoplasm and efficiently eradicate intracellular MRSA by a combination of the lysosome escape capability of CaP and the photodynamic and photothermal therapeutic effects of ICG. Furthermore, MAN-LCaP@ICG could kill MRSA more effectively than LCaP@ICG without MAN units or free ICG in a mouse peritoneal infection model. Therefore, MAN-LCaP@ICG provided a promising direction for human clinical application in combating intracellular infections.

7.
Adv Mater ; : e2412227, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370589

RESUMEN

Ferroptosis nano-inducers have drawn considerable attention in the treatment of malignant tumors. However, low intratumoral hydrogen peroxide level and complex biological barriers hinder the ability of nanomedicines to generate sufficient reactive oxygen species (ROS) and achieve tumor penetration. Here a near-infrared (NIR)-driven ROS self-supplying nanomotor is successfully designed for synergistic tumor chemodynamic therapy (CDT) and photothermal therapy (PTT). Janus nanomotor is created by the asymmetrical modification of polydopamine (PDA) with zinc peroxide (ZnO2) and subsequent ferrous ion (Fe2+) chelation via the polyphenol groups from the PDA, here refer as ZnO2@PDA-Fe (Z@P-F). ZnO2 is capable of slowly releasing hydrogen peroxide (H2O2) into an acidic tumor microenvironment (TME) providing sufficient ingredients for the Fenton reaction necessary for ferroptosis. Upon NIR laser irradiation, the loaded Fe2+ is released and a thermal gradient is simultaneously formed owing to the asymmetric PDA coating, thus endowing the nanomotor with self-thermophoresis based enhanced diffusion for subsequent lysosomal escape and tumor penetration. Therefore, the release of ferrous ions (Fe2+), self-supplied H2O2, and self-thermophoresis of nanomotors with NIR actuation further improve the synergistic CDT/PTT efficacy, showing great potential for active tumor therapy.

8.
J Cell Sci ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39370902

RESUMEN

SCARB2/LIMP-2 is an abundant lysosomal membrane protein. Previous studies have shown LIMP-2 functions as a virus receptor, a chaperone for lysosomal enzyme targeting, and a lipid transporter. The large luminal domain of LIMP-2 contains a hydrophobic tunnel that enables transport of phospholipids, sphingosine and cholesterol from the lysosomal lumen to the membrane. The question about the fate of the lipids after LIMP-2-mediated transport is largely unexplored. To elucidate whether LIMP-2 is part of contact sites between lysosomes and the endoplasmic reticulum (ER), we performed a proximity-based interaction screen. This revealed that LIMP-2 interacts with the endosomal protein STARD3 and the ER-resident protein VAPB. Using imaging and co-immunoprecipitation, we demonstrated colocalization and physical interaction between LIMP-2 and these proteins. Moreover, we found that interaction of LIMP-2 with VAPB required the presence of STARD3. Our findings suggest that LIMP-2 is part of ER-lysosome contact sites, possibly facilitating cholesterol transport from the lysosomal to the ER membrane. This suggests a novel mechanism for inter-organelle communication and lipid trafficking mediated by LIMP-2.

9.
Trends Cell Biol ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39379269

RESUMEN

Upon various stresses, mtDNA leaks from mitochondria into the cytoplasm, leading to cellular dysfunction and inflammation, thereby exacerbating disease progression. The autophagy-lysosome pathway has emerged as a pivotal quality control mechanism for eliminating abnormal cytoplasmic mtDNA. This article summarizes the mechanisms underlying mtDNA-triggered inflammation and how cytoplasmic mtDNA is eliminated.

10.
Chem Eng J ; 4982024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39372137

RESUMEN

DNA nanotechnology is a rapidly growing field that provides exciting tools for biomedical applications. Targeting lysosomal functions with nanomaterials, such as DNA nanostructures (DNs), represents a rational and systematic way to control cell functionality. Here we present a versatile DNA nanostructure-based platform that can modulate a number of cellular functions depending on the concentration and surface decoration of the nanostructure. Utilizing different peptides for surface functionalization of DNs, we were able to rationally modulate lysosomal activity, which in turn translated into the control of cellular function, ranging from changes in cell morphology to modulation of immune signaling and cell death. Low concentrations of decalysine peptide-coated DNs induced lysosomal acidification, altering the metabolic activity of susceptible cells. In contrast, DNs coated with an aurein-bearing peptide promoted lysosomal alkalization, triggering STING activation. High concentrations of decalysine peptide-coated DNs caused lysosomal swelling, loss of cell-cell contacts, and morphological changes without inducing cell death. Conversely, high concentrations of aurein-coated DNs led to lysosomal rupture and mitochondrial damage, resulting in significant cytotoxicity. Our study holds promise for the rational design of a new generation of versatile DNA-based nanoplatforms that can be used in various biomedical applications, like the development of combinatorial anti-cancer platforms, efficient systems for endolysosomal escape, and nanoplatforms modulating lysosomal pH.

11.
Curr Res Toxicol ; 7: 100193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39381497

RESUMEN

Excessive long-term manganese intake can inflict irreversible damage to the nervous system, with a predominant effect on the substantia nigra-striatum pathway. Through a mouse model simulating manganese exposure, we delved into its implications on the central nervous motor system, uncovering autophagy-lysosome dysfunction as a pivotal factor in manganese-induced neurotoxicity. Our research illuminated the molecular mechanisms behind TFEB's role in manganese-triggered neuronal autophagy dysfunction, offering insights into the cellular and molecular mechanisms of manganese-induced abnormal protein accumulation. This study lays a significant theoretical foundation for future endeavors aimed at safeguarding against manganese neurotoxicity. Furthermore, TFEB emerges as a potential early molecular biomarker for manganese exposure, providing a solid basis for preemptive protection and clinical treatment for populations exposed to manganese.

12.
Food Chem ; 463(Pt 4): 141522, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39383794

RESUMEN

In this study, we explored the correlation between the lysosome-mitochondrial apoptosis pathway and fish softening, as well as the correlation between ferritin degradation and lysosomal iron changes. The results indicated that ferritin levels gradually decreased, lysosomal iron first increased and then decreased and tended to stabilize, and lysosomal membrane stability significantly decreased (p < 0.05). Spearman's analysis suggested that an increase in lysosomal iron was associated with ferritin degradation. Lysosomal instability promoted the release of cathepsin D, thereby increasing the release of Bid and Bax, and inhibiting the expression of Bcl-2. Subsequently, caspase-9/-3 was activated. In addition, transmission electron microscopy revealed ultrastructural damage to mitochondria and cell nuclei, which are morphological features of apoptosis during post-mortem storage. Moreover, TUNEL staining confirmed the occurrence of apoptosis. We concluded that the lysosome- mitochondrial apoptosis pathway was active during the storage of Esox Lucius, in which ferritin degradation and increased lysosomal iron were key factors inducing lysosomal damage, and cathepsin D released by lysosomes was a key factor connecting lysosomes and mitochondria.

13.
Free Radic Biol Med ; 225: 181-192, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39370054

RESUMEN

Hepatic stellate cells (HSCs) are primary cells for development and progression of liver fibrosis. Mitophagy is an essential lysosomal process for mitochondrial homeostasis, which can be activated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a representative mitochondrial uncoupler. However, little information is available on the role of CCCP-mediated mitophagy in HSC activation and liver fibrogenesis. In this study, we showed that CCCP treatment in HSCs caused mitochondrial dysfunction proved by decreased mitochondrial membrane potential, mitochondrial DNA, and ATP contents and increased mitochondrial ROS. Moreover, CCCP induced mitophagy and impaired mitophagy flux at the later stage. This blockade of mitophagic flux effect was mediated by suppression of lysosomal activity; CCCP decreased expression of lysosomal markers and cathepsin B activity, and increased lysosomal pH. Intriguingly, CCCP treatment in LX-2 cells or primary HSCs elevated plasminogen activator inhibitor-1 (PAI-1), a typical fibrogenic marker of HSCs which was attenuated by mitochondrial division inhibitor 1, a mitophagy inhibitor. The up-regulation of PAI-1 by CCCP was not due to altered transcriptional activity but lysosomal dysfunction. In vivo acute or sub-chronic treatment of CCCP to mice induced mitophagy and fibrogenesis of liver. Hepatic fibrogenic marker (PAI-1) was incremented with mitophagy markers (parkin and PTEN-induced putative kinase 1) in the livers of CCCP injected mice. Furthermore, we found that 5-aminoimidazole-4-carboxyamide ribonucleoside reversed CCCP-mediated mitophagy and subsequent HSC activation. To conclude, CCCP facilitated HSC activation and hepatic fibrogenesis via mitochondrial dysfunction and lysosomal blockade, implying that attenuation of CCCP-related signaling molecules may contribute to treat liver fibrosis.

14.
Front Pharmacol ; 15: 1449178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39359254

RESUMEN

The autophagy-lysosome pathway plays an essential role in promoting lipid catabolism and preventing hepatic steatosis in non-alcoholic fatty liver disease (NAFLD). Transcription factor EB (TFEB) enhances the autophagy-lysosome pathway by regulating the expression of genes related to autophagy and lysosome biogenesis. Therefore, targeting TFEB provides a novel strategy for the treatment of lipid metabolic diseases. In this study, the antiallergic drug desloratadine was screened and identified as a novel TFEB agonist. Desloratadine effectively induced translocation of TFEB to the nucleus and promoted autophagy and lysosome biogenesis. Desloratadine-induced TFEB activation was dependent on AMPK rather than mTORC1. Moreover, desloratadine treatment enhanced clearance of lipid droplets in cells induced by fatty acids oleate and palmitate. Furthermore, high-fat diet (HFD) induced obesity mouse model experiments indicated treatment with desloratadine markedly reduced the body weight of HFD-fed mice, as well as the levels of hepatic triglycerides and total cholesterol, serum glutamic pyruvic transaminase and glutamic-oxaloacetic transaminase. Oil red O staining showed the liver fat was significantly reduced after desloratadine treatment, and H&E staining analysis demonstrated hepatocellular ballooning was improved. In addition, autophagy and lysosomal biogenesis was stimulated in the liver of desloratadine treated mice. Altogether, these findings demonstrate desloratadine ameliorates hepatic steatosis through activating the TFEB-mediated autophagy-lysosome pathway, thus desloratadine has an exciting potential to be used to treat fatty liver disease.

15.
Sci Rep ; 14(1): 23782, 2024 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-39390030

RESUMEN

Mitochondrial calcium overload plays an important role in the neurological insults in seizure. The Rab7 GTPase-activating protein, Tre-2/Bub2/Cdc16 domain family member 15 (TBC1D15), is involved in the regulation of mitochondrial calcium dynamics by mediating mitochondria-lysosome membrane contact. However, whether TBC1D15-regulated mitochondria-lysosome membrane contact and mitochondrial calcium participate in neuronal injury in seizure is unclear. We aimed to investigate the effect of TBC1D15-regulated mitochondria-lysosome membrane contact on epileptiform discharge-induced neuronal damage and further explore the underlying mechanism. Lentiviral vectors (Lv) infection and stereotaxic adeno-associated virus (AAV) injection were used to regulate TBC1D15 expression before establishing in vitro epileptiform discharge and in vivo status epilepticus (SE) models. TBC1D15's effect on inter-organellar interactions, mitochondrial calcium levels and neuronal injury in seizure was evaluated. The results showed that abnormalities in mitochondria-lysosome membrane contact, mitochondrial calcium overload, mitochondrial dysfunction, increased levels of reactive oxygen species, and prominent neuronal damage were partly relieved by TBC1D15 overexpression, whereas TBC1D15 knockdown markedly deteriorated these phenomena. Further examination revealed that epileptiform discharge-induced mitochondrial calcium overload in primary hippocampal neurons was closely associated with abnormal mitochondria-lysosome membrane contact. This study highlights the crucial role played by TBC1D15-regulated mitochondria-lysosome membrane contact in epileptiform discharge-induced neuronal injury by alleviating mitochondrial calcium overload.


Asunto(s)
Calcio , Proteínas Activadoras de GTPasa , Lisosomas , Mitocondrias , Neuronas , Convulsiones , Animales , Mitocondrias/metabolismo , Calcio/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Lisosomas/metabolismo , Convulsiones/metabolismo , Neuronas/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratas , Especies Reactivas de Oxígeno/metabolismo , Ratas Sprague-Dawley , Modelos Animales de Enfermedad , Membranas Intracelulares/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/patología
16.
Cell ; 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39423811

RESUMEN

Bis(monoacylglycero)phosphate (BMP) is an abundant lysosomal phospholipid required for degradation of lipids, particularly gangliosides. Alterations in BMP levels are associated with neurodegenerative diseases. Unlike typical glycerophospholipids, lysosomal BMP has two chiral glycerol carbons in the S (rather than the R) stereo-conformation, protecting it from lysosomal degradation. How this unusual and yet crucial S,S-stereochemistry is achieved is unknown. Here, we report that phospholipases D3 and D4 (PLD3 and PLD4) synthesize lysosomal S,S-BMP, with either enzyme catalyzing the critical glycerol stereo-inversion reaction in vitro. Deletion of PLD3 or PLD4 markedly reduced BMP levels in cells or in murine tissues where either enzyme is highly expressed (brain for PLD3; spleen for PLD4), leading to gangliosidosis and lysosomal abnormalities. PLD3 mutants associated with neurodegenerative diseases, including risk of Alzheimer's disease, diminished PLD3 catalytic activity. We conclude that PLD3/4 enzymes synthesize lysosomal S,S-BMP, a crucial lipid for maintaining brain health.

17.
Mol Cells ; : 100127, 2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39426687

RESUMEN

Bone provides structural support, enables movement, protects internal organs, regulates calcium and phosphorus levels, and contains bone marrow essential for hematopoiesis. Osteoblasts are specialized cells responsible for bone formation through the secretion of extracellular matrix components. Transmembrane protein 175 (TMEM175), which functions as an endosomal/lysosomal K+ channel and a lysosomal H+ channel, regulates lysosomal function and autophagy. Despite the recognized importance of lysosomes and autophagy in osteoblast differentiation, the specific role of TMEM175 in osteoblast differentiation has not been revealed. In this study, we investigated whether TMEM175 is associated with human bone mineral density (BMD) and fracture, and examined the role of TMEM175 in osteoblast differentiation. In analyses of single nucleotide polymorphisms (SNPs) of pore ion channel genes using the mouse2human database, a significant correlation between TMEM175 SNPs and human BMD and fracture was identified. TMEM175 expression levels were found to increase during osteoblast differentiation from bone chip-derived mesenchymal stem cells (BMSCs). Knockdown of TMEM175 in BMSCs suppressed osteoblast differentiation, as evidenced by decreased matrix mineralization and lower expression levels of osteoblast marker genes. Further analysis indicated that TMEM175 deficiency leads to lysosomal dysfunction and partially impairs autophagic clearance during osteoblast differentiation. Moreover, the TMEM175 inhibitor 4-aminopyridine (4-AP) decreased osteoblast differentiation of BMSCs. Taken together, this study reveals that TMEM175 plays an important role for osteoblast differentiation by regulating lysosomal function and autophagic clearance.

18.
J Biol Chem ; : 107889, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39395801

RESUMEN

Niemann-Pick type C (NPC) disease, caused by mutations in the NPC1 or NPC2 genes, leads to abnormal intracellular cholesterol accumulation in late endosomes/lysosomes (LE/LY). Exogenous enrichment with lysobisphosphatidic acid (LBPA), also known as bis-monoacylglycerol phosphate or BMP, either directly or via the LBPA precursor phosphatidylglycerol (PG), has been investigated as a therapeutic intervention to reduce cholesterol accumulation in NPC disease. Here we report the effects of stereoisomer configuration and acyl chain composition of LBPA on cholesterol clearance in NPC1-deficient cells. We find that S,R, S,S, and S,R LBPA stereoisomers behaved similarly, with all 3 compounds leading to comparable reductions in filipin staining in two NPC1-deficient human fibroblast cell lines. Examination of several LBPA molecular species containing one or two mono- or polyunsaturated acyl chains showed that all LBPA species containing one 18:1 chain significantly reduced cholesterol accumulation, whereas the shorter chain species di-14:0 LBPA had little effect on cholesterol clearance in NPC1 deficient cells. Since cholesterol accumulation in NPC1 deficient cells can also be cleared by PG incubation, we used non-hydrolyzable PG analogues to determine whether conversion to LBPA is required for sterol clearance, or whether PG itself is effective. The results showed that non-hydrolyzable PG species were not appreciably converted to LBPA and showed virtually no cholesterol clearance efficacy in NPC1 deficient cells, supporting the notion that LBPA is the active agent promoting LE/LY cholesterol clearance. Overall these studies are helping to define the molecular requirements for potential therapeutic use of LBPA as an option for addressing NPC disease.

19.
Traffic ; 25(10): e12957, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39450581

RESUMEN

Lysosomal compartments control the clearance of cell-own material (autophagy) or of material that cells endocytose from the external environment (heterophagy) to warrant supply of nutrients, to eliminate macromolecules or parts of organelles present in excess, aged, or containing toxic material. Inherited or sporadic mutations in lysosomal proteins and enzymes may hamper their folding in the endoplasmic reticulum (ER) and their lysosomal transport via the Golgi compartment, resulting in lysosomal dysfunction and storage disorders. Defective cargo delivery to lysosomal compartments is harmful to cells and organs since it causes accumulation of toxic compounds and defective organellar homeostasis. Assessment of resident proteins and cargo fluxes to the lysosomal compartments is crucial for the mechanistic dissection of intracellular transport and catabolic events. It might be combined with high-throughput screenings to identify cellular, chemical, or pharmacological modulators of these events that may find therapeutic use for autophagy-related and lysosomal storage disorders. Here, discuss qualitative, quantitative and chronologic monitoring of autophagic, heterophagic and lysosomal protein trafficking in fixed and live cells, which relies on fluorescent single and tandem reporters used in combination with biochemical, flow cytometry, light and electron microscopy approaches implemented by artificial intelligence-based technology.


Asunto(s)
Inteligencia Artificial , Autofagia , Lisosomas , Transporte de Proteínas , Autofagia/fisiología , Lisosomas/metabolismo , Humanos , Animales , Colorantes Fluorescentes/metabolismo
20.
Cells ; 13(20)2024 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-39451262

RESUMEN

BACKGROUND: Although belonging to different branches of the immune system, cytotoxic CD8+ αß T cells and γδ T cells utilize common cytolytic effectors including FasL, granzymes, perforin and granulysin. The effector proteins are stored in different subsets of lysosome-related effector vesicles (LREVs) and released to the immunological synapse upon target cell encounter. Notably, in activated cells, LREVs and potentially other vesicles are continuously produced and released as extracellular vesicles (EVs). Presumably, EVs serve as mediators of intercellular communication in the local microenvironment or at distant sites. METHODS: EVs of activated and expanded cytotoxic CD8+ αß T cells or γδ T cells were enriched from culture supernatants by differential and ultracentrifugation and characterized by nanoparticle tracking analyses and Western blotting. For a comparative proteomic profiling, EV preparations from both cell types were isobaric labeled with tandem mass tags (TMT10plex) and subjected to mass spectrometry analysis. RESULTS: 686 proteins were quantified in EV preparations of cytotoxic CD8+ αß T cells and γδ T cells. Both populations shared a major set of similarly abundant proteins, while much fewer proteins presented higher abundance levels in either CD8+ αß T cells or γδ T cells. To our knowledge, we provide the first comparative analysis of EVs from cytotoxic CD8+ αß T cells and γδ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/inmunología , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Proteómica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA