Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
J Oleo Sci ; 73(10): 1349-1360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39358218

RESUMEN

Typhonium flagelliforme (T. flagelliforme) is an Indonesian rodent tuber plant traditionally used to treat cancer diseases. Although gamma-ray irradiation has been used to increase the content in the chemical compounds of the T. flagelliforme plants with anticancer activity ten times effective, the specific effect of the isolated compounds from the mutant plants has never been reported yet. The potential cytotoxic agents were characterized via nuclear magnetic resonance spectroscopy, infrared spectroscopy, and mass spectrometry as stigmasterol and 7α-hydroxyl stigmasterol; and their anticancer activity was investigated. The in silico biochemical profile of the two compounds were analyzed by molecular docking and molecular dynamics simulation to confirm its interaction with the agonist binding site of Farsenoid X receptor (FXR). Stigmasterol and 7α-hydroxyl stigmasterol can act as a competitive regulator with a high-affinity for the FXR. The results also showed that stigmasterol and 7α-hydroxyl stigmasterol were the most potential and active fraction of the T. flagelliforme mutant plant against the MCF-7 human breast cancer cell line, with IC 50 value 9.13 µM and 12.97 µM, compared with cisplastin as a control about 13.20 µM. These results demonstrate the potential of stigmasterol and 7α-hydroxyl stigmasterol in T. flagelliforme mutant plants to act towards cancer diseases.


Asunto(s)
Simulación del Acoplamiento Molecular , Humanos , Células MCF-7 , Estigmasterol/farmacología , Estigmasterol/aislamiento & purificación , Tubérculos de la Planta/química , Antineoplásicos Fitogénicos/farmacología , Simulación por Computador , Animales , Mutación , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Simulación de Dinámica Molecular , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo
2.
Curr Drug Metab ; 2024 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-39253920

RESUMEN

BACKGROUND: Everolimus is a drug approved for the treatment of breast cancer with HR+ and advanced breast cancer reoccurring in postmenopausal women. The oral administration of EVE has been observed to have low oral bioavailability and severe epithelial cutaneous events that include rashes and lip ulceration followed by mouth ulceration after oral administration. AIM: The present research aimed to enhance the bioavailability by loading the EVE into a stealth liposomal formulation (S-EVE-LIPO) intended for intravenous administration. METHODS: The surface of the liposomes was modified with vitamin E TPGS, which prolongs the systemic circulation of the drug and provides additional benefits like inhibition of the P-gp efflux pump and acting synergistically with EVE. RESULTS: The formulation was prepared using the thin film hydration method and optimized using a D-optimal mixture design. ANOVA suggested the significance of the proposed mathematic model, and the optimized formulation was generated by design expert software. The optimized formulation (S-EVE-LIPO) was observed with nanometric size (99.5 ± 3.70 nm) with higher encapsulation efficacy (81.5 ± 2.86 %). The S-EVELIPO formulation indicated a sustained release profile as 90.22% drug release was observed in 48 h, whereas the formulation without vitamin E TPGS (EVE-LIPO) released only 74.15 drugs in 24 hours. In vitro cytotoxicity study suggested that the presence of vitamin E TPGS lowers the IC50 value (54.2 ± 1.69), increases the cellular uptake of the formulation, also increases the generation of ROS, and shows better hemocompatibility. CONCLUSION: Vitamin E TPGS could be set as a vital additive to improve therapeutic efficacy and reduce offsite toxicity and dosing frequency.

3.
Oncol Lett ; 28(5): 551, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39328279

RESUMEN

The present study summarizes the current available literature regarding the viability of MCF7 breast cancer cells treated with gold (Au), silver (Ag) or zinc oxide (ZnO) nanoparticles at varying doses for 48 h. The data for this study were obtained from diverse research articles published between 2013 and 2023 using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines. The evaluation focused on 20 PRISMA-compliant articles concerning MCF7 cells, yielding 137 outcome measures for meta-analysis. A generalized linear mixed model meta-analysis approach was employed to glean insights into the effects of novel nanoparticles on MCF7 breast cancer cells. The analysis covered a wide range of concentrations: Ag nanoparticles from 1.25 to 1,000 µg/ml, Au nanoparticles from 50 to 150 µg/ml, and ZnO nanoparticles from 1 to 1,000 µg/ml. Both intra-nanoparticle and inter-nanoparticle comparisons were conducted to detect differences. The findings showed that when concentrations reached or exceeded 60 µg/ml, considerable variation of cell viability was observed: Treatment with Ag nanoparticles resulted in cell viability ranging from 9 to 45%, ZnO nanoparticles resulted in cell viability ranging from 20 to 40%, and Au nanoparticles resulted in cell viability ranging from 3 to 58%. These findings indicated the significance of thoroughly exploring nanoparticle dosage to acquire a comprehensive understanding of their influence on cell viability.

4.
Asian Pac J Cancer Prev ; 25(9): 3251-3261, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39342604

RESUMEN

OBJECTIVE: Breast cancer is the most frequently diagnosed cancer and the second cause of death worldwide. The drug often used for chemotherapy is cisplatin. However, the drug cisplatin has a number of problems, including lack of selectivity, undesirable side effects, resistance, and toxicity in the body. So research is carried out on new drug compounds with low toxicity by designing in silico with molecular docking. METHODS: Mn(II) Cysteine-Tyrosine dithiocarbamate is a new complex molecule whose research involves several steps, such as in-silico molecular docking testing with target proteins, ADMET then synthesis, characterization and in-vitro MCF-7 cells for anticancer drugs. The synthesis process involves the reaction of manganese metal with tyrosine, cysteine, CS2 and KOH. Characterization tests have been carried out including FT-IR spectroscopy, SEM-EDS, UV Vis, conductivity, melting point and XRD. RESULT: Confirm the structure of the compound using UV Vis, obtained orbitals π to π* and n to π* in the group N = C = S is represented by the absorption at 400 nm and 600 nm, FT-IR with the results obtained by the functional groups O-H, N-H, C =N and C=S. In vitro test results showed morphological changes (apoptosis) in MCF-7 cancer cells starting from 250 µg/mL and an IC50 value of 416.90 µg/mL. Molecular docking studies of the Mn(II)Cysteine-Tyrosine dithiocarbamate complex were identified with 4,4',4''-[(2R)-butane-1,1,2-triyl]triphenol - Estrogen α which showed an active site with amino acid residues GLU323, GLU385, VAL446, ILE514, TRP360, LYS449, MET388, MET357, PHE445, VAL392 and ILE389. Hydrophobic and hydrophobic bonds are seen in Mn(II)Cysteine-Tyrosine dithiocarbamate - Estrogen α has a bond energy of -77.5372 kJ/mol. CONCLUSION: Despite having a high H-bond interaction intensity, the chemical does not have a powerful enough anticancer impact. Despite the produced compound's low bioactivity, this study should offer important new understandings into how molecular structure affects anticancer activity.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Cisteína , Manganeso , Simulación del Acoplamiento Molecular , Tiocarbamatos , Tirosina , Humanos , Tiocarbamatos/farmacología , Tiocarbamatos/química , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Células MCF-7 , Cisteína/química , Cisteína/farmacología , Manganeso/química , Manganeso/farmacología , Tirosina/química , Tirosina/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Femenino , Proliferación Celular/efectos de los fármacos , Diseño de Fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Apoptosis/efectos de los fármacos , Células Tumorales Cultivadas
5.
Med Oncol ; 41(11): 251, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320578

RESUMEN

Retinoic acid (RA) has been shown in earlier investigations to have anticancer properties in various cancer cells. RA's effect on breast cancer treatment remains uncertain, though. This study investigated whether RA and chitosan nanoparticles (NPs) loaded with RA could be harmful to the MCF-7 cell line. In this study, NPs with RA were used in characterization tests. Using ELISA kits, the amounts of 8-okso-2'-deoksiguanozin (8-oxo-dG), BCL-2, Bcl-2-Associated X-protein (Bax), cleaved Poly (ADP-ribose) polymerases (PARP), total oxidant and antioxidant, and cleaved caspase-3 capacities were determined. The analysis of chitosan NPs showed that their drug-release profile, encapsulation efficiency (EE), and particle size were suitable for cell culture experiment. The EE value of NPs including RA was calculated as 83.32 ± 0.04%. The IC50 value for RA was 2.89 ± 0.03 µg/mL, while the IC50 value for RA-loaded NPs was significantly lower at 2.28 ± 0.02 µg/mL. In ELISA testing, RA and chitosan NPs containing RA at a concentration of 2 µg/mL dramatically increased the concentrations of total oxidant, cleaved caspase-3. Cleaved caspase-3 levels were quantified as 614.90 ± 3.40 pg/mg protein in the control group, 826.37 ± 5.82 pg/mg protein in RA-treated cells, and 863.52 ± 4.32 pg/mg protein in RA-NP-treated cells. Interestingly, no substantial variations were observed in the levels of the anti-apoptotic protein BCL-2. Overall, studies revealed that RA and RA-NPs promoted apoptosis in MCF-7 cells by upregulating the expression of pro-apoptotic proteins Bax, cleaved caspase-3, and cleaved PARP.


Asunto(s)
Antineoplásicos , Quitosano , Nanopartículas , Tretinoina , Humanos , Quitosano/farmacología , Nanopartículas/química , Tretinoina/farmacología , Células MCF-7 , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Femenino , Caspasa 3/metabolismo
6.
Sensors (Basel) ; 24(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39205093

RESUMEN

Exosomes are small extracellular vesicles produced by almost all cell types in the human body, and exosomal microRNAs (miRNAs) are small non-coding RNA molecules that are known to serve as important biomarkers for diseases such as cancer. Given that the upregulation of miR-106b is closely associated with several types of malignancies, the sensitive and accurate detection of miR-106b is important but difficult. In this study, a surface acoustic wave (SAW) biosensor was developed to detect miR-106b isolated from cancer cells based on immunoaffinity separation technique using our unique paddle screw device. Our novel SAW biosensor could detect a miR-106b concentration as low as 0.0034 pM in a linear range from 0.1 pM to 1.0 µM with a correlation coefficient of 0.997. Additionally, we were able to successfully detect miR-106b in total RNA extracted from the exosomes isolated from the MCF-7 cancer cell line, a model system for human breast cancer, with performance comparable to commercial RT-qPCR methods. Therefore, the exosome isolation by the paddle screw method and the miRNA detection using the SAW biosensor has the potential to be used in basic biological research and clinical diagnosis as an alternative to RT-qPCR.


Asunto(s)
Técnicas Biosensibles , Exosomas , MicroARNs , Humanos , Exosomas/química , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , MicroARNs/aislamiento & purificación , MicroARNs/genética , Células MCF-7 , Anticuerpos/inmunología , Anticuerpos/química
7.
Future Med Chem ; 16(17): 1749-1759, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39101595

RESUMEN

Background: Quercetin being antioxidant and antiproliferative agent acts by inhibiting CDK2, with an increase in cancer prevalence there is a need to profile quercetin derivatives as CDK2 inhibitors.Materials & method: Schiff bases of quercetin were synthesized as cytotoxic agents against the MCF7 cell line. FTIR, 1H-NMR and 13C-NMR, CHNS/O analysis were employed along with in vivo and in silico activities.Results & conclusion: 2q, 4q, 8q and 9q derivatives have maximum cytotoxic effect with IC50 values 39.7 ± 0.7, 36.65 ± 0.25, 35.49 ± 0.21 and 36.99 ± 0.45, respectively. Molecular docking also confirmed these results 8q has the highest binding potential of -9.165 KJ/mole making it a potent inhibitor of CDK2. These derivatives can be used as lead compounds as potent CDK2 inhibitors.


[Box: see text].


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Proliferación Celular , Quinasa 2 Dependiente de la Ciclina , Simulación del Acoplamiento Molecular , Quercetina , Humanos , Quercetina/farmacología , Quercetina/química , Quercetina/síntesis química , Células MCF-7 , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Femenino , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Bases de Schiff/química , Bases de Schiff/farmacología , Bases de Schiff/síntesis química
8.
Indian J Microbiol ; 64(2): 719-731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39010984

RESUMEN

Beta vulgaris var. crassa is undoubtedly a very important plant that is not used enough in the world. In this study, it was aimed to determine the cytotoxic activities of the components (essential oils, fatty acids, total phenol and flavonoid) found in the leaf parts of Beta vulgaris var. crassa against PC-3, MCF-7 and HeLa cancer cell lines. In addition, the effectiveness of these ingredients against bacteria and fungi that can cause serious health problems in humans was tested. In experiments, three tumor cell lines were exposed to various plant extract concentrations (31.25, 62.5, 125, 250, 500 and 1000 µg/mL) for 72 h. It was found that plant extracts showed high (SI: 2.14 > 2) cytotoxicity to PC-3 cells, moderate (SI: 1.62 < 2) to HeLa cells, and low (SI: 0.93 < 2) cytotoxicity to MCF-7 cells. Also, different plant extract concentrations were found to cause an inhibition rate of 16.3-22.3% in Staphylococcus aureus, 16.8-23.5% in Streptococcus pyogenes and 12-16.2% in Cutibacterium acnes. Similarly, inhibition rates were determined between 9.5-20.7% for Candida albicans, 3.5-7.7% for Candida auris, and 5.5-15.1% for Candida glabrata. The results showed that the plant extract exhibited a concentration-dependent cytotoxic and antimicrobial effect against both cancer cell lines and microbial pathogens. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01269-8.

9.
Sci Rep ; 14(1): 17465, 2024 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075175

RESUMEN

Cerium oxide nanoparticles possess unique properties that make them promising candidates in various fields, including cancer treatment. Among the proposed synthesis methods for CNPs, biosynthesis using natural extracts, offers an eco-friendly and convenient approach for producing CNPs, particularly for biomedical applications. In this study, a novel method of biosynthesis using the aqueous extract of Eucalyptus camaldulensis leaves was used to synthesize CNPs. Scanning electron microscopy and Transmission electron microscopy (TEM) techniques revealed that the synthesized CNPs exhibit a flower-like morphology. The particle size of CNPs obtained using Powder X-ray diffraction peaks and TEM as 13.43 and 39.25 nm. Energy-dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy confirmed the effect of biomolecules during the synthesis process and the formation of CNPs. The cytotoxicity of biosynthesized samples was evaluated using the MTT method demonstrating the potential of these samples to inhibit MCF-7 cancerous cells. The viability of the MCF-7 cell line conducted by live/dead imaging assay confirmed the MTT cytotoxicity method and indicated their potential to inhibit cancerous cells. Furthermore, the successful uptake of CNPs by MCF-7 cancer cells, as demonstrated by confocal microscopy, provides evidence that the intracellular pathway contributes to the anticancer activity of the CNPs. In general, results indicate that the biosynthesized CNPs exhibit significant cytotoxicity against the MCF-7 cancerous cell line, attributed to their high surface area.


Asunto(s)
Cerio , Eucalyptus , Extractos Vegetales , Hojas de la Planta , Humanos , Eucalyptus/química , Células MCF-7 , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cerio/química , Cerio/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Supervivencia Celular/efectos de los fármacos , Femenino , Nanopartículas/química , Espectroscopía Infrarroja por Transformada de Fourier , Antineoplásicos/farmacología , Antineoplásicos/química , Tamaño de la Partícula
10.
Mar Drugs ; 22(7)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39057437

RESUMEN

The current research employed an animal model of 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary gland carcinogenesis. The estrogen receptor-positive human breast adenocarcinoma cell line (MCF-7) was used for in vitro analysis. This was combined with a network pharmacology-based approach to assess the anticancer properties of Spirulina (SP) extract and understand its molecular mechanisms. The results showed that the administration of 1 g/kg of SP increased the antioxidant activity by raising levels of catalase (CAT) and superoxide dismutase (SOD), while decreasing the levels of malonaldehyde (MDA) and protein carbonyl. A histological examination revealed reduced tumor occurrence, decreased estrogen receptor expression, suppressed cell proliferation, and promoted apoptosis in SP protected animals. In addition, SP disrupted the G2/M phase of the MCF-7 cell cycle, inducing apoptosis and reactive oxygen species (ROS) accumulation. It also enhanced intrinsic apoptosis in MCF-7 cells by upregulating cytochrome c, Bax, caspase-8, caspase-9, and caspase-7 proteins, while downregulating Bcl-2 production. The main compounds identified in the LC-MS/MS study of SP were 7-hydroxycoumarin derivatives of cinnamic acid, hinokinin, valeric acid, and α-linolenic acid. These substances specifically targeted three important proteins: ERK1/2 MAPK, PI3K-protein kinase B (AKT), and the epidermal growth factor receptor (EGFR). Network analysis and molecular docking indicated a significant binding affinity between SP and these proteins. This was verified by Western blot analysis that revealed decreased protein levels of p-EGFR, p-ERK1/2, and p-AKT following SP administration. SP was finally reported to suppress MCF-7 cell growth and induce apoptosis by modulating the PI3K/AKT/EGFR and MAPK signaling pathways suggesting EGFR as a potential target of SP in breast cancer (BC) treatment.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Farmacología en Red , Spirulina , Spirulina/química , Humanos , Células MCF-7 , Animales , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Ratones , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores ErbB/metabolismo , Transducción de Señal/efectos de los fármacos , Simulación del Acoplamiento Molecular
11.
Cell Biochem Biophys ; 82(3): 2141-2155, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38850406

RESUMEN

Cancer, defined by the continuous, uncontrollable proliferation of cells in the human body, is a disease with a rapidly increasing incidence and mortality rate. Scientists are looking for novel ways to cure and prevent this sneaky disease because of the toxicity of contemporary chemotherapy and the cancer cells' resilience to anticancer drugs. Determining the effect of herbal medicines, which do not have as harmful side effects as synthetic drugs, on cancer cell lines is an essential preliminary study in the production of effective drugs against cancer. In this study, the phenolic acid profile, antioxidant capacity, and cytotoxicity of the medicinal plant Mespilus germanica (MG) leaf extract were determined, and its effects on the expression of some apoptotic, necrotic, and autophagic pathway genes of MCF7 (Human breast cancer line) and A549 (Human lung cancer line) and healthy HDF (Human Dermal Fibroblasts) cells were investigated for the first time. The LCMS device detected many important phenolic compounds previously reported to act against cancer cells in Mespilus germanica leaf extract. DPPH and total phenolic content showed high antioxidant capacity. The cytotoxicity of MG was determined by the MTT method. The levels of mRNA transcription for Atg5, Atg3, Ripk1, Bcl2, Bax, Apaf1, Caspase-8, Caspase-7, Caspase-3, and Caspase-9, as well as the expression patterns of the DNA damage markers P53 and Parp-1 genes, were assessed. MG leaf extract did not cause significant toxicity against healthy HDF cells. However, it had a cytotoxic effect on A549 and MCF7 cancer cell lines, increasing the transcription levels of essential genes involved in cell death mechanisms. This research is the first to analyze the phenolic components and antioxidant capabilities of leaf extracts from Mespilus germanica. Additionally, it investigates the impact of these extracts on crucial genes involved in cell death pathways of A549 lung cancer, MCF7 breast cancer, and non-cancerous HDF (Human Dermal Fibroblasts) cells.


Asunto(s)
Antioxidantes , Apoptosis , Fenoles , Extractos Vegetales , Hojas de la Planta , ARN Mensajero , Humanos , Hojas de la Planta/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Células MCF-7 , Apoptosis/efectos de los fármacos , Fenoles/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Autofagia/efectos de los fármacos , Células A549 , Espectrometría de Masas , Transcripción Genética/efectos de los fármacos , Necrosis
12.
Front Chem ; 12: 1384832, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887699

RESUMEN

This study focused on developing new inhibitors for the MCF-7 cell line to contribute to our understanding of breast cancer biology and various experimental techniques. 3D QSAR modeling was used to design new tetrahydrobenzo[4, 5]thieno[2, 3-d]pyrimidine derivatives with good characteristics. Two robust 3D-QSAR models were developed, and their predictive capacities were confirmed through high correlations [CoMFA (Q2 = 0.62, R 2 = 0.90) and CoMSIA (Q2 = 0.71, R 2 = 0.88)] via external validations (R2 ext = 0.90 and R2 ext = 0.91, respectively). These successful evaluations confirm the potential of the models to provide reliable predictions. Six candidate inhibitors were discovered, and two new inhibitors were developed in silico using computational methods. The ADME-Tox properties and pharmacokinetic characteristics of the new derivatives were evaluated carefully. The interactions between the new tetrahydrobenzo[4, 5]thieno[2, 3-d]pyrimidine derivatives and the protein ERα (PDB code: 4XO6) were highlighted by molecular docking. Additionally, MM/GBSA calculations and molecular dynamics simulations provided interesting information on the binding stabilities between the complexes. The pharmaceutical characteristics, interactions with protein, and stabilities of the inhibitors were examined using various methods, including molecular docking and molecular dynamics simulations over 100 ns, binding free energy calculations, and ADME-Tox predictions, and compared with the FDA-approved drug capivasertib. The findings indicate that the inhibitors exhibit significant binding affinities, robust stabilities, and desirable pharmaceutical characteristics. These newly developed compounds, which act as inhibitors to mitigate breast cancer, therefore possess considerable potential as prospective drug candidates.

13.
Environ Res ; 259: 119445, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38942259

RESUMEN

In present investigation, Carica papaya leaf extract has been employed as a bio-reductant agent in order to synthesize ecologically sustainable bio-coupled gold nanoparticles. The formation of gold nanoparticles was confirmed based on colour change of solution and its surface plasmon resonance peak measured using UV-Vis Spectrophotometer (UV-Vis). The Morphology and size of nanoparticles were determined using transmission electron microscope (SEM/TEM), and its crystalline structure by X-ray diffraction studies. Surface area was determined via BET isotherm analysis. The elemental composition of Au nanoparticles was developed using the technique of energy dispersive spectroscopy (EDS). Furthermore, FTIR analysis delineated the presence of functional groups present in the samples of the synthesized AuNPs. Thus, the efficiency of bio coupled Au nanoparticles in photo catalytically decomposing methylene blue was examined under the influence of visible light., the lethal MB colorant had been reduced to 95 % Within 90 min. And also 60% TOC removal was recorded after 5 min of degradation reaction, which increased to 99% after 90 min. Furthermore, cytotoxic experiments on Michigan Cancer Foundations-7 (MCF-7) cell lines showed that Au nanoparticles are effective anticancer agents with an IC50 of 87.2 g/mL on the top of the present work revealed the eco-safety and affordable production of Au nanoparticles from Carica papaya leaf extract, which displayed photocatalytic debasement of organic pollutants and cyto-toxicity effects was investigated.


Asunto(s)
Carica , Flavonoides , Oro , Nanopartículas del Metal , Extractos Vegetales , Hojas de la Planta , Oro/química , Nanopartículas del Metal/química , Hojas de la Planta/química , Carica/química , Extractos Vegetales/química , Flavonoides/análisis , Flavonoides/química , Humanos , Células MCF-7 , Azul de Metileno
14.
Transl Cancer Res ; 13(5): 2372-2386, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38881946

RESUMEN

Background: Chidamide (CHI) is a subtype-selective histone deacetylase inhibitor (HDACI) developed in China and approved as a second-line treatment combined with the aromatase inhibitor for hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) advanced breast cancer. However, drug resistance is commonly occurred after a long period of medication. This study aimed to investigate the characterization of induced resistance to CHI and explore the potential cross-resistance to chemotherapeutic agents. Methods: CHI with gradually increasing concentrations was added to breast cancer MCF7 cells to establish a CHI-resistant MCF7 (MCF7-CHI-R) cell line. Cell counting kit-8 (CCK-8) assays were performed to detect half-maximal inhibitory concentration (IC50) of CHI. Colony formation was used to determine the proliferation inhibition rate. Western blot analysis was conducted to detect expressions of protein related with cell cycle, apoptosis, ferroptosis, and histone deacetylase (HDAC). Flow cytometry was used to analyze apoptosis and cell cycle. Results: The IC50 value of CHI of MCF7-CHI-R cells was increased in comparison with MCF7 cells. And CHI led to cell cycle arrest and ferroptosis, which were not exhibited in MCF7-CHI-R cells. Moreover, HDAC activity decreased in MCF7-CHI-R cells in comparison with MCF7 cells, and HDAC1 and HDAC10 might be involved in the resistance to CHI. In addition, MCF7-CHI-R cells were resistant to gemcitabine (GEM), doxorubicin (ADM), docetaxel (DXT), albumin-bound paclitaxel (nab-PTX) and paclitaxel (PTX). Conclusions: The MCF7-CHI-R was established and the anti-ferroptosis pathway activation was involved in the resistance of MCF-CHI-R cells. Also, MCF7-CHI-R cells were resistant to GEM, ADM, DXT, nab-PTX and PTX.

15.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(6): 159505, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38729236

RESUMEN

Tylophora indica (Burm f.) Merrill, belong to family Asclepiadaceae, is considered to be a natural remedy with high medicinal benefits. The objective of this work is to assess the metabolomic profile of T. indica leaves enriched in alkaloids, as well as to evaluate the in vitro cytotoxicity of these leaves using the MTT assay on human breast MCF-7 and liver HepG2 cancer cell lines. Dried leaves of T. indica were extracted by sonication, using methanol containing 2 % (v/v) of acetic acid and obtained fraction was characterized by HPTLC and UPLC-MS. The UPLC-MS study yielded a preliminary identification of 32 metabolites, with tylophorine, tylophorine B, tylophorinine, and tylophorinidine being the predominant metabolites. The cytotoxicity of the extract of T. indica was evaluated on HepG2 and MCF-7 cell lines, yielding inhibitory concentration (IC50) values of 75.71 µg/mL and 69.60 µg/mL, respectively. Data suggested that the phytochemical screening clearly showed presence of numerous secondary metabolites with moderate cytotoxic efficacy. In conclusion, the future prospects of T. indica appear promising for the advancement of phytopharmaceutical-based anticancer medications, as well as for the design of contemporary pharmaceuticals in the field of cancer chemotherapy.


Asunto(s)
Alcaloides , Metabolómica , Extractos Vegetales , Hojas de la Planta , Tylophora , Humanos , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Alcaloides/metabolismo , Alcaloides/farmacología , Alcaloides/química , Células Hep G2 , Metabolómica/métodos , Células MCF-7 , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , Tylophora/metabolismo , Tylophora/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/metabolismo
16.
BMC Complement Med Ther ; 24(1): 195, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769554

RESUMEN

BACKGROUND: The burden of breast cancer, the second leading cause of death worldwide, is increasing at an alarming rate. Cuscuta, used in traditional medicine for different ailments, including cancer, is known for containing phytochemicals that exhibit anticancer activity; however, the bioactivities of proteins from this plant remain unexplored. This study aimed to screen the cytotoxic potential of proteins from the crude herbal product of Cuscuta epithymum(L.) (CE) harvested from the host plants Alhagi maurorum and Medicago sativa. METHODS: The proteins from CE were extracted using a salting-out method, followed by fractionation with a gel filtration chromatography column. Gel-free shotgun proteomics was subsequently performed for protein characterization. The viability assay using MTT was applied to deduce the cytotoxic potential of proteins against MCF-7 breast cancer cells, with further exploration of the effect of treatment on the expression of the apoptotic mediator BCL2-associated X protein (BAX) and B-cell lymphoma protein 2 (BCL-2) proteins, using western blotting to strengthen the findings from the in vitro viability assay. RESULTS: The crude proteins (CP) of CE were separated into four protein peaks (P1, P2, P3, and P4) by gel filtration chromatography. The evaluation of potency showed a dose-dependent decline in the MCF-7 cell line after CP, P1, P2, and P3 treatment with the respective IC50 values of 33.8, 43.1, 34.5, and 28.6 µg/ml. The percent viability of the cells decreased significantly upon treatment with 50 µg/ml CP, P1, P2, and P3 (P < 0.001). Western-blot analysis revealed upregulation of proapoptotic protein BAX in the cells treated with CP, P3 (P < 0.01), and P2 (P < 0.05); however, the antiapoptotic protein, BCL-2 was downregulated in the cells treated with CP and P3 (P < 0.01), but no significant change was detected in P2 treated cells. The observed cytotoxic effects of proteins in the CP, P1, P2, and P3 from the in vitro viability assay and western blot depicted the bioactivity potential of CE proteins. The database search revealed the identities of functionally important proteins, including nonspecific lipid transfer protein, superoxide dismutase, carboxypeptidase, RNase H domain containing protein, and polyribonucleotide nucleotidyltransferase, which have been previously reported from other plants to exhibit anticancer activity. CONCLUSION: This study indicated the cytotoxic activity of Cuscuta proteins against breast cancer MCF-7 cells and will be utilized for future investigations on the mechanistic effect of active proteins. The survey of CE proteins provided substantial data to encourage further exploration of biological activities exhibited by proteins in Cuscuta.


Asunto(s)
Neoplasias de la Mama , Cuscuta , Proteínas de Plantas , Proteómica , Humanos , Células MCF-7 , Proteínas de Plantas/farmacología , Cuscuta/química , Neoplasias de la Mama/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Femenino , Antineoplásicos Fitogénicos/farmacología , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos
17.
Mikrochim Acta ; 191(6): 298, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709403

RESUMEN

As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , ADN , Técnicas Electroquímicas , Oro , Límite de Detección , Nanopartículas del Metal , Células Neoplásicas Circulantes , Paladio , Células Neoplásicas Circulantes/patología , Humanos , Células MCF-7 , Nanopartículas del Metal/química , Técnicas Electroquímicas/métodos , Aptámeros de Nucleótidos/química , Oro/química , ADN/química , Técnicas Biosensibles/métodos , Paladio/química
18.
Chem Biol Interact ; 394: 110952, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38570061

RESUMEN

High throughput transcriptomics (HTTr) profiling has the potential to rapidly and comprehensively identify molecular targets of environmental chemicals that can be linked to adverse outcomes. We describe here the construction and characterization of a 50-gene expression biomarker designed to identify estrogen receptor (ER) active chemicals in HTTr datasets. Using microarray comparisons, the genes in the biomarker were identified as those that exhibited consistent directional changes when ER was activated (4 ER agonists; 4 ESR1 gene constitutively active mutants) and opposite directional changes when ER was suppressed (4 antagonist treatments; 4 ESR1 knockdown experiments). The biomarker was evaluated as a predictive tool using the Running Fisher algorithm by comparison to annotated gene expression microarray datasets including those evaluating the transcriptional effects of hormones and chemicals in MCF-7 cells. Depending on the reference dataset used, the biomarker had a predictive accuracy for activation of up to 96%. To demonstrate applicability for HTTr data analysis, the biomarker was used to identify ER activators in a set of 15 chemicals that are considered potential bisphenol A (BPA) alternatives examined at up to 10 concentrations in MCF-7 cells and analyzed by full-genome TempO-Seq. Using benchmark dose (BMD) modeling, the biomarker genes stratified the ER potency of BPA alternatives consistent with previous studies. These results demonstrate that the ER biomarker can be used to accurately identify ER activators in transcript profile data derived from MCF-7 cells.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Receptores de Estrógenos , Humanos , Células MCF-7 , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Compuestos de Bencidrilo/toxicidad , Fenoles/farmacología , Fenoles/toxicidad , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Biomarcadores/metabolismo , Moduladores de los Receptores de Estrógeno/farmacología
19.
Asian Pac J Cancer Prev ; 25(4): 1301-1313, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679991

RESUMEN

OBJECTIVE: Breast cancer ranks second in terms of the highest number of cancer deaths for women worldwide and is one of the leading causes of death from cancer in women. The drug that is often used for chemotherapy is cisplatin. However, cisplatin drugs have a number of problems, including lack of selectivity, unwanted side effects, resistance, and toxicity in the body. In this work, we investigated Ni(II) cysteine-tyrosine dithiocarbamate complex against breast cancer. METHODS: Research on the new complex compound Ni(II) cysteine-tyrosine dithiocarbamate have several stages including synthesis, characterization, in-silico and in-vitro testing of MCF-7 cells for anticancer drugs. The synthesis involved reacting cysteine, CS2, KOH and tyrosine with Mn metal. The new complex compound Ni(II) cysteine-tyrosine dithiocarbamate has been synthesized, characterized, and tested in vitro MCF-7 cells for anticancer drugs. Characterization tests such as melting point, conductivity, SEM-EDS, UV Vis, XRD, and FT-IR spectroscopy have been carried out. RESULT: The synthesis yielded a 60,16%, conversion with a melting point of 216-218 oC and a conductivity value of 0.4 mS/cm. In vitro test results showed morphological changes (apoptosis) in MCF-7 cancer cells starting at a sample concentration of 250 µg/mL and an IC50 value of 618.40 µg/mL. Molecular docking study of Ni(II) cysteine-tyrosine dithiocarbamate complex identified with 4,4',4''-[(2R)-butane-1,1,2-triyl]triphenol - Estrogen α showing active site with acidic residue amino E323, M388, L387, G390 and I389. Hydrophobic and hydrophobic bonds are seen in Ni(II) cysteine-tyrosine dithiocarbamate - Estrogen α has a binding energy of -80.9429 kJ /mol. CONCLUSION: there were 5 residues responsible for maintaining the ligand binding stable. The compound had significant Hbond contact intensity, however, it was not strong enough to make a significant anticancer effect. Though the synthesized compound shows low bioactivity, this research is expected to give valuable insight into the effect of molecular structure on anticancer activity.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Proliferación Celular , Cisteína , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Níquel , Tiocarbamatos , Tirosina , Humanos , Níquel/química , Níquel/farmacología , Tiocarbamatos/farmacología , Tiocarbamatos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Tirosina/farmacología , Tirosina/química , Células MCF-7 , Femenino , Cisteína/química , Cisteína/farmacología , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Apoptosis/efectos de los fármacos , Células Tumorales Cultivadas
20.
Anticancer Agents Med Chem ; 24(3): 224-234, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629155

RESUMEN

BACKGROUND: The side effects of conventional therapeutics pose a problem for cancer treatment. Recently, combination treatments with natural compounds have attracted attention regarding limiting the side effects of treatment. Oleuropein is a natural polyphenol in olives that has antioxidant and anticancer effects. OBJECTIVES: This study aimed to investigate the oxidative stress effect of a combination of Paclitaxel, a chemotherapeutic agent, and Oleuropein in the MCF-7 cell line. METHODS: The xCELLigence RTCA method was used to determine the cytotoxic effects of Oleuropein and Paclitaxel in the MCF-7 cell line. The Total Oxidant and Total Antioxidant Status were analyzed using a kit. The Oxidative Stress Index was calculated by measuring Total Oxidant and Total Antioxidant states. The levels of superoxide dismutase, reduced glutathione and malondialdehyde, which are oxidative stress markers, were also measured by ELISA assay kit. RESULTS: As a result of the measurement, IC50 doses of Oleuropein and Paclitaxel were determined as 230 µM and 7.5 µM, respectively. Different percentages of combination ratios were generated from the obtained IC50 values. The effect of oxidative stress was investigated at the combination rates of 10%, 20%, 30%, and 40% which were determined to be synergistic. In terms of the combined use of Oleuropein and Paclitaxel on oxidative stress, antioxidant defense increased, and Oxidative Stress Index levels decreased. CONCLUSION: These findings demonstrate that the doses administered to the Oleuropein+Paclitaxel combination group were lower than those administered to groups using one agent alone (e.g. Paclitaxel), the results of which reduce the possibility of administering toxic doses.


Asunto(s)
Neoplasias de la Mama , Glucósidos Iridoides , Paclitaxel , Humanos , Femenino , Paclitaxel/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Células MCF-7 , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Iridoides/farmacología , Estrés Oxidativo , Oxidantes/farmacología , Oxidantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA