Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 239, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978010

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is a frequent comorbidity encountered in patients with severe aortic stenosis (AS), leading to an adverse left ventricular (LV) remodeling and dysfunction. Metabolic alterations have been suggested as contributors of the deleterious effect of T2D on LV remodeling and function in patients with severe AS, but so far, the underlying mechanisms remain unclear. Mitochondria play a central role in the regulation of cardiac energy metabolism. OBJECTIVES: We aimed to explore the mitochondrial alterations associated with the deleterious effect of T2D on LV remodeling and function in patients with AS, preserved ejection fraction, and no additional heart disease. METHODS: We combined an in-depth clinical, biological and echocardiography phenotype of patients with severe AS, with (n = 34) or without (n = 50) T2D, referred for a valve replacement, with transcriptomic and histological analyses of an intra-operative myocardial LV biopsy. RESULTS: T2D patients had similar AS severity but displayed worse cardiac remodeling, systolic and diastolic function than non-diabetics. RNAseq analysis identified 1029 significantly differentially expressed genes. Functional enrichment analysis revealed several T2D-specific upregulated pathways despite comorbidity adjustment, gathering regulation of inflammation, extracellular matrix organization, endothelial function/angiogenesis, and adaptation to cardiac hypertrophy. Downregulated gene sets independently associated with T2D were related to mitochondrial respiratory chain organization/function and mitochondrial organization. Generation of causal networks suggested a reduced Ca2+ signaling up to the mitochondria, with the measured gene remodeling of the mitochondrial Ca2+ uniporter in favor of enhanced uptake. Histological analyses supported a greater cardiomyocyte hypertrophy and a decreased proximity between the mitochondrial VDAC porin and the reticular IP3-receptor in T2D. CONCLUSIONS: Our data support a crucial role for mitochondrial Ca2+ signaling in T2D-induced cardiac dysfunction in severe AS patients, from a structural reticulum-mitochondria Ca2+ uncoupling to a mitochondrial gene remodeling. Thus, our findings open a new therapeutic avenue to be tested in animal models and further human cardiac biopsies in order to propose new treatments for T2D patients suffering from AS. TRIAL REGISTRATION: URL: https://www. CLINICALTRIALS: gov ; Unique Identifier: NCT01862237.


Asunto(s)
Estenosis de la Válvula Aórtica , Señalización del Calcio , Diabetes Mellitus Tipo 2 , Perfilación de la Expresión Génica , Mitocondrias Cardíacas , Índice de Severidad de la Enfermedad , Transcriptoma , Función Ventricular Izquierda , Remodelación Ventricular , Humanos , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/genética , Estenosis de la Válvula Aórtica/fisiopatología , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/patología , Masculino , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Femenino , Anciano , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Persona de Mediana Edad , Anciano de 80 o más Años , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/genética , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/diagnóstico por imagen
2.
J Physiol ; 602(14): 3315-3339, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857425

RESUMEN

Increased malignancy and poor treatability associated with solid tumour cancers have commonly been attributed to mitochondrial calcium (Ca2+) dysregulation. The mitochondrial Ca2+ uniporter complex (mtCU) is the predominant mode of Ca2+ uptake into the mitochondrial matrix. The main components of mtCU are the pore-forming mitochondrial Ca2+ uniporter (MCU) subunit, MCU dominant-negative beta (MCUb) subunit, essential MCU regulator (EMRE) and the gatekeeping mitochondrial Ca2+ uptake 1 and 2 (MICU1 and MICU2) proteins. In this review, we describe mtCU-mediated mitochondrial Ca2+ dysregulation in solid tumour cancer types, finding enhanced mtCU activity observed in colorectal cancer, breast cancer, oral squamous cell carcinoma, pancreatic cancer, hepatocellular carcinoma and embryonal rhabdomyosarcoma. By contrast, decreased mtCU activity is associated with melanoma, whereas the nature of mtCU dysregulation remains unclear in glioblastoma. Furthermore, we show that numerous polymorphisms associated with cancer may alter phosphorylation sites on the pore forming MCU and MCUb subunits, which cluster at interfaces with EMRE. We highlight downstream/upstream biomolecular modulators of MCU and MCUb that alter mtCU-mediated mitochondrial Ca2+ uptake and may be used as biomarkers or to aid in the development of novel cancer therapeutics. Additionally, we provide an overview of the current small molecule inhibitors of mtCU that interact with the Asp residue of the critical Asp-Ile-Met-Glu motif or through other allosteric regulatory mechanisms to block Ca2+ permeation. Finally, we describe the relationship between MCU- and MCUb-mediating microRNAs and mitochondrial Ca2+ uptake that should be considered in the discovery of new treatment approaches for cancer.


Asunto(s)
Canales de Calcio , Neoplasias , Humanos , Canales de Calcio/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Calcio/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
3.
Cell Biochem Funct ; 42(5): e4082, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38944766

RESUMEN

Calcium (Ca2+) has been observed as the most important ion involved in a series of cellular processes and its homeostasis is critical for normal cellular functions. Mitochondrial calcium uniporter (MCU) complex has been recognized as the most important calcium-specific channel located in the inner mitochondrial membrane and is one of the major players in maintaining the Ca2+ homeostasis by transporting Ca2+ across the mitochondrial membrane. Furthermore, dysregulation of the mitochondrial Ca2+ homeostasis has been orchestrated to neurodegenerative response. This necessitates quantitative evaluation of the MCU-dependent mROS production and subsequent cellular responses for more specific therapeutic interventions against neurodegenerative disorders. Towards this goal, here we present a biological regulatory network of MCU to dynamically simulate the MCU-mediated ROS production and its response in neurodegeneration. Previously, ruthenium complex RuRed and its derivatives have been reported to show low nM to high µM potency against MCU to maintain cytosolic Ca2+ (cCa2+) homeostasis by modulating mitochondrial Ca2+ (mCa2+) uptake. Therefore, structural modeling and dynamic simulation of MCU pore-forming subunit is performed to probe the interaction profiling of previously reported Ru265 and its derivatives compounds with MCU. The current study highlighted MCU as a potential drug target in neurodegenerative disorders. Furthermore, ASP261 and GLU264 amino acid residues in DIME motif of MCU pore-forming subunits are identified as crucial for modulating the activity of MCU in neurodegenerative disorders.


Asunto(s)
Canales de Calcio , Calcio , Enfermedades Neurodegenerativas , Canales de Calcio/metabolismo , Canales de Calcio/química , Calcio/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos
4.
Cell Calcium ; 121: 102907, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788256

RESUMEN

Calcium (Ca2+) signalling acts a pleiotropic message within the cell that is decoded by the mitochondria through a sophisticated ion channel known as the Mitochondrial Ca2+ Uniporter (MCU) complex. Under physiological conditions, mitochondrial Ca2+ signalling is crucial for coordinating cell activation with energy production. Conversely, in pathological scenarios, it can determine the fine balance between cell survival and death. Over the last decade, significant progress has been made in understanding the molecular bases of mitochondrial Ca2+ signalling. This began with the elucidation of the MCU channel components and extended to the elucidation of the mechanisms that regulate its activity. Additionally, increasing evidence suggests molecular mechanisms allowing tissue-specific modulation of the MCU complex, tailoring channel activity to the specific needs of different tissues or cell types. This review aims to explore the latest evidence elucidating the regulation of the MCU complex, the molecular factors controlling the tissue-specific properties of the channel, and the physiological and pathological implications of mitochondrial Ca2+ signalling in different tissues.


Asunto(s)
Canales de Calcio , Señalización del Calcio , Mitocondrias , Especificidad de Órganos , Humanos , Canales de Calcio/metabolismo , Animales , Mitocondrias/metabolismo , Calcio/metabolismo
5.
Physiology (Bethesda) ; 39(5): 0, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713090

RESUMEN

Oxidative phosphorylation is regulated by mitochondrial calcium (Ca2+) in health and disease. In physiological states, Ca2+ enters via the mitochondrial Ca2+ uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca2+ homeostasis is critical: insufficient Ca2+ impairs stress adaptation, and Ca2+ overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca2+ dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca2+ regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca2+ regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca2+ exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na+/Ca2+ exchanger, and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca2+ transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca2+ holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.


Asunto(s)
Calcio , Mitocondrias Cardíacas , Humanos , Animales , Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Fosforilación Oxidativa , Especies Reactivas de Oxígeno/metabolismo , Miocardio/metabolismo , Cardiopatías/metabolismo
6.
Free Radic Biol Med ; 221: 111-124, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38763207

RESUMEN

Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.


Asunto(s)
Apoptosis , Canales de Calcio , Dinaminas , Ratones Endogámicos C57BL , Mitocondrias , Dinámicas Mitocondriales , Daño por Reperfusión , Animales , Humanos , Masculino , Ratones , Apoptosis/genética , Células CACO-2 , Calcio/metabolismo , Canales de Calcio/metabolismo , Canales de Calcio/genética , Modelos Animales de Enfermedad , Dinaminas/metabolismo , Dinaminas/genética , Intestinos/irrigación sanguínea , Intestinos/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/genética , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Estrés Oxidativo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control
7.
J Cell Sci ; 137(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38786982

RESUMEN

Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are high-conductance channels that allow the regulated redistribution of Ca2+ from the endoplasmic reticulum (ER) to the cytosol and, at specialized membrane contact sites (MCSs), to other organelles. Only a subset of IP3Rs release Ca2+ to the cytosol in response to IP3. These 'licensed' IP3Rs are associated with Kras-induced actin-interacting protein (KRAP, also known as ITPRID2) beneath the plasma membrane. It is unclear whether KRAP regulates IP3Rs at MCSs. We show, using simultaneous measurements of Ca2+ concentration in the cytosol and mitochondrial matrix, that KRAP also licenses IP3Rs to release Ca2+ to mitochondria. Loss of KRAP abolishes cytosolic and mitochondrial Ca2+ signals evoked by stimulation of IP3Rs via endogenous receptors. KRAP is located at ER-mitochondrial membrane contact sites (ERMCSs) populated by IP3R clusters. Using a proximity ligation assay between IP3R and voltage-dependent anion channel 1 (VDAC1), we show that loss of KRAP reduces the number of ERMCSs. We conclude that KRAP regulates Ca2+ transfer from IP3Rs to mitochondria by both licensing IP3R activity and stabilizing ERMCSs.


Asunto(s)
Calcio , Retículo Endoplásmico , Receptores de Inositol 1,4,5-Trifosfato , Mitocondrias , Animales , Humanos , Calcio/metabolismo , Señalización del Calcio , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Células HeLa , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Lectinas Tipo C , Proteínas de la Membrana , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/genética
8.
Br J Pharmacol ; 181(18): 3503-3526, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38779706

RESUMEN

BACKGROUND AND PURPOSE: Excitotoxicity due to mitochondrial calcium (Ca2+) overloading can trigger neuronal cell death in a variety of pathologies. Inhibiting the mitochondrial calcium uniporter (MCU) has been proposed as a therapeutic avenue to prevent calcium overloading. Ru265 (ClRu(NH3)4(µ-N)Ru(NH3)4Cl]Cl3) is a cell-permeable inhibitor of the mitochondrial calcium uniporter (MCU) with nanomolar affinity. Ru265 reduces sensorimotor deficits and neuronal death in models of ischemic stroke. However, the therapeutic use of Ru265 is limited by the induction of seizure-like behaviours. EXPERIMENTAL APPROACH: We examined the effect of Ru265 on synaptic and neuronal function in acute brain slices and hippocampal neuron cultures derived from mice, in control and where MCU expression was genetically abrogated. KEY RESULTS: Ru265 decreased evoked responses from calyx terminals and induced spontaneous action potential firing of both the terminal and postsynaptic principal cell. Recordings of presynaptic Ca2+ currents suggested that Ru265 blocks the P/Q type channel, confirmed by the inhibition of currents in cells exogenously expressing the P/Q type channel. Measurements of presynaptic K+ currents further revealed that Ru265 blocked a KCNQ current, leading to increased membrane excitability, underlying spontaneous spiking. Ca2+ imaging of hippocampal neurons showed that Ru265 increased synchronized, high-amplitude events, recapitulating seizure-like activity seen in vivo. Importantly, MCU ablation did not suppress Ru265-induced increases in neuronal activity and seizures. CONCLUSIONS AND IMPLICATIONS: Our findings provide a mechanistic explanation for the pro-convulsant effects of Ru265 and suggest counter screening assays based on the measurement of P/Q and KCNQ channel currents to identify safe MCU inhibitors.


Asunto(s)
Canales de Calcio , Neuronas , Compuestos de Rutenio , Transmisión Sináptica , Animales , Canales de Calcio/metabolismo , Canales de Calcio/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Compuestos de Rutenio/farmacología , Ratones , Transmisión Sináptica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Masculino , Células Cultivadas , Calcio/metabolismo
9.
Mol Neurobiol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652352

RESUMEN

Epilepsy is one of the most common neurological disorders in the world. Common epileptic drugs generally affect ion channels or neurotransmitters and prevent the emergence of seizures. However, up to a third of the patients suffer from drug-resistant epilepsy, and there is an urgent need to develop new therapeutic strategies that go beyond acute antiepileptic (antiseizure) therapies towards therapeutics that also might have effects on chronic epilepsy comorbidities such as cognitive decline and depression. The mitochondrial calcium uniporter (MCU) mediates rapid mitochondrial Ca2+ transport through the inner mitochondrial membrane. Ca2+ influx is essential for mitochondrial functions, but longer elevations of intracellular Ca2+ levels are closely associated with seizure-induced neuronal damage, which are underlying mechanisms of cognitive decline and depression. Using neuronal-specific MCU knockout mice (MCU-/-ΔN), we demonstrate that neuronal MCU deficiency reduced hippocampal excitability in vivo. Furthermore, in vitro analyses of hippocampal glioneuronal cells reveal no change in total Ca2+ levels but differences in intracellular Ca2+ handling. MCU-/-ΔN reduces ROS production, declines metabolic fluxes, and consequently prevents glioneuronal cell death. This effect was also observed under pathological conditions, such as the low magnesium culture model of seizure-like activity or excitotoxic glutamate stimulation, whereby MCU-/-ΔN reduces ROS levels and suppresses Ca2+ overload seen in WT cells. This study highlights the importance of MCU at the interface of Ca2+ handling and metabolism as a mediator of stress-related mitochondrial dysfunction, which indicates the modulation of MCU as a potential target for future antiepileptogenic therapy.

10.
Cell Mol Neurobiol ; 44(1): 32, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38568450

RESUMEN

The phenomenon of ischemic postconditioning (PostC) is known to be neuroprotective against ischemic reperfusion (I/R) injury. One of the key processes in PostC is the opening of the mitochondrial ATP-dependent potassium (mito-KATP) channel and depolarization of the mitochondrial membrane, triggering the release of calcium ions from mitochondria through low-conductance opening of the mitochondrial permeability transition pore. Mitochondrial calcium uniporter (MCU) is known as a highly sensitive transporter for the uptake of Ca2+ present on the inner mitochondrial membrane. The MCU has attracted attention as a new target for treatment in diseases, such as neurodegenerative diseases, cancer, and ischemic stroke. We considered that the MCU may be involved in PostC and trigger its mechanisms. This research used the whole-cell patch-clamp technique on hippocampal CA1 pyramidal cells from C57BL mice and measured changes in spontaneous excitatory post-synaptic currents (sEPSCs), intracellular Ca2+ concentration, mitochondrial membrane potential, and N-methyl-D-aspartate receptor (NMDAR) currents under inhibition of MCU by ruthenium red 265 (Ru265) in PostC. Inhibition of MCU increased the occurrence of sEPSCs (p = 0.014), NMDAR currents (p < 0.001), intracellular Ca2+ concentration (p < 0.001), and dead cells (p < 0.001) significantly after reperfusion, reflecting removal of the neuroprotective effects in PostC. Moreover, mitochondrial depolarization in PostC with Ru265 was weakened, compared to PostC (p = 0.004). These results suggest that MCU affects mitochondrial depolarization in PostC to suppress NMDAR over-activation and prevent elevation of intracellular Ca2+ concentrations against I/R injury.


Asunto(s)
Lesiones Encefálicas , Canales de Calcio , Poscondicionamiento Isquémico , Compuestos de Rutenio , Animales , Ratones , Ratones Endogámicos C57BL , Receptores de N-Metil-D-Aspartato , Adenosina Trifosfato
11.
Cancer Cell Int ; 24(1): 140, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632642

RESUMEN

The mitochondrial calcium uniporter (MCU) is a transmembrane protein facilitating the entry of calcium ions into mitochondria from the cell cytosol. Maintaining calcium balance is crucial for enhancing cellular energy supply and regulating cell death. The interplay of calcium balance through MCU and the sodium-calcium exchanger is known, but its regulation in the breast cancer tumor microenvironment remains elusive. Further investigations are warranted to explore MCU's potential in BRCA clinical pathology, tumor immune microenvironment, and precision oncology. Our study, employing a multi-omics approach, identifies MCU as an independent diagnostic biomarker for breast cancer (BRCA), correlated with advanced clinical status and poor overall survival. Utilizing public datasets from GEO and TCGA, we discern differentially expressed genes in BRCA and examine their associations with immune gene expression, overall survival, tumor stage, gene mutation status, and infiltrating immune cells. Spatial transcriptomics is employed to investigate MCU gene expression in various regions of BRCA, while spatial transcriptomics and single-cell RNA-sequencing methods explore the correlation between MCUs and immune cells. Our findings are validated through the analysis of 59 BRCA patient samples, utilizing immunohistochemistry and bioinformatics to examine the relationship between MCU expression, clinicopathological features, and prognosis. The study uncovers the expression of key gene regulators in BRCA associated with genetic variations, deletions, and the tumor microenvironment. Mutations in these regulators positively correlate with different immune cells in six immune datasets, playing a pivotal role in immune cell infiltration in BRCA. Notably, high MCU performance is linked to CD8 + T cells infiltration in BRCA. Furthermore, pharmacogenomic analysis of BRCA cell lines indicates that MCU inactivation is associated with increased sensitivity to specific small molecule drugs. Our findings suggest that MCU alterations may be linked to BRCA progression, unveiling new diagnostic and prognostic implications for MCU in BRCA. The study underscores MCU's role in the tumor immune microenvironment and cell cycle progression, positioning it as a potential tool for BRCA precision medicine and drug screening.

12.
Mitochondrion ; 76: 101877, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599304

RESUMEN

Mitochondrial Ca2+ uptake is essential in regulating bioenergetics, cell death, and cytosolic Ca2+ transients. Mitochondrial Calcium Uniporter (MCU) mediates the mitochondrial Ca2+ uptake. Though MCU regulation by MICUs is unequivocally established, there needs to be more knowledge of whether divalent cations regulate MCU. Here, we set out to understand the mitochondrial matrix Mg2+-dependent regulation of MCU activity. We showed that decreased matrix [Mg2+] is associated with increased MCU activity and significantly prompted mitochondrial permeability transition pore opening. Our findings support the critical role of mMg2+ in regulating MCU activity.


Asunto(s)
Canales de Calcio , Calcio , Magnesio , Mitocondrias , Calcio/metabolismo , Magnesio/metabolismo , Canales de Calcio/metabolismo , Mitocondrias/metabolismo , Humanos , Supervivencia Celular , Proteínas Mitocondriales/metabolismo
13.
Genes (Basel) ; 15(4)2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674446

RESUMEN

Obesity is a public health crisis, and its prevalence disproportionately affects African Americans in the United States. Dysregulation of organelle calcium homeostasis is associated with obesity. The mitochondrial calcium uniporter (MCU) complex is primarily responsible for mitochondrial calcium homeostasis. Obesity is a multifactorial disease in which genetic underpinnings such as single-nucleotide polymorphisms (SNPs) may contribute to disease progression. The objective of this study was to identify genetic variations of MCU with anthropometric measurements and obesity in the All of Us Research Program. METHODS: We used an additive genetic model to assess the association between obesity traits (body mass index (BMI), waist and hip circumference) and selected MCU SNPs in 19,325 participants (3221 normal weight and 16,104 obese). Eleven common MCU SNPs with a minor allele frequency ≥ 5% were used for analysis. RESULTS: We observed three MCU SNPs in self-reported Black/African American (B/AA) men, and six MCU SNPs in B/AA women associated with increased risk of obesity, whereas six MCU SNPs in White men, and nine MCU SNPs in White women were protective against obesity development. CONCLUSIONS: This study found associations of MCU SNPs with obesity, providing evidence of a potential predictor of obesity susceptibility in B/AA adults.


Asunto(s)
Canales de Calcio , Obesidad , Polimorfismo de Nucleótido Simple , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Negro o Afroamericano/genética , Índice de Masa Corporal , Canales de Calcio/genética , Predisposición Genética a la Enfermedad , Obesidad/genética , Estados Unidos/epidemiología , Población Blanca/genética , Blanco
15.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119714, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555977

RESUMEN

The discovery of MICU1 as gatekeeper of mitochondrial calcium (mCa2+) entry has transformed our understanding of mCa2+ flux. Recent studies revealed an additional role of MICU1 as a Ca2+ sensor at MICOS (mitochondrial contact site and cristae organizing system). MICU1's presence at MICOS suggests its involvement in coordinating Ca2+ signaling and mitochondrial ultrastructure. Besides its role in Ca2+ regulation, MICU1 influences cellular signaling pathways including transcription, epigenetic regulation, metabolism, and cell death, thereby affecting human health. Here, we summarize recent findings on MICU1's canonical and noncanonical functions, and its relevance to human health and diseases.


Asunto(s)
Señalización del Calcio , Proteínas de Unión al Calcio , Calcio , Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial , Humanos , Mitocondrias/metabolismo , Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Animales , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/química
16.
J Cancer ; 15(5): 1257-1270, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38356708

RESUMEN

Changes in calcium signalling are crucial for the development of glioma cells. Whether mitochondrial calcium balance is involved in glial cell development is still unknown. Mitochondrial Calcium Uniporter (MCU) plays an important role in regulating glioma progression. In this work, we found that MCU and p38 expression were positively correlated with glioma grade and the degree tumour progression. MCU increases glioma cell migration by upregulating p38. Furthermore, p38 promotes glioma progression by activating Transcription Factor EB (TFEB)-mediated autophagy. Thus, MCU promotes glioma cell migration by activating autophagy in a p38/TFEB pathway-dependent manner, which provides a theoretical basis for new therapeutic targets for gliomas.

17.
Mitochondrial Commun ; 2: 14-20, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38347884

RESUMEN

While it has been shown that Ca2+ dynamics at the ER membrane is essential for the initiation of certain types of autophagy such as starvation-induced autophagy, how mitochondrial Ca2+ transport changes during the first stage of autophagy is not systemically characterized. An investigation of mitochondrial Ca2+ dynamics during autophagy initiation may help us determine the relationship between autophagy and mitochondrial Ca2+ fluxes. Here we examine acute mitochondrial and ER calcium responses to a panel of autophagy inducers in different cell types. Mitochondrial Ca2+ transport and Ca2+ transients at the ER membrane are triggered by different autophagy inducers. The mitophagy-inducer-initiated mitochondrial Ca2+ uptake relies on mitochondrial calcium uniporter and may decelerate the following mitophagy. In neurons derived from a Parkinson's patient, mitophagy-inducer-triggered mitochondrial Ca2+ influx is faster, which may slow the ensuing mitophagy.

18.
J Adv Res ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38417574

RESUMEN

BACKGROUND: Globally, the onset and progression of multiple human diseases are associated with mitochondrial dysfunction and dysregulation of Ca2+ uptake dynamics mediated by the mitochondrial calcium uniporter (MCU) complex, which plays a key role in mitochondrial dysfunction. Despite relevant studies, the underlying pathophysiological mechanisms have not yet been fully elucidated. AIM OF REVIEW: This article provides an in-depth analysis of the current research status of the MCU complex, focusing on its molecular composition, regulatory mechanisms, and association with diseases. In addition, we conducted an in-depth analysis of the regulatory effects of agonists, inhibitors, and traditional Chinese medicine (TCM) monomers on the MCU complex and their application prospects in disease treatment. From the perspective of medicinal chemistry, we conducted an in-depth analysis of the structure-activity relationship between these small molecules and MCU and deduced potential pharmacophores and binding pockets. Simultaneously, key structural domains of the MCU complex in Homo sapiens were identified. We also studied the functional expression of the MCU complex in Drosophila, Zebrafish, and Caenorhabditis elegans. These analyses provide a basis for exploring potential treatment strategies targeting the MCU complex and provide strong support for the development of future precision medicine and treatments. KEY SCIENTIFIC CONCEPTS OF REVIEW: The MCU complex exhibits varying behavior across different tissues and plays various roles in metabolic functions. It consists of six MCU subunits, an essential MCU regulator (EMRE), and solute carrier 25A23 (SLC25A23). They regulate processes, such as mitochondrial Ca2+ (mCa2+) uptake, mitochondrial adenosine triphosphate (ATP) production, calcium dynamics, oxidative stress (OS), and cell death. Regulation makes it a potential target for treating diseases, especially cardiovascular diseases, neurodegenerative diseases, inflammatory diseases, metabolic diseases, and tumors.

19.
Cell Rep ; 43(2): 113681, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38236772

RESUMEN

Mitochondrial calcium (Ca2+) uptake augments metabolic processes and buffers cytosolic Ca2+ levels; however, excessive mitochondrial Ca2+ can cause cell death. Disrupted mitochondrial function and Ca2+ homeostasis are linked to numerous neurodegenerative diseases (NDs), but the impact of mitochondrial Ca2+ disruption is not well understood. Here, we show that Drosophila models of multiple NDs (Parkinson's, Huntington's, Alzheimer's, and frontotemporal dementia) reveal a consistent increase in neuronal mitochondrial Ca2+ levels, as well as reduced mitochondrial Ca2+ buffering capacity, associated with increased mitochondria-endoplasmic reticulum contact sites (MERCs). Importantly, loss of the mitochondrial Ca2+ uptake channel MCU or overexpression of the efflux channel NCLX robustly suppresses key pathological phenotypes across these ND models. Thus, mitochondrial Ca2+ imbalance is a common feature of diverse NDs in vivo and is an important contributor to the disease pathogenesis. The broad beneficial effects from partial loss of MCU across these models presents a common, druggable target for therapeutic intervention.


Asunto(s)
Enfermedades Neurodegenerativas , Animales , Mitocondrias , Transporte Biológico , Calcio , Muerte Celular , Drosophila
20.
Mol Metab ; 80: 101873, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199601

RESUMEN

OBJECTIVE: Studies have shown a correlation between obesity and mitochondrial calcium homeostasis, yet it is unclear whether and how Mcu regulates adipocyte lipid deposition. This study aims to provide new potential target for the treatment of obesity and related metabolic diseases, and to explore the function of Mcu in adipose tissue. METHODS: We firstly investigated the role of mitoxantrone, an Mcu inhibitor, in the regulation of glucose and lipid metabolism in mouse adipocytes (3T3-L1 cells). Secondly, C57BL/6J mice were used as a research model to investigate the effects of Mcu inhibitors on fat accumulation and glucose metabolism in mice on a high-fat diet (HFD), and by using CRISPR/Cas9 technology, adipose tissue-specific Mcu knockdown mice (Mcufl/+ AKO) and Mcu knockout of mice (Mcufl/fl AKO) were obtained, to further investigate the direct effects of Mcu on fat deposition, glucose tolerance and insulin sensitivity in mice on a high-fat diet. RESULTS: We found the Mcu inhibitor reduced adipocytes lipid accumulation and adipose tissues mass in mice fed an HFD. Both Mcufl/+ AKO mice and Mcufl/fl AKO mice were resistant to HFD-induced obesity, compared to control mice. Mice with Mcufl/fl AKO showed improved glucose tolerance and insulin sensitivity as well as reduced hepatic lipid accumulation. Mechanistically, inhibition of Mcu promoted mitochondrial biogenesis and adipocyte browning, increase energy expenditure and alleviates diet-induced obesity. CONCLUSIONS: Our study demonstrates a link between adipocyte lipid accumulation and mCa2+ levels, suggesting that adipose-specific Mcu deficiency alleviates HFD-induced obesity and ameliorates metabolic disorders such as insulin resistance and hepatic steatosis. These effects may be achieved by increasing mitochondrial biosynthesis, promoting white fat browning and enhancing energy metabolism.


Asunto(s)
Canales de Calcio , Resistencia a la Insulina , Animales , Ratones , Tejido Adiposo/metabolismo , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Lípidos , Ratones Endogámicos C57BL , Obesidad/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA