Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Bioenerg Biomembr ; 56(4): 405-418, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38842666

RESUMEN

BACKGROUND: Ferritinophagy-mediated ferroptosis plays a crucial role in fighting pathogen aggression. The long non-coding RNA Mir22hg is involved in the regulation of ferroptosis and aberrantly overexpression in lipopolysaccharide (LPS)-induced sepsis mice, but whether it regulates sepsis through ferritinophagy-mediated ferroptosis is unclear. METHODS: Mir22hg was screened by bioinformatics analysis. Ferroptosis was assessed by assaying malondialdehyde (MDA), reactive oxygen species (ROS), and Fe2+ levels, glutathione (GSH) activity, as well as ferroptosis-related proteins GPX4 and SLC3A2 by using matched kits and performing western blot. Ferritinophagy was assessed by Lyso tracker staining and FerroOrange staining, immunofluorescence analysis of Ferritin and LC-3, and western blot analysis of LC-3II/I, p62, FTH1, and NCOA4. The bind of YTH domain containing 1 (YTHDC1) to Mir22hg or angiopoietin-like-4 (Angptl4) was verified by RNA pull-down and/or immunoprecipitation (RIP) assays. RESULTS: Mir22hg silencing lightened ferroptosis and ferritinophagy in LPS-induced MLE-12 cells and sepsis mouse models, as presented by the downregulated MDA, ROS, Fe2+, NCOA4, and SLC3A2 levels, upregulated GPX4, GSH, and FTH1 levels, along with a decrease in autophagy. Mir22hg could bind to the m6A reader YTHDC1 without affecting its expression. Mechanistically, Mir22hg enhanced Angptl4 mRNA stability through recruiting the m6A reader YTHDC1. Furthermore, Angptl4 overexpression partly overturned Mir22hg inhibition-mediated effects on ferroptosis and ferritinophagy in LPS-induced MLE-12 cells. CONCLUSION: Mir22hg contributed to in ferritinophagy-mediated ferroptosis in sepsis via recruiting the m6A reader YTHDC1 and strengthening Angptl4 mRNA stability, highlighting that Mir22hg may be a potential target for sepsis treatment based on ferroptosis.


Asunto(s)
Proteína 4 Similar a la Angiopoyetina , Ferroptosis , MicroARNs , Sepsis , Animales , Humanos , Masculino , Ratones , Proteína 4 Similar a la Angiopoyetina/metabolismo , Proteína 4 Similar a la Angiopoyetina/genética , Autofagia/fisiología , Ferritinas/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , Estabilidad del ARN , Sepsis/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo
2.
Clin Nutr ; 43(1): 52-64, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38011754

RESUMEN

BACKGROUND: Nonalcoholic steatohepatitis (NASH) is known to progress due to the impact of long non-coding RNAs (lncRNAs), which have been linked to autophagy, pyroptosis, and fibrosis in NASH cells. However, the exact mechanisms underpinning these processes remain unclear. This study focuses on the role of lncRNA MIR22HG (MIR22HG) in NASH. METHODS: The expression of differentially expressed lncRNA was analyzed by RNA sequencing. Mouse models of NASH induced by MCD and HFD were validated. The expression of MIR22HG in HFD and MCD mouse liver tissue samples, FFA cells constructed with HepG2 and Huh7, and human liver tissue samples were detected by QRT-PCR. In addition, We used RNA immunoprecipitation, luciferase reporting, miRNA transfection, plasmid construction, immunofluorescence, Western blot, qRT-PCR, ELISA, and hybridization techniques to elucidate the relationship between MIR22HG, microRNA-9-3p (miR-9-3p), and IGF1. In addition, the mechanism of MIR22HG and PTEN/AKT was explored by Western blot analysis. RESULTS: RNA-seq found that 3751 mRNAs and 23 lncRNAs were differentially expressed, which constituted a lncRNA-miRNA-mRNA regulatory network. Studies demonstrated the downregulation of MIR22HG in HFD and MCD mouse liver tissue samples (p = 1.00E-04 and p = 4.6E-03). Our results showed that overexpression of MIR22HG promoted autophagy and inhibited pyroptosis and fibrosis through the miR-9-3p/IGF1 pathway, thus slowing the occurrence and development of NASH. Further, we observed a low expression of MIR22HG and IGF1, but a high expression of miR-9-3p in NASH patients, a finding in alignment with our in vivo and in vitro results. CONCLUSION: Using MIR22HG as a biomarker and therapeutic target for NASH patients, we found that it plays a pivotal role in detecting autophagy, pyroptosis, and fibrosis through the ceRNA pathway.


Asunto(s)
MicroARNs , Enfermedad del Hígado Graso no Alcohólico , ARN Largo no Codificante , Animales , Humanos , Ratones , Autofagia/genética , Fibrosis , Factor I del Crecimiento Similar a la Insulina/metabolismo , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Piroptosis , ARN Endógeno Competitivo , ARN Largo no Codificante/genética
3.
Funct Integr Genomics ; 23(4): 329, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910254

RESUMEN

Improved chondrogenic differentiation of mesenchymal stem cells (MSCs) by genetic regulation is a potential method for regenerating articular cartilage. LncRNA MIR22HG has been proven to accelerate osteogenic differentiation, but the regulation mechanism of chondrogenic differentiation is still unclear. Human adipose-derived stem cells (hADSCs) have been widely utilised for bone tissue engineering applications. The present study aimed to examine the effect of MIR22HG on the chondrogenic differentiation of hADSCs. The results confirmed that MIR22HG was downregulated in the process of chondrogenic differentiation. Subsequently, gain- and loss-of-function of MIR22HG experiments showed that the overexpression of MIR22HG suppressed the deposition of cartilage matrix proteoglycans and decreased the expression of cartilage-related markers (e.g. Sox9, ACAN and Col2A1), whereas the knockdown of MIR22HG had the opposite effect. MIR22HG could bind to CTCF (CCCTC-binding factor), and CTCF could bind to the CRLF1 (cytokine receptor-like factor 1) promoter and upregulate CRLF1 gene expression. Besides, inhibition of CRLF1 can reverse the effect of MIR22HG on cell chondrogenic differentiation of hADSCs. Taken together, our outcomes reveal that MIR22HG suppressed chondrogenic differentiation by interaction with CTCF to stabilise CRLF1.


Asunto(s)
Células Madre Mesenquimatosas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Osteogénesis , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Factor de Unión a CCCTC/farmacología , Diferenciación Celular/genética , Células Madre Mesenquimatosas/metabolismo , Células Cultivadas
4.
Mol Biol Rep ; 50(9): 7445-7456, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37479878

RESUMEN

BACKGROUND: This study aims to determine the role of long non-coding RNA (LncRNA) MIR22HG in small cell lung cancer (SCLC), and to explore its relevant mechanism. METHODS AND RESULTS: The expressions of genes and proteins in SCLC cells were examined applying qRT-PCR and western blot. Cell proliferation estimation was implemented utilizing cell counting kit-8 (CCK-8) and colony formation assays; the assessment of cell migration and invasion was operated employing Wound healing and Transwell; apoptosis evaluation was conducted adopting flow cytometric assay. Binding relationships was confirmed by luciferase reporter assay. Moreover, SCLC animal model was established to explore the role of MIR22HG in vivo. It was found that MIR22HG was declined and miR-9-3p was elevated in five SCLC cell lines (NCI-H446, NCI-H69, SHP-77, DMS79 and NCI-H345) in comparison with normal human bronchial epithelial cell line (NHBE). More interestingly, overexpression of MIR22HG resulted in decreased cell viability, declined colony formation, diminished capacities of cell migration and invasion in NCI-H446 and NCI-H345 cells but induced more apoptotic cells. However, these impacts were reversed by miR-9-3p upregulation. Meanwhile, MIR22HG could bind to miR-9-3p and negatively regulate its expression in SCLC. What's more, LncRNA MIR22HG overexpression was also testified to elevate SOCS1 via downregulating miR-9-3p expression. Furthermore, in vivo study further confirmed the role of MIR22HG/miR-9-3p in tumor regulation of SCLC. CONCLUSIONS: In conclusion, MIR22HG in SCLC was found to modulate miR-9-3p level and might act as a possible biomarker for SCLC treatment.


Asunto(s)
Neoplasias Pulmonares , ARN Largo no Codificante , Carcinoma Pulmonar de Células Pequeñas , Animales , Humanos , Apoptosis/genética , Proliferación Celular/genética , Neoplasias Pulmonares/genética , ARN Largo no Codificante/genética , Carcinoma Pulmonar de Células Pequeñas/genética , Proteína 1 Supresora de la Señalización de Citocinas/genética
5.
Mol Med ; 29(1): 54, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081396

RESUMEN

BACKGROUND: Sarcopenia and osteoporosis are common diseases that predominantly affect older individuals. The interaction between muscle and skeleton exerts pivotal roles in bone remodeling. This study aimed to explore the function of myoblast-derived exosomal Prrx2 in osteogenic differentiation and its potential mechanisms. METHODS: Exosomes were isolated from myogenic differentiated C2C12 cells. qRT-PCR and Western blotting were used to determine target molecule expression. Osteogenic differentiation of BMSCs was evaluated by Alizarin red staining, ALP activity and levels of OCN, OPN, RUNX2, and BMP2. Dual-luciferase reporter assay, RIP, and ChIP assays were performed to verify the interaction between molecules. The nuclear translocation of YAP1 was observed by immunofluorescence staining. In vivo osteoporotic model was established by ovariectomy in mice. Bone loss was examined using HE staining. RESULTS: Prrx2 expression was elevated in myogenic differentiated C2C12 cells and their exosomes. Myoblast-derived exosomal Prrx2 enhanced osteogenic differentiation of BMSCs. Delivering exosomal Prrx2 directly bond to MIR22HG promoter and promoted its transcription and expression. MIR22HG enhanced expression and nuclear translocation of YAP via sponging miR-128, thus facilitating BMSC osteogenic differentiation. Knockdown of exosomal Prrx2 suppressed osteogenic differentiation, which could be abolished by MIR22HG overexpression. Similarly, miR-128 inhibitor or YAP overexpression reversed the inhibitory effect of MIR22HG depletion or miR-128 mimics on osteogenic differentiation. Finally, myoblast-derived exosomal Prrx2 alleviated osteoporosis in mice via up-regulating MIR22HG and activating the Hippo pathway. CONCLUSION: Myoblast-derived exosomal Prrx2 contributes to transcriptional activation of MIR22HG to activate YAP pathway via sponging miR-128, thereby facilitating osteogenic differentiation of BMSCs.


Asunto(s)
MicroARNs , Osteoporosis , ARN Largo no Codificante , Animales , Femenino , Ratones , Diferenciación Celular/fisiología , Células Cultivadas , Vía de Señalización Hippo , MicroARNs/genética , MicroARNs/metabolismo , Mioblastos/metabolismo , Osteogénesis/genética , Osteoporosis/genética , Osteoporosis/metabolismo
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 42(4): 473-485, 2022 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-35527483

RESUMEN

OBJECTIVE: To conduct a pan-cancer analysis of the expression of long non-coding RNA (lncRNA) MIR22HG and explore its association with clinical characteristics. METHODS: We analyzed the expression of MIR22HG in different tumors and its association with clinical staging, lymph node metastasis, tumor mutation burden (TMB) and microsatellite instability (MSI) using R package based on the Cancer Genome Atlas (TCGA) datasets. The relationship between MIR22HG expression and infiltrating immune cells was analyzed using TIMER algorithm. The association of MIR22HG gene alteration frequency with the clinical outcomes was examined using cBioPortal online software. Data form Genomics of Drug Sensitivity in Cancer (GDSC) were used to analyze the relationship between MIR22HG and the sensitivity of chemotherapy drugs. We specifically analyzed MIR22HG expression in hepatocellular carcinoma (HCC) and its correlation with sorafenib treatment using GEO database and verified the results in 12 pairs of HCC specimens. Kaplan-Meier analysis was performed to analyze the correlation of MIR22HG with the outcomes of sorafenib treatment. We also tested the effects of MIR22HG overexpression and knockdown on IC50 of sorafenib in HCC cells. RESULTS: MIR22HG was downregulated in most tumors (P < 0.05), where its deletion mutations were frequent, and associated with a poor prognosis (P < 0.05). In many tumors, MIR22HG expression level was correlated with clinical stage, lymph node metastasis, TMB, MSI, immune cell infiltration, immune checkpoint-related genes, and sensitivity to common chemotherapeutic drugs (P < 0.05). Among the 6 common infiltrating immune cells in cancers, neutrophil infiltration had the strongest correlation with MIR22HG expression level, especially in breast cancer, rectal cancer and kidney renal papillary cell carcinoma (P < 0.05). MIR22HG was downregulated in HCC in association with HCC progression (P < 0.05). In HCC patients, a low MIR22HG expression was associated with a favorable outcome after sorafenib treatment (HR=2.94, P=0.075) and was capable of predicting the response to sorafenib treatment (AUC=0.8095). Compared with the negative control, MIR22HG overexpression obviously reduced sorafenib sensitivity (with IC50 of 7.731 vs 15.61) while MIR22HG knockdown increased sorafenib sensitivity of HCC cells (with IC50 of 7.986 vs 5.085). CONCLUSION: MIR22HG expression level is correlated with clinical stage, lymph node metastasis, TMB, MSI, immune cell infiltration, and chemosensitivity in most cancer, suggesting its potential as an immunotherapeutic target and also a prognostic biomarker for tumors.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Metástasis Linfática , Inestabilidad de Microsatélites , ARN Largo no Codificante/genética , Sorafenib/farmacología
7.
Mol Cancer ; 21(1): 120, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624466

RESUMEN

BACKGROUND: AP4 (TFAP4) encodes a basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factor and is a direct target gene of the oncogenic transcription factor c-MYC. Here, we set out to determine the relevance of AP4 in human colorectal cancer (CRC) cells. METHODS: A CRISPR/Cas9 approach was employed to generate AP4-deficient CRC cell lines with inducible expression of c-MYC. Colony formation, ß-gal staining, immunofluorescence, comet and homologous recombination (HR) assays and RNA-Seq analysis were used to determine the effects of AP4 inactivation. qPCR and qChIP analyses was performed to validate differentially expressed AP4 targets. Expression data from CRC cohorts was subjected to bioinformatics analyses. Immunohistochemistry was used to evaluate AP4 targets in vivo. Ap4-deficient APCmin/+ mice were analyzed to determine conservation. Immunofluorescence, chromosome and micronuclei enumeration, MTT and colony formation assays were used to determine the effects of AP4 inactivation and target gene regulation on chromosomal instability (CIN) and drug sensitivity. RESULTS: Inactivation of AP4 in CRC cell lines resulted in increased spontaneous and c-MYC-induced DNA damage, chromosomal instability (CIN) and cellular senescence. AP4-deficient cells displayed increased expression of the long non-coding RNA MIR22HG, which encodes miR-22-3p and was directly repressed by AP4. Furthermore, Mediator of DNA damage Checkpoint 1 (MDC1), a central component of the DNA damage response and a known target of miR-22-3p, displayed decreased expression in AP4-deficient cells. Accordingly, MDC1 was directly induced by AP4 and indirectly by AP4-mediated repression of miR-22-3p. Adenomas and organoids from Ap4-deficient APCmin/+ mice displayed conservation of these regulations. Inhibition of miR-22-3p or ectopic MDC1 expression reversed the increased senescence, DNA damage, CIN and defective HR observed in AP4-deficient CRC cells. AP4-deficiency also sensitized CRC cells to 5-FU treatment, whereas ectopic AP4 conferred resistance to 5-FU in a miR-22-3p and MDC1-dependent manner. CONCLUSIONS: In summary, AP4, miR-22-3p and MDC1 form a conserved and coherent, regulatory feed-forward loop to promote DNA repair, which suppresses DNA damage, senescence and CIN, and contributes to 5-FU resistance. These findings explain how elevated AP4 expression contributes to development and chemo-resistance of colorectal cancer after c-MYC activation.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/genética , Inestabilidad Cromosómica , Neoplasias Colorrectales/genética , Daño del ADN , Fluorouracilo/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/genética
8.
Bioengineered ; 13(5): 13108-13117, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35611601

RESUMEN

The present study was designed to discuss long non-coding RNA (lncRNA) MIR22HG expression in prostate cancer and to address its effect on prostate cancer cells. MIR22HG and microRNA (miR)-9-3p expressions in prostate cancer cells were examined with the use of quantitative real-time PCR (qRT-PCR). Cell counting kit (CCK)-8, colony formation, and TUNEL were conducted to determine cell viability and apoptosis. Immunofluorescence was employed for the detection of Ki67 expression, and western blotting was applied for the examination of apoptosis-related proteins. The relationship of MIR22HG and miR-9-3p was verified employing luciferase reporter assay. Indeed, low MIR22HG expression was discovered in prostate cancer cells. Subsequently, in vitro loss-of-function studies revealed that MIR22HG overexpression suppressed cell proliferation but promoted cell apoptosis, accompanied with a reduction in Ki67 and Bcl-2 expressions, as well as an elevation in Bax and cleaved caspase 3 expressions. In addition, MIR22HG was identified as a sponge of miR-9-3p and the impacts of MIR22HG overexpression on cell proliferation and apoptosis were partly hindered by miR-9-3p overexpression. In summary, MIR22HG acts as an anticancer gene in prostate cancer via inhibiting cell proliferation and promoting apoptosis by sponging miR-9-3p. This article may provide a novel insight into the treatment of prostate cancer.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , ARN Largo no Codificante , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Antígeno Ki-67 , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
Bioengineered ; 12(1): 3148-3158, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34187303

RESUMEN

Dysregulation of long non-coding RNAs (lncRNAs) plays a fundamental role in the development and progression of osteoarthritis (OA), but the potential functions of lncRNAs in OA were not fully clarified. In the present work, we want to clarify the underlying functions and mechanisms of MIR22HG in OA. qRT-PCR was employed to detect the mRNA expression of MIR22HG, miR-9-3p, and ADAMTS5, while the protein expressions were measured using Western blot. The cell proliferation was examined through CCK8, while apoptosis was used in flow cytometry. Luciferase reporter assay and RNA immunoprecipitation (RIP) assays were undertaken to investigate the binding relationship among MIR22HG, ADAMTS5, and miR-9-3p. MIR22HG was significantly overexpressed in OA cartilages, OA chondrocytes and IL-1ß-induced chondrocytes. Functionally, MIR22HG knockdown promoted cell proliferation, suppressed apoptosis, and contributed to downregulation of MMP13 and ADAMTS5 and upregulation of COL2A1 and ACAN in IL-1ß-stimulated chondrocytes. Mechanistically, bioinformatic analysis indicated that MIR22HG may serve as a sponge for miR-9-3p and ADAMTS5 may be a potential targeted gene for miR-9-3p, which were subsequently verified through a dual-luciferase reporter assay. Moreover, rescue experiments showed that MIR22HG participated in the regulation of chondrocytes proliferation, apoptosis, and degradation of extracellular matrix via miR-9-3p/ADAMTS5 pathway. In conclusion, our findings illuminated that inhibition of MIR22HG ameliorated IL-1ß-induced apoptosis and ECM degradation of human chondrocytes through miR-9-3p/ADAMTS5 pathway, which may provide a potentially promising target for OA treatment.


Asunto(s)
Proteína ADAMTS5/genética , MicroARNs/genética , Osteoartritis/metabolismo , Proteína ADAMTS5/metabolismo , Apoptosis/genética , Cartílago/citología , Cartílago/patología , Proliferación Celular/genética , Células Cultivadas , Condrocitos/metabolismo , Humanos , MicroARNs/metabolismo , Osteoartritis/genética , Osteoartritis/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transducción de Señal/genética
10.
Front Oncol ; 11: 572585, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718133

RESUMEN

BACKGROUND: With the development of radiotherapy technology, radiotherapy has been increasingly used to treat primary hepatocellular carcinoma (HCC). However, due to radioresistance and the intolerance of the adjacent organs to radiation, the effects of radiotherapy are often unsatisfactory. Therefore, it is necessary to study radiosensitization in HCC. METHOD: A microarray was used to analyze the genes that were significantly associated with radiosensitivity. HCC cells, HepG2 and MHCC97H, were subjected to radiation in vitro. Real-time PCR was performed to determine MIR22HG (microRNA22 host gene) and miR-22-5p expression levels. Western blotting was performed to determine histone expression levels. A histone deacetylase (HDAC) whole cell assay was used to determine the activity of HDAC2. MTT, colony formation, 5-ethynyl-2'-deoxyuridine, and wound healing assays were performed to examine the function of MIR22HG and miR-22-5p in cellular radiosensitivity. Chromatin immunoprecipitation-PCR was used to confirm that HDAC2 affects the acetylation level of the MIR22HG promoter region. Finally, animal experiments were performed to demonstrate the in vivo effect of MIR22HG on the radiosensitivity of hepatoma. RESULTS: Irradiation can up-regulate MIR22HG expression and down-regulate HDAC2 expression. Inhibition of HDAC2 expression promotes histone acetylation in the MIR22HG promoter region and up-regulates MIR22HG expression. MIR22HG can increase radiosensitivity via miR-22-5p in HCC. CONCLUSION: Inhibition of HDAC2 expression promotes histone acetylation in the MIR22HG promoter region, thereby up-regulating the expression of MIR22HG and promoting the production of miR-22-5p, and ultimately increasing the sensitivity of liver cancer radiotherapy.

11.
Oncol Lett ; 21(2): 157, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33552275

RESUMEN

Glioma is one of the most common and aggressive malignant intracranial tumors worldwide. Recently, non-coding RNAs have been found to play critical roles in the development of glioma. However, the exact mechanisms have not been fully elucidated. In the present study, reverse transcription-quantitative PCR was used to determine the expression level of the long non-coding RNA MIR22HG and microRNA (miR)-9, while western blot analysis was used to detect the protein expression level of CPEB3. The potential binding sites were predicted using the StarBase v2.0 online tool and the hypothesis was verified using a luciferase reporter assay. A Cell Counting Kit-8 assay was used to assess cell viability, while wound healing and Matrigel assays were used to determine the migration and invasion ability of glioma cancer cells. The results showed that MIR22HG expression level was decreased but miR-9 expression level was elevated in glioma tissues and cell lines. Furthermore, MIR22HG was found to sponge miR-9, while CPEB3 was the direct target of miR-9 in the glioma cell line. Functionally, MIR22HG regulated the proliferation, invasion and migration of the glioma cell line by targeting miR-9. CPEB3 may be involved in the progression of the glioma cell line. Taken together, these findings confirmed that MIR22HG suppressed glioma development by inhibiting the miR-9/CPEB3 axis and provides a novel therapeutic strategy for glioma treatment.

12.
J Obstet Gynaecol Res ; 47(5): 1837-1845, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33624428

RESUMEN

AIM: Endometrial cell proliferation plays a critical role in adenomyosis. It has been reported that MIR22HG and miR-2861 play similar roles in regulating endometrial cell proliferation, indicating their involvement in adenomyosis. This study aimed to investigate the potential involvement of MIR22HG and miR-2861 in adenomyosis. METHODS: Endometrial biopsy was collected from both adenomyosis (n = 45) and the healthy controls (n = 45). The expression of MIR22HG and miR-2861 in biopsies were determined by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The relationship between MIR22HG and miR-2861 in endometrial cells was analyzed by RT-qPCR. Methylation-specific PCR (MSP) was performed to analyze the effects of overexpression of MIR22HG on the expression of miR-2861. Western-blot assays were performed to illustrate the effect of MIR22HG, miR-2861, STAT3, and MMP2 on adenomyosis. Luciferase report assay was performed to analyze the interactions among miR-2861, STAT3, and MMP2. The role of MIR22HG and miR-2861 in regulating the proliferation of endometrial cells was analyzed by cell proliferation assay. RESULTS: The expression of MIR22HG and miR-2861 in adenomyosis did not change with menstrual cycle. MIR22HG and miR-2861 were significantly downregulated in adenomyosis and they were significantly and positively correlated with each other. In endometrial cells, overexpression of MIR22HG upregulated the expression of miR-2861 and decreased methylation of miR-2861 gene. MIR22HG and miR-2861 downregulated STAT3 and MMP2 to inhibit the proliferation of endometrial cells. In addition, overexpression of both MIR22HG and miR-2861 showed stronger effects. CONCLUSION: MIR22HG is downregulated in adenomyosis and upregulates miR-2861 through demethylation to inhibit endometrial cell proliferation.


Asunto(s)
Adenomiosis , MicroARNs , ARN Largo no Codificante , Adenomiosis/genética , Proliferación Celular , Desmetilación , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética
13.
Cell Transplant ; 30: 963689721990323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33631962

RESUMEN

Myocardial infarction (MI) is a severe life-threatening disease caused by acute and persistent ischemia and hypoxia and eventually leads to heart failure and sudden death. Long noncoding RNAs (lncRNAs) play significant roles in the pathology, diagnosis, and development of various cardiovascular diseases, including MI. This study aimed to explore the effect and molecular mechanism of lncRNA miR-22 host gene (MIR22HG) on hypoxia-induced injury in AC16 cardiomyocytes. The expression of MIR22HG and miR-24 in hypoxia-treated AC16 cardiomyocytes was detected by quantitative real-time polymerase chain reaction. Cell viability, lactate dehydrogenase release, levels of aspartate aminotransferase (AST) and creatine kinase-MB (CK-MB), and apoptosis were detected by Cell Counting Kit-8, lactate dehydrogenase (LDH) release assay, commercial enzyme-linked immune sorbent assay kits, and flow cytometry analysis, respectively. The protein levels of nuclear factor-kappa B (NF-κB) p65 and cytoplasmic inhibitor of kappa B alpha (IκBα) and phosphorylated IκBα were detected by western blot. Results showed that hypoxia treatment decreased viability and increased MIR22HG expression in AC16 cardiomyocytes. MIR22HG overexpression aggravated hypoxia-induced viability reduction, leakage of myocardial injury markers LDH, AST, and CK-MB, and apoptosis in AC16 cardiomyocytes, while MIR22HG knockdown elicited the reverse effects. MIR22HG overexpression enhanced NF-κB activation in hypoxia-treated AC16 cardiomyocytes. Inhibition of NF-κB pathway impaired the effects of MIR22HG overexpression on hypoxia-induced injury in AC16 cardiomyocytes. Moreover, MIR22HG knockdown inhibited the NF-κB pathway by upregulating miR-24 in AC16 cardiomyocytes. Inhibition of miR-24 resisted the effects of MIR22HG silencing on hypoxia-induced injury in AC16 cardiomyocytes. In conclusion, MIR22HG overexpression aggravated hypoxia-induced injury in AC16 cardiomyocytes via enhancing NF-κB activation by targeting miR-24.


Asunto(s)
Hipoxia de la Célula/fisiología , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Humanos , Miocitos Cardíacos/patología
14.
Cancer Biother Radiopharm ; 36(9): 783-792, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33493419

RESUMEN

Background: Recent investigations have suggested that long noncoding RNA (lncRNA) MIR22HG is commonly dysregulated in multiple types of malignancies. Nevertheless, the role of these MIR22HG in human colorectal carcinoma (CRC) are not well explored. Materials and Methods: Quantitative real-time polymerase chain reaction (qPCR) and in situ hybridization (ISH) assay were used to measure the expression of MIR22HG. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, and migration, as well as invasion assays, were utilized to determine the roles of MIR22HG on growth, apoptosis, migration, and invasiveness of CRC cell. The expression of E-cadherin and N-cadherin was measured using Western blotting and immunohistochemistry staining assay. CRC cell growth in vivo was analyzed using nude mice xenograft. Results: The qPCR and ISH assay revealed that MIR22HG was downregulated in CRC sample compared with in normal tissue. MIR22HG was also significantly downexpressed in CRC cells compared with that in normal colonic epithelial cell line. Overexpression of MIR22HG inhibited the growth, migration ability, and invasiveness of CRC cell in vitro. In addition, MIR22HG suppressed the epithelial-mesenchymal transition (EMT) and induced the apoptosis of human CRC cell. Moreover, the authors demonstrated that MIR22HG inhibited the tumor growth of CRC cell and regulated the expression of EMT markers (E-cadherin and N-cadherin) in vivo. Conclusion: Altogether, these results imply that lncRNA MIR22HG restrained the aggressive phenotypes of CRC cell.


Asunto(s)
Neoplasias Colorrectales , Transición Epitelial-Mesenquimal/genética , Animales , Apoptosis/genética , Cadherinas/análisis , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Hibridación in Situ/métodos , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Invasividad Neoplásica/genética , Metástasis de la Neoplasia/genética , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
15.
J Exp Clin Cancer Res ; 39(1): 271, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33267888

RESUMEN

An increasing number of studies have shown that long noncoding RNAs (lncRNAs) play important roles in diverse cellular processes, including proliferation, apoptosis, migration, invasion, chromatin remodeling, metabolism and immune escape. Clinically, the expression of MIR22HG is increased in many human tumors (colorectal cancer, gastric cancer, hepatocellular carcinoma, lung cancer, and thyroid carcinoma), while in others (esophageal adenocarcinoma and glioblastoma), it is significantly decreased. Moreover, MIR22HG has been reported to function as a competitive endogenous RNA (ceRNA), be involved in signaling pathways, interact with proteins and interplay with miRNAs as a host gene to participate in tumorigenesis and tumor progression. In this review, we describe the biological functions of MIR22HG, reveal its underlying mechanisms for cancer regulation, and highlight the potential role of MIR22HG as a novel cancer prognostic biomarker and therapeutic target that can increase the efficacy of immunotherapy and targeted therapy for cancer treatment.


Asunto(s)
MicroARNs/genética , Neoplasias/genética , ARN Largo no Codificante/metabolismo , Apoptosis , Carcinogénesis , Proliferación Celular/fisiología , Humanos , MicroARNs/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , ARN Largo no Codificante/genética , Transducción de Señal
16.
Biosci Rep ; 40(6)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32500915

RESUMEN

The tumor suppressive role of MIR22HG has been studied in several types of cancer. We analyzed the TCGA dataset and found the down-regulation of MIR22HG in bladder cancer (BC). Bioinformatics analysis predicted the interaction between MIR22HG and miR-486. The direct interaction between MIR22HG and miR-486 was also confirmed by dual luciferase assay. However, overexpression of these two factors did not significantly affect the expression of each other. Interestingly, overexpression of MIR22HG led to up-regulated phosphatase and tensin homolog (PTEN), which is a target of miR-486. In cell proliferation assay, overexpression of MIR22HG and PTEN led to decreased rates of BC cell proliferation. Moreover, overexpression of miR-486 played an opposite role and attenuated the effects of overexpression of MIR22HG and PTEN. Therefore, MIR22HG regulates miR-486/PTEN axis to promote cell proliferation in BC.


Asunto(s)
Proliferación Celular , MicroARNs/metabolismo , Fosfohidrolasa PTEN/metabolismo , Neoplasias de la Vejiga Urinaria/enzimología , Línea Celular Tumoral , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Fosfohidrolasa PTEN/genética , Transducción de Señal , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología
17.
Mol Cancer ; 19(1): 51, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32127004

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as critical regulatory elements and play fundamental roles in the biology of various cancers. However, we are still lack of knowledge about their expression patterns and functions in human colorectal cancer (CRC). METHODS: Differentially expressed lncRNAs in CRC were identified by bioinformatics screen and the level of MIR22HG in CRC and control tissues were determined by qRT-PCR. Cell viability and migration capacities were examined by MTT and transwell assay. Mouse model was used to examine the function and rational immunotherapy of MIR22HG in vivo. RESULTS: We systematically investigated the expression pattern of lncRNAs and revealed MIR22HG acts as a tumor suppressor in CRC. The expression of MIR22HG was significantly decreased in CRC, which was mainly driven by copy number deletion. Reduced expression of MIR22HG was significantly associated with poor overall survival. Silencing of MIR22HG promoted cell survival, proliferation and tumor metastasis in vitro and in vivo. Mechanistically, MIR22HG exerts its tumor suppressive activity by competitively interacting with SMAD2 and modulating the activity of TGFß pathway. Decreased MIR22HG promoted the epithelial-mesenchymal transition in CRC. Importantly, we found that MIR22HG expression is significantly correlated with CD8A and overexpression of MIR22HG triggers T cell infiltration, enhancing the clinical benefits of immunotherapy. CONCLUSION: MIR22HG acts as a tumor suppressor in CRC. Our data provide mechanistic insights into the regulation of MIR22HG in TGFß pathway and facilitates immunotherapy in cancer.


Asunto(s)
Neoplasias Colorrectales/patología , Inmunoterapia/métodos , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , MicroARNs/genética , Proteína Smad2/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos C57BL , Pronóstico , Proteína Smad2/genética , Tasa de Supervivencia , Factor de Crecimiento Transformador beta1/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Mol Cell Biol ; 40(10)2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32094308

RESUMEN

Recently, abundant evidence has clarified that long noncoding RNAs (lncRNAs) play an oncogenic or anticancer role in the tumorigenesis and development of diverse human cancers. Described as a crucial regulator in some cancers, MIR22HG has not yet been studied in laryngocarcinoma and therefore the underlying regulatory role of MIR22HG in laryngocarcinoma is worth detecting. In this study, MIR22HG expression in laryngocarcinoma cells was confirmed to be downregulated, and upregulated MIR22HG expression led to suppressive effects on laryngocarcinoma cell proliferation and migration. Molecular mechanism assays revealed that MIR22HG sponges miR-5000-3p in laryngocarcinoma cells. Besides, decreased expression of miR-5000-3p suppressed laryngocarcinoma cell proliferation and migration. Moreover, the FBXW7 gene was reported to be a downstream target gene of miR-5000-3p in laryngocarcinoma cells. More importantly, rescue assays verified that FBXW7 depletion or miR-5000-3p upregulation countervailed the repressive effects of MIR22HG overexpression on laryngocarcinoma progression. In addition, E2F6 was proved to be capable of inhibiting MIR22HG transcription in laryngocarcinoma cells. To sum up, E2F6-induced downregulation of MIR22HG promotes laryngocarcinoma progression through the miR-5000-3p/FBXW7 axis.


Asunto(s)
Factor de Transcripción E2F6/genética , Proteína 7 que Contiene Repeticiones F-Box-WD/genética , Neoplasias Laríngeas/genética , MicroARNs/genética , Línea Celular Tumoral , Proliferación Celular , Progresión de la Enfermedad , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Laríngeas/patología , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología
19.
Onco Targets Ther ; 12: 9827-9848, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31819482

RESUMEN

INTRODUCTION: MIR22HG has a reported involvement in the tumorigenesis of a variety of cancers, including hepatocellular carcinoma (HCC). However, the exact molecular mechanism of MIR22HG in HCC has not been clarified. METHODS: In the present study, we integrated data from in-house RT-qPCR, RNA-sequencing, microarray, and literature studies to conduct a comprehensive evaluation of the clinico-pathological and prognostic significance of MIR22HG in an extremely large group of HCC samples. We also explored the potential mechanism of MIR22HG in HCC by analyzing the alteration profiles of MIR22HG in HCC to predict transcription factors (TFs) that may interact with MIR22HG and to annotate the biological functions of genes co-expressed with MIR22HG. MIR22HG expression was also compared in HCC nude mice xenografts before and after a treatment with nitidine chloride. RESULTS: We found that MIR22HG was downregulated in HCC and that this downregulation correlated with the malignant phenotype of HCC. Comprehensive analysis of the prognostic impact of MIR22HG in HCC revealed a beneficial effect of MIR22HG on the survival outcome of HCC patients. Seven cases of MIR22HG deep deletion occurred in 360 of the cancer genome atlas (TCGA) provisional HCC samples. A total of 22 MIR22HG-TF-mRNA triplets in HCC were predicted by the lncRNAmap. Co-expressed genes of MIR22HG, identified by weighted correlation network analysis (WGCNA), mainly participated in the pathways involving osteoclast differentiation, chemokine signaling pathways, and hematopoietic cell lineage. In vivo experiments demonstrated that nitidine chloride could stimulate MIR22HG expression in HCC xenografts. CONCLUSION: In summary, MIR22HG may play a tumor-suppressive role in HCC by coordinating with predicted TFs and co-expressed genes, such as NLRP3, CSF1R, SIGLEC10, and ZEB2, or by being controlled by nitidine chloride.

20.
Aging (Albany NY) ; 11(13): 4587-4596, 2019 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291201

RESUMEN

Long non-coding RNAs (lncRNAs) have involved in human malignancies and played an important role in gene regulations. The dysregulation of lncRNA MIR22HG has been reported in several cancers. However, the role of MIR22HG in esophageal adenocarcinoma (EAC) is poorly understood. Loss of function approaches were used to investigate the biological role of MIR22HG in EAC cells. The effects of MIR22HG on cell proliferation were evaluated by WST-1 and colony formation assays. The effects of MIR22HG on cell migration and invasion were examined using transwell assays. QRT-PCR and Western blot were used to evaluate the mRNA and protein expression of related genes. In this study, abrogation of MIR22HG inhibited cell proliferation, colony formation, invasion and migration in EAC 3 cell lines (OE33, OE19 and FLO-1). Mechanistically, MIR22HG silencing decreased the expression of STAT3/c-Myc/p-FAK proteins and induced apoptosis in EAC cell lines. These results delineate a novel mechanism of MIR22HG in EAC, and may provide potential targets by developing lncRNA-based therapies for EAC.


Asunto(s)
Adenocarcinoma/genética , Proteínas de Unión al ADN/metabolismo , Neoplasias Esofágicas/genética , Quinasa 1 de Adhesión Focal/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Factor de Transcripción STAT3/metabolismo , Factores de Transcripción/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Humanos , ARN Largo no Codificante/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA