Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Oncoimmunology ; 13(1): 2394247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39206097

RESUMEN

Disrupting mitochondrial function in malignant cells is a promising strategy to enhance anticancer immunity. We have recently demonstrated that depriving colorectal cancer cells of serine results in mitochondrial dysfunction coupled with the cytosolic accumulation of mitochondrial DNA and consequent activation of CGAS- and STING-dependent tumor-targeting immune responses.


Asunto(s)
ADN Mitocondrial , Mitocondrias , Animales , Humanos , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo
2.
Vaccines (Basel) ; 12(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39066427

RESUMEN

Chlamydia trachomatis (Ct) is the most common cause of bacterial sexually transmitted infections (STIs) worldwide. Ct infections are often asymptomatic in women, leading to severe reproductive tract sequelae. Development of a vaccine against Chlamydia is crucial. The Chlamydia major outer membrane protein (MOMP) is a prime vaccine antigen candidate, and it can elicit both neutralizing antibodies and protective CD4+ T cell responses. We have previously designed chimeric antigens composed of immunogenic variable regions (VDs) and conserved regions (CDs) of MOMP from Chlamydia muridarum (Cm) expressed into a carrier protein (PorB), and we have shown that these were protective in a mouse model of Cm respiratory infection. Here, we generated corresponding constructs based on MOMP from Ct serovar F. Preliminary structure analysis of the three antigens, PorB/VD1-3, PorB/VD1-4 and PorB/VD1-2-4, showed that they retained structure features consistent with those of PorB. The antigens induced robust humoral and cellular responses in mice with different genetic backgrounds. The antibodies were cross-reactive against Ct, but only anti-PorB/VD1-4 and anti-PorB/VD1-2-4 IgG antibodies were neutralizing, likely due to the antigen specificity. The cellular responses included proliferation in vitro and production of IFN-γ by splenocytes following Ct re-stimulation. Our results support further investigation of the PorB/VD antigens as potential protective candidates for a Chlamydia subunit vaccine.

3.
Microorganisms ; 12(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38930578

RESUMEN

Chlamydia (C.) trachomatis, a leading cause of sexually transmitted infections (STIs) worldwide, continues to be a significant public health concern. The majority of infections are asymptomatic and, when left untreated, severe sequelae such as infertility and chronic pelvic pain can occur. Despite decades of research, an effective vaccine remains elusive. This review focuses on the potential of Major Outer Membrane Protein (MOMP)-derived constructs as promising candidates for C. trachomatis vaccination. MOMP, the most abundant protein in the outer membrane of C. trachomatis, has been a focal point of vaccine research over the years due to its antigenic properties. To overcome issues associated with the use of full MOMP as a vaccine antigen, derivative constructs have been studied. As these constructs are often not sufficiently immunogenic, antigen delivery systems or accompanying adjuvants are required. Additionally, several immunization routes have been explored with these MOMP-derived vaccine antigens, and determining the optimal route remains an ongoing area of research. Future directions and challenges in the field of C. trachomatis vaccination are discussed.

4.
Adv Immunol ; 162: 59-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38866439

RESUMEN

Apoptotic pore formation in mitochondria is the pivotal point for cell death during mitochondrial apoptosis. It is regulated by BCL-2 family proteins in response to various cellular stress triggers and mediates mitochondrial outer membrane permeabilization (MOMP). This allows the release of mitochondrial contents into the cytosol, which triggers rapid cell death and clearance through the activation of caspases. However, under conditions of low caspase activity, the mitochondrial contents released into the cytosol through apoptotic pores serve as inflammatory signals and activate various inflammatory responses. In this chapter, we discuss how the formation of the apoptotic pore is regulated by BCL-2 proteins as well as other cellular or mitochondrial proteins and membrane lipids. Moreover, we highlight the importance of sublethal MOMP in the regulation of mitochondrial-activated inflammation and discuss its physiological consequences in the context of pathogen infection and disease and how it can potentially be exploited therapeutically, for example to improve cancer treatment.


Asunto(s)
Apoptosis , Mitocondrias , Membranas Mitocondriales , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Animales , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Inflamación/inmunología , Caspasas/metabolismo , Transducción de Señal , Neoplasias/inmunología , Neoplasias/metabolismo
5.
Int Rev Cell Mol Biol ; 386: 223-247, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38782500

RESUMEN

Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.


Asunto(s)
Inmunidad Innata , Inflamación , Mitocondrias , Neoplasias , Transducción de Señal , Humanos , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/metabolismo , Animales , Mitocondrias/metabolismo , Inflamación/patología , Inflamación/metabolismo , Inflamación/inmunología , Resistencia a Antineoplásicos , Evasión Inmune , Microambiente Tumoral/inmunología
6.
J Infect Dis ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723186

RESUMEN

Targeted therapy is an attractive approach for treating infectious diseases. Affibody molecules have similar capability to antibodies that facilitate molecular recognition in both diagnostic and therapeutic applications. Targeting major outer membrane protein (MOMP) for treating infection of Chlamydia trachomatis, one of the most common sexually transmitted pathogens, is a promising therapeutic approach. Previously, we have reported a MOMP-specific affibody (ZMOMP:461) from phage display library. Here, we first fused it with modified Pseudomonas Exotoxin (PE38KDEL) and a cell-penetrating peptide (CPP) to develop an affitoxin, Z461X-CPP. We then verified the addition of both toxin and CPPs that did not affect the affinitive capability of ZMOMP:461 to MOMP. Upon uptake by C.trachomatis-infected cells, Z461X-CPP induced cell apoptosis in vitro. In animal model, Z461X significantly shortened the duration of C. trachomatis infection and prevented pathological damage in mouse reproductive system. These findings provide compelling evidence that the MOMP-specific affitoxin has great potential for targeting therapy of C. trachomatis infection.

7.
Front Microbiol ; 15: 1349746, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389524

RESUMEN

Bacterial ghosts (BGs) are promising vaccine platforms owing to their high adjuvant properties and delivery efficiency. Heterologous antigens can be anchored to different parts of BGs using genetic engineering strategies to prepare vaccines. However, several key issues need to be resolved, including the efficient preparation of BGs and determining the optimal anchoring position of exogenous antigens in the BGs. Here, we prepared an efficient temperature-controlled lysis system using lysis gene E of phage PhiX174 and used the major outer membrane protein (MOMP) of Chlamydia abortus (C. abortus) as a model antigen to explore the optimal display location of exogenous antigens in BGs. We demonstrated that the constructed recombinant temperature-controlled lysis plasmid can still stably inhibit E gene expression at 37°C, and the lysis efficiency of E. coli can reach above 99.9%. Four recombinant MOMP Escherichia coli (E. coli) ghost vaccines were constructed using different anchor sequences. These vaccines all induced strong specific antibody responses and secrete high levels of IFN-γ in immunized mice and significantly increased the clearance of C. abortus in a mouse infection model. Notably, the strongest immune effect was observed when MOMP was displayed on the surface of E. coli ghosts (rECG-InpN-M), which resulted in the clearance of C. abortus in mice 6 days earlier than that with the recombinant MOMP vaccine. Altogether, we constructed an efficient BG temperature-controlled lysis system and provided a feasible strategy for developing a BG delivery platform with enhanced immune effects.

8.
Trends Pharmacol Sci ; 45(4): 287-289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38245492

RESUMEN

B cell leukemia/lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics were reported to selectively kill senescent cells and improve age-related diseases. Defining why these cells show increased sensitivity to these molecules will help to identify new pharmacological compounds with senolytic activity. Here, we discuss how recent research findings provide new clues to understand this vulnerability.


Asunto(s)
Senescencia Celular , Humanos
9.
Trends Cell Biol ; 34(3): 225-238, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37573235

RESUMEN

Cytotoxic chemo-, radio-, and targeted therapies frequently elicit apoptotic cancer cell death. Mitochondrial outer membrane permeabilization (MOMP) is a critical, regulated step in this apoptotic pathway. The residual cancer cells that survive treatment serve as the seeds of eventual relapse and are often functionally characterized by their transient tolerance of multiple therapeutic treatments. New studies suggest that, in these cells, a sublethal degree of MOMP, reflective of incomplete apoptotic commitment, is widely observed. Here, we review recent evidence that this sublethal MOMP drives the aggressive features of residual cancer cells while templating a host of unique vulnerabilities, highlighting how failed apoptosis may counterintuitively enable new therapeutic strategies to target residual disease (RD).


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Humanos , Membranas Mitocondriales/metabolismo , Mitocondrias/metabolismo , Neoplasia Residual/metabolismo , Apoptosis/fisiología
10.
Semin Cell Dev Biol ; 156: 58-65, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-37438211

RESUMEN

Membrane structural integrity is essential for optimal mitochondrial function. These organelles produce the energy needed for all vital processes, provided their outer and inner membranes are intact. This prevents the release of mitochondrial apoptogenic factors into the cytosol and ensures intact mitochondrial membrane potential (ΔΨm) to sustain ATP production. Cell death by apoptosis is generally triggered by outer mitochondrial membrane permeabilization (MOMP), tightly coupled with loss of ΔΨ m. As these two processes are essential for both mitochondrial function and cell death, researchers have devised various techniques to assess them. Here, we discuss current methods and biosensors available for detecting MOMP and measuring ΔΨ m, focusing on their advantages and limitations and discuss what new imaging tools are needed to improve our knowledge of mitochondrial function.


Asunto(s)
Técnicas Biosensibles , Membranas Mitocondriales , Membranas Mitocondriales/metabolismo , Potenciales de la Membrana , Mitocondrias/metabolismo , Apoptosis/fisiología
11.
J Cell Sci ; 136(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37994778

RESUMEN

The proteins of the BCL-2 family are known as key regulators of apoptosis, with interactions between family members determining permeabilisation of the mitochondrial outer membrane (MOM) and subsequent cell death. However, the exact mechanism through which they form the apoptotic pore responsible for MOM permeabilisation (MOMP), the structure and specific components of this pore, and what roles BCL-2 proteins play outside of directly regulating MOMP are incompletely understood. Owing to the link between apoptosis dysregulation and disease, the BCL-2 proteins are important targets for drug development. With the development and clinical use of drugs targeting BCL-2 proteins showing success in multiple haematological malignancies, enhancing the efficacy of these drugs, or indeed developing novel drugs targeting BCL-2 proteins is of great interest to treat cancer patients who have developed resistance or who suffer other disease types. Here, we review our current understanding of the molecular mechanism of MOMP, with a particular focus on recently discovered roles of BCL-2 proteins in apoptosis and beyond, and discuss what implications these functions might have in both healthy tissues and disease.


Asunto(s)
Membranas Mitocondriales , Proteínas Proto-Oncogénicas c-bcl-2 , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína X Asociada a bcl-2/química , Membranas Mitocondriales/metabolismo , Apoptosis/fisiología
12.
bioRxiv ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37905126

RESUMEN

Diverse developmental signals and pro-death stresses converge on regulation of the mitochondrial pathway of apoptosis. BAX, a pro-apoptotic BCL-2 effector, directly forms proteolipid pores in the outer mitochondrial member to activate the mitochondrial pathway of apoptosis. BAX is a viable pharmacological target for various human diseases, and increasing efforts have been made to study the molecular regulation of BAX and identify small molecules selectively targeting BAX. However, generating large quantities of monomeric and functionally-competent BAX has been challenging due to its aggregation-prone nature. Additionally, there is a lack of detailed and instructional protocols available for investigators who are not already familiar with recombinant BAX production. Here, we present a comprehensive high-yield protocol for expressing, purifying, and storing functional recombinant BAX protein. We utilize an intein-tagged BAX construct and employ a two-step chromatography strategy to capture and purify BAX, and provide example standard assays to observe BAX activation. We also highlight best practices for handling and storing BAX to effectively preserve its quality, shelf-life, and function.

13.
Mol Immunol ; 163: 163-173, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37801817

RESUMEN

Chlamydia trachomatis is the leading cause of sexually transmitted diseases causing frequent, long-lasting, and often asymptomatic recurrent infections resulting in severe reproductive complications. C. trachomatis is an intracellular Gram-negative bacterium with a biphasic developmental cycle in which extracellular, infectious elementary bodies (EB) alternate with the intracellular replicating reticulate bodies (RB). The outer membrane of EB consists of a tight disulfide cross-linking protein network. The most essential protein is the 42 kDa major outer membrane protein (MOMP) that contributes to the rigid structural integrity of the outer membrane. MOMP is a transmembrane protein with a ß-barrel structure consisting of four variable domains (VD) separated by five constant domains. VDIV possesses surface-exposed species-specific epitopes recognized by the immune system and, therefore, functions as a candidate for vaccine development. To analyze the protective contribution of antibodies for a MOMP vaccine, we investigated the specificity and binding characteristics of two monoclonal antibodies (MAb)224.2 and MAb244.4 directed against C. trachomatis serovar D MOMP. By immunoelectron microscopy, we found that both MAb bind to the surface of C. trachomatis EB. By epitope mapping, we characterized the MOMP epitope as linear consisting of 6 amino acids: 322TIAGAGD328. By ELISA it was shown that both antibodies bind with a higher avidity to the chlamydial surface compared to binding to monomeric MOMP, indicating that the antibodies bind divalently to the surface of C. trachomatis EB. Despite strong binding to the chlamydial surface, the antibodies only partially reduced the infectivity. This may be explained by the observation that even though both MAb covered the EB surface, antibodies could not be regularly detected on EB after the uptake into the host cell.


Asunto(s)
Infecciones por Chlamydia , Chlamydia trachomatis , Humanos , Anticuerpos Monoclonales , Proteínas de la Membrana Bacteriana Externa , Epítopos , Mapeo Epitopo , Anticuerpos Antibacterianos
14.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37685835

RESUMEN

Osteoarthritis (OA) is one of the most common chronic diseases in human and animal joints. The joints undergo several morphological and histological changes during the development of radiographically visible osteoarthritis. The most discussed changes include synovial inflammation, the massive destruction of articular cartilage and ongoing joint destruction accompanied by massive joint pain in the later stadium. Either the increased apoptosis of chondrocytes or the insufficient apoptosis of inflammatory macrophages and synovial fibroblasts are likely to underly this process. In this review, we discuss the current state of research on the pathogenesis of OA with special regard to the involvement of apoptosis.


Asunto(s)
Osteoartritis , Animales , Humanos , Inflamación , Apoptosis , Artralgia , Lípidos
15.
Artículo en Inglés | MEDLINE | ID: mdl-37521407

RESUMEN

The induction of apoptosis, a programmed cell death pathway governed by activation of caspases, can result in fundamental changes in metabolism that either facilitate or restrict the execution of cell death. In addition, metabolic adaptations can significantly impact whether cells in fact initiate the apoptotic cascade. In this mini-review, we will highlight and discuss the interconnectedness of apoptotic regulation and metabolic alterations, two biological outcomes whose regulators are intertwined.

16.
Front Microbiol ; 14: 1146418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970690

RESUMEN

Campylobacter jejuni colonizes hosts by interacting with Blood Group Antigens (BgAgs) on the surface of gastrointestinal epithelia. Genetic variations in BgAg expression affects host susceptibility to C. jejuni. Here, we show that the essential major outer membrane protein (MOMP) of C. jejuni NCTC11168 binds to the Lewis b (Leb) antigen on the gastrointestinal epithelia of host tissues and this interaction can be competitively inhibited by ferric quinate (QPLEX), a ferric chelate structurally similar to bacterial siderophores. We provide evidence that QPLEX competitively inhibits the MOMP-Leb interaction. Furthermore, we demonstrate that QPLEX can be used as a feed additive in broiler farming to significantly reduce C. jejuni colonization. Our results indicate that QPLEX can be a viable alternative to the preventative use of antibiotics in broiler farming to combat C. jejuni infections.

17.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36982637

RESUMEN

Cancer has been progressively a major global health concern. With this developing global concern, cancer determent is one of the most significant public health challenges of this era. To date, the scientific community undoubtedly highlights mitochondrial dysfunction as a hallmark of cancer cells. Permeabilization of the mitochondrial membranes has been implicated as the most considerable footprint in apoptosis-mediated cancer cell death. Under the condition of mitochondrial calcium overload, exclusively mediated by oxidative stress, an opening of a nonspecific channel with a well-defined diameter in mitochondrial membrane allows free exchange between the mitochondrial matrix and the extra mitochondrial cytosol of solutes and proteins up to 1.5 kDa. Such a channel/nonspecific pore is recognized as the mitochondrial permeability transition pore (mPTP). mPTP has been established for regulating apoptosis-mediated cancer cell death. It has been evident that mPTP is critically linked with the glycolytic enzyme hexokinase II to defend cellular death and reduce cytochrome c release. However, elevated mitochondrial Ca2+ loading, oxidative stress, and mitochondrial depolarization are critical factors leading to mPTP opening/activation. Although the exact mechanism underlying mPTP-mediated cell death remains elusive, mPTP-mediated apoptosis machinery has been considered as an important clamp and plays a critical role in the pathogenesis of several types of cancers. In this review, we focus on structure and regulation of the mPTP complex-mediated apoptosis mechanisms and follow with a comprehensive discussion addressing the development of novel mPTP-targeting drugs/molecules in cancer treatment.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial , Neoplasias , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Mitocondrias/metabolismo , Muerte Celular , Apoptosis , Calcio/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo
18.
Cancers (Basel) ; 15(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36765823

RESUMEN

Crystalline silica particles (CSi) are an established human carcinogen, but it is not clear how these particles cause necessary mutations. A well-established scenario includes inflammation caused by retained particles in the bronchioles, activated macrophages, and reactive oxygen species (ROS) that cause DNA damage. In previous studies, we showed that CSi in contact with the plasma membrane of human bronchial epithelium induced double strand breaks within minutes. A signaling pathway implicating the ATX-LPA axis, Rac1, NLRP3, and mitochondrial depolarization upstream of DSB formation was delineated. In this paper, we provide in vitro and in vivo evidence that this signaling pathway triggers endonuclease G (EndoG) translocation from the mitochondria to the nucleus. The DNA damage is documented as γH2AX and p53BP1 nuclear foci, strand breaks in the Comet assay, and as micronuclei. In addition, the DNA damage is induced by low doses of CSi that do not induce apoptosis. By inhibiting the ATX-LPA axis or by EndoG knockdown, we prevent EndoG translocation and DSB formation. Our data indicate that CSi in low doses induces DSBs by sub-apoptotic activation of EndoG, adding CSi to a list of carcinogens that may induce mutations via sub-apoptotic and "minority MOMP" effects. This is the first report linking the ATX-LPA axis to this type of carcinogenic effect.

19.
Int J Radiat Biol ; 99(6): 915-924, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34187285

RESUMEN

PURPOSE: To provide an updated summary of recent advances in our understanding of the non-canonical roles of apoptotic and DNA double-strand break repair factors in various biological processes, especially in the cellular response to radiotherapy. CONCLUSION: Apoptotic caspases are usually considered as "executioners'' of unwanted or damaged cells or tissues. However, recent studies indicated they play multiple additional, often counterintuitive roles in many biological processes. Similarly, DNA double-strand break (DSB) repair factors were also found to play unexpected roles beyond repairing damaged DNA. In this review, I will summarize key findings on the non-canonical roles of apoptotic and DSB repair factors in disparate biological and pathological processes such as radiation-induced genetic instability and carcinogenesis, wound healing and tissue regeneration, induced pluripotent stem cell induction, spontaneous and stochastic generation of cancer stem cells, and cancer immunotherapy. I believe these findings will usher in more studies in this exciting and rapidly evolving field.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Daño del ADN , ADN , Radiación Ionizante
20.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36361521

RESUMEN

Changes in mitochondrial membrane permeability are closely associated with mitochondria-mediated apoptosis. Antimicrobial peptides (AMPs), which have been found to enter cells to exert physiological effects, cause damage to the mitochondria. This paper reviews the molecular mechanisms of AMP-mediated apoptosis by changing the permeability of the mitochondrial membrane through three pathways: the outer mitochondrial membrane (OMM), inner mitochondrial membrane (IMM), and mitochondrial permeability transition pore (MPTP). The roles of AMPs in inducing changes in membrane permeability and apoptosis are also discussed. Combined with recent research results, the possible application prospects of AMPs are proposed to provide a theoretical reference for the development of AMPs as therapeutic agents for human diseases.


Asunto(s)
Péptidos Antimicrobianos , Membranas Mitocondriales , Humanos , Membranas Mitocondriales/metabolismo , Mitocondrias/fisiología , Apoptosis/fisiología , Permeabilidad , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA