Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.931
Filtrar
1.
J Ethnopharmacol ; 336: 118733, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39181281

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Smilax glabra rhizome has a long history been used for clinical purposes in traditional Chinese medicinal for treating various inflammatory conditions. Engeletin1 (ENG) is one of the most abundant bioactive compounds found in Smilax glabra rhizome, with anti-inflammatory, antioxidant, and ulcer-preventing activities. AIM OF THE STUDY: The purpose of this study was to investigate the ability of ENG to alleviate inflammatory symptoms and improve epithelial barrier integrity utilize a 2,4,6-trinitrobenzene sulfonic acid2 (TNBS)-induced murine model in Crohn's disease3 (CD)-like colitis, and to characterize the underlying anti-inflammatory mechanisms of action. MATERIALS AND METHODS: A colitis model was established in BALB/c mice and treated with ENG for 7 days. RAW264.7 macrophages were pre-treated with ENG and lipopolysaccharide4 (LPS) stimulation. The mice's weight and colon length were assessed. qPCR and Western blotting were used to analyze gene expression and TLR4-NFκB pathway. Flow cytometry was used to analyze the polarization states of the macrophages. RESULTS: Treatment with ENG was sufficient to significantly alleviate symptoms of inflammation and colonic epithelial barrier integrity in treated mice. Significant inhibition of TNF-α, IL-1ß, and IL-6 expression was observed following ENG treatment in vivo and in vitro. ENG was also determined to be capable of inhibiting the expression of iNOS and CD86, inhibited M1 macrophage polarization in vitro, as well as the TLR4-NFκB signaling pathway. Molecular docking showed a highly stable binding between ENG and TLR4. CONCLUSION: ENG has been proven to alleviate inflammation and ameliorate the damage of epithelial barrier in CD-like colitis. ENG also suppressed the M1 macrophages polarization and the inhibited inflammatory cytokines. TLR4-NFκB signaling pathway, especially TLR4, may be the target of ENG. These data offer a new insight into the therapeutic mechanisms of ENG.


Asunto(s)
Antiinflamatorios , Colitis , Enfermedad de Crohn , FN-kappa B , Transducción de Señal , Receptor Toll-Like 4 , Ácido Trinitrobencenosulfónico , Animales , Masculino , Ratones , Antiinflamatorios/farmacología , Colitis/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/metabolismo , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Enfermedad de Crohn/tratamiento farmacológico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Flavonoles , Glicósidos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos BALB C , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Smilax/química , Receptor Toll-Like 4/metabolismo
2.
Biomaterials ; 312: 122711, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39088911

RESUMEN

The unsuitable deformation stimulus, harsh urine environment, and lack of a regenerative microenvironment (RME) prevent scaffold-based urethral repair and ultimately lead to irreversible urethral scarring. The researchers clarify the optimal elastic modulus of the urethral scaffolds for urethral repair and design a multilayered PVA hydrogel scaffold for urethral scar-free healing. The inner layer of the scaffold has self-healing properties, which ensures that the wound effectively resists harsh urine erosion, even when subjected to sutures. In addition, the scaffold's outer layer has an extracellular matrix-like structure that synergizes with adipose-derived stem cells to create a favorable RME. In vivo experiments confirm successful urethral scar-free healing using the PVA multilayered hydrogel scaffold. Further mechanistic study shows that the PVA multilayer hydrogel effectively resists the urine-induced inflammatory response and accelerates the transition of urethral wound healing to the proliferative phase by regulating macrophage polarization, thus providing favorable conditions for urethral scar-free healing. This study provides mechanical criteria for the fabrication of urethral tissue-engineered scaffolds, as well as important insights into their design.


Asunto(s)
Módulo de Elasticidad , Hidrogeles , Andamios del Tejido , Uretra , Cicatrización de Heridas , Andamios del Tejido/química , Animales , Hidrogeles/química , Ingeniería de Tejidos/métodos , Ratones , Regeneración , Cicatriz/patología , Masculino , Microambiente Celular , Ratas Sprague-Dawley , Células Madre/citología
3.
Biomaterials ; 312: 122721, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39106817

RESUMEN

Silver nanoparticles (AgNPs) are a potential antiviral agent due to their ability to disrupt the viral particle or alter the virus metabolism inside the host cell. In vitro, AgNPs exhibit antiviral activity against the most common human respiratory viruses. However, their capacity to modulate immune responses during respiratory viral infections has yet to be explored. This study demonstrates that administering AgNPs directly into the lungs prior to infection can reduce viral loads and therefore virus-induced cytokines in mice infected with influenza virus or murine pneumonia virus. The prophylactic effect was diminished in mice with depleted lymphoid cells. We showed that AgNPs-treatment resulted in the recruitment and activation of lymphocytes in the lungs, particularly natural killer (NK) cells. Mechanistically, AgNPs enhanced the ability of alveolar macrophages to promote both NK cell migration and IFN-γ production. By contrast, following infection, in mice treated with AgNPs, NK cells exhibited decreased activation, indicating that these nanoparticles can regulate the potentially deleterious activation of these cells. Overall, the data suggest that AgNPs may possess prophylactic antiviral properties by recruiting and controlling the activation of lymphoid cells through interaction with alveolar macrophages.


Asunto(s)
Células Asesinas Naturales , Pulmón , Nanopartículas del Metal , Infecciones por Orthomyxoviridae , Plata , Animales , Plata/química , Plata/farmacología , Nanopartículas del Metal/química , Pulmón/virología , Pulmón/patología , Pulmón/efectos de los fármacos , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/virología , Ratones , Células Asesinas Naturales/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virología , Ratones Endogámicos C57BL , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Femenino , Activación de Linfocitos/efectos de los fármacos
4.
Methods Mol Biol ; 2854: 237-251, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39192134

RESUMEN

The innate immune system is the first line of host defense against infection by pathogenic microorganisms, among which macrophages are important innate immune cells. Macrophages are widely distributed throughout the body and recognize and eliminate viruses through pattern recognition receptors (PRRs) to sense pathogen-associated molecular patterns (PAMPs). In the present chapter, we provide detailed protocols for vesicular stomatitis virus (VSV) amplification, VSV titer detection, isolation of mouse primary peritoneal macrophages, in vitro and in vivo VSV infection, detection of interferon-beta (IFN-ß) expression, and lung injury. These protocols provide efficient and typical methods to evaluate virus-induced innate immunity in vitro and in vivo.


Asunto(s)
Inmunidad Innata , Interferón beta , Macrófagos Peritoneales , Vesiculovirus , Animales , Ratones , Macrófagos Peritoneales/inmunología , Macrófagos Peritoneales/virología , Macrófagos Peritoneales/metabolismo , Interferón beta/inmunología , Interferón beta/metabolismo , Interferón beta/genética , Vesiculovirus/inmunología , Vesiculovirus/genética , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/virología , Virus de la Estomatitis Vesicular Indiana/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Receptores de Reconocimiento de Patrones/inmunología
5.
J Leukoc Biol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351765

RESUMEN

Treatment with the toll-like receptor (TLR) 4 agonist monophosphoryl lipid A (MPLA) conditions innate immunocytes to respond robustly to subsequent infection, a phenotype termed innate immune memory. Our published studies show that metabolic reprogramming of macrophages is a prominent feature of the memory phenotype. We undertook studies to define the functional contributions of tricarboxylic acid (TCA) cycle reprogramming to innate immune memory. We observed that priming of wild type (WT) mice with MPLA potently facilitated accumulation of the TCA cycle metabolite itaconate at sites of infection and enhanced microbial clearance. Augmentation of itaconate accumulation and microbial clearance was ablated in immuneresponsive gene 1 (Irg1) -deficient mice. We further observed that MPLA potently induces expression of Irg1 and accumulation of itaconate in macrophages. Compared to WT macrophages, the ability of Irg1-deficient macrophages to kill Pseudomonas aeruginosa was impaired. We further observed that itaconate is directly antimicrobial against P. aeruginosa at pH 5, which is characteristic of the phagolysosome, and is facilitated by reactive oxygen species. MPLA-induced augmentation of glycolysis, oxidative phosphorylation and accumulation of the TCA cycle metabolites succinate and malate was decreased in Irg1 KO macrophages compared to WT controls. RNA sequencing revealed suppressed transcription of genes associated with phagolysosome function and increased expression of genes associated with cytokine production and chemotaxis in Irg1 deficient macrophages. This study identifies a contribution of itaconate to MPLA-induced augmentation of innate antimicrobial immunity via facilitation of microbial killing as well as impact on metabolic and transcriptional adaptations.

6.
J Histotechnol ; : 1-10, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351917

RESUMEN

Gliomas are malignant tumors of neuronal support cells within the central nervous system (CNS) and are characterized by poor overall prognoses and limited treatment options due to their infiltrative growth patterns. The neural tumor microenvironment, composed of benign neurons, neuroglia, endothelial cells, and intravascular white blood cells, is a target-rich site for potential chemotherapeutic agents. This study assessed cell proliferation rates, white blood cell components, and a limited number of nuclear, cytoplasmic, and membrane markers using immunohistochemistry (IHC) assays on formalin-fixed and paraffin-embedded benign and glial tumor tissue samples from the CNS. It was observed that glioma tissues had increased rates of glial cell proliferation and significant increases in the number of observed T-lymphocytes and granulocytes but decreased expression of markers Somatostatin receptor 2 (SSTR2), L1 cell adhesion molecule (L1CAM), and GATA binding protein 3 (GATA3) when compared to benign tissue samples. Understanding the lack of protein expression and population expansion potential of the glioma microenvironment in greater detail could help identify valuable therapeutic target combinations for future treatments.

7.
Antimicrob Agents Chemother ; : e0110324, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352135

RESUMEN

SPR720 is a phosphate ester prodrug that is converted rapidly in vivo to SPR719, the active moiety, which exhibits potent in vitro activity against clinically relevant mycobacterial species including Mycobacterium avium complex (MAC) and Mycobacterium abscessus. SPR720 is in clinical development for the treatment of nontuberculous mycobacterial pulmonary disease (NTM-PD) due to MAC. This study evaluated the safety and the intrapulmonary pharmacokinetics of SPR719 in healthy volunteers. A total of 30 subjects received oral SPR720 1,000 mg once daily for 7 days followed by bronchoscopy and bronchoalveolar lavage, with blood samples collected for plasma pharmacokinetic assessments. Mean SPR719 area under the concentration-time curve from time 0 to 24 hours (AUC0-24) and maximum concentration (Cmax) for plasma, epithelial lining fluid (ELF), and alveolar macrophages (AM) were 52,418 ng·h/mL and 4,315 ng/mL, 59,880 ng·h/mL and 5,429 ng/mL, and 128,105 ng·h/mL and 13,033 ng/mL, respectively. The ratios of ELF to total plasma concentrations of SPR719 based on AUC0-24 and Cmax were 1.14 and 1.26, and the ratios of AM to total plasma concentrations of SPR719 based on AUC0-24 and Cmax were 2.44 and 3.02, respectively. When corrected for protein binding, the ratios of ELF to unbound plasma concentrations of SPR719 for AUC0-24 and Cmax were 19.87 and 21.88, and the ratios of AM to unbound plasma concentrations of SPR719 for AUC0-24 and Cmax were 42.50 and 52.53, respectively. No unexpected safety findings were observed. Results from this study of the intrapulmonary disposition of SPR719 support further investigation of SPR720 as a potential oral agent for the treatment of patients with NTM-PD. CLINICAL TRIALS: This study is registered with ClinicalTrials.gov as NCT05955586.

8.
Chem Biodivers ; : e202401623, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39355861

RESUMEN

Haloxylon salicornicum is traditionally used for the treatment of several disorders associated with inflammation. Despite it is a defense response against tissue injury and infections, inflammation can become a chronic condition that can negatively impact the body. This study investigated the effect of H. salicornicum phytochemicals nuclear factor-kappaB (NF-κB), inducible nitric oxide synthase (iNOS) and cytokines release by lipopolysaccharide (LPS)-challenged macrophages in vitro. The binding affinity of the tested phytochemical towards NF-κB and iNOS was investigated using molecular docking. Ten compounds (four coumarins, three sterols and three flavonoids) were isolated from the ethanolic extract of H. salicornicum. Treatment of LPS-challenged macrophages with the compounds resulted in remarkable decrease in NF-κB p65 and iNOS mRNA abundance. All compounds suppressed the production of nitric oxide (NO) and the pro-inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-6) from macrophages challenged with LPS. Molecular docking revealed the ability of the isolated phytochemicals to bind NF-κB p65 and iNOS. In conclusion, H. salicornicum is a rich source of phytochemicals with anti-inflammatory properties. The anti-inflammatory efficacy of H. salicornicum phytoconstituents is mediated via their ability to modulate NF-κB and iNOS, and suppress the release of NO, TNF-α, and IL-6 from macrophages.

9.
Immunol Invest ; : 1-16, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356134

RESUMEN

BACKGROUND: The survival rate of pig lung xenotransplantation (PLXTx) recipients is severely limited by intense xenogenic immune responses, necessitating further insights into xenogeneic immunity and the development of models to study the PLXTx immune response. METHODS: We identified regulators of PLXTx immune response Using Gene ontology analysis. We assessed the metabolic changes and protein levels in 3D4/31 pig alveolar macrophages (PAMs) through flow cytometry and immunoblotting. To induce a xenogenic immune response, we co-cultured 3D4/31-PAMs with A549 human alveolar epithelial cells and evaluated cytokine expression using qRT-PCR. RESULTS: Gene ontology analysis identified STAT1 and alveolar macrophages as contributors to lung autoimmunity and transplant rejection. In 3D4/31-PAMs, phorbol myristate acetate-induced glycogen accumulation and cyclooxygenase-2 expression were inhibited by the P2Y14 inhibitor PPTN. Co-culturing 3D4/31-PAMs with A549 human alveolar epithelial cells via 3D bioprinting resulted in a more pronounced inflammatory response than 2D co-culture, with increased expression of genes related to the P2Y14 cascade and inflammation. This inflammatory gene expression was prevented by PPTN treatment. CONCLUSION: Based on these results, we propose alginate bioprinting as an in vitro model for PLXTx and suggest that P2Y14 is a key regulator of xenogeneic immune responses in PAMs.

10.
J Pain ; : 104689, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362355

RESUMEN

The role of the complement system in pain syndromes has garnered attention on the back of preclinical and clinical evidence supporting its potential as a target for new analgesic pharmacotherapies. Of the components that make up the complement system, component 5a (C5a) and component 3a (C3a) are most strongly and consistently associated with pain. Receptors for C5a are widely found in immune resident cells (microglia, astrocytes, sensory neuron-associated macrophages (sNAMs)) in the central nervous system (CNS) as well as hematogenous immune cells (mast cells, macrophages, T-lymphocytes, etc.). When active, as is often observed in chronic pain conditions, these cells produce various inflammatory mediators including pro-inflammatory cytokines. These events can trigger nervous tissue inflammation (neuroinflammation) which coexists with and potentially maintains peripheral and central sensitization. C5a has a likely critical role in initiating this process highlighting its potential as a promising non-opioid target for treating pain. This review summarises the most up-to-date research on the role of the complement system in pain with emphasis on the C5 pathway in peripheral tissue, dorsal root ganglia (DRG) and the CNS, and explores advances in complement-targeted drug development and sex differences. A perspective on the optimal application of different C5a inhibitors for different types (e.g., neuropathic, post-surgical and chemotherapy-induced pain, osteoarthritis pain) and stages (e.g., acute, subacute, chronic) of pain is also provided to help guide future clinical trials. PERSPECTIVE: This review highlights the role and mechanisms of complement components and their receptors in physiological and pathological pain. The potential of complement-targeted therapeutics for the treatment of chronic pain is also explored with a focus on C5a inhibitors to help guide future clinical trials.

11.
Vet Immunol Immunopathol ; 277: 110836, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39368394

RESUMEN

Studying mononuclear phagocytes by flow cytometry is challenging due to their phenotypic similarities and the high plasticity of monocytic cells. Despite these challenges, significant progress has been made in cattle research through multicolor flow cytometry, transcriptomics of sorted subsets, and single-cell RNA-sequencing. Here, we provide an overview of established and proposed phenotypic classifications in the bovine mononuclear phagocyte system and discuss the challenges of marker discovery.

12.
Front Immunol ; 15: 1448662, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39364414

RESUMEN

Background: Investigation into the immune heterogeneity linked with atherosclerosis remains understudied. This knowledge gap hinders the creation of a robust theoretical framework essential for devising personalized immunotherapies aimed at combating this disease. Methods: Single-cell RNA sequencing (scRNA-seq) analysis was employed to delineate the immune cell-type landscape within atherosclerotic plaques, followed by assessments of cell-cell interactions and phenotype characteristics using scRNA-seq datasets. Subsequently, pseudotime trajectory analysis was utilized to elucidate the heterogeneity in cell fate and differentiation among macrophages. Through integrated approaches, including single-cell sequencing, Weighted Gene Co-expression Network Analysis (WGCNA), and machine learning techniques, we identified hallmark genes. A risk score model and a corresponding nomogram were developed and validated using these genes, confirmed through Receiver Operating Characteristic (ROC) curve analysis. Additionally, enrichment and immune characteristic analyses were conducted based on the risk score model. The model's applicability was further corroborated by in vitro and in vivo validation of specific genes implicated in atherosclerosis. Result: This comprehensive scRNA-seq analysis has shed new light on the intricate immune landscape and the role of macrophages in atherosclerotic plaques. The presence of diverse immune cell populations, with a particularly enriched macrophage population, was highlighted by the results. Macrophage heterogeneity was intricately characterized, revealing four distinct subtypes with varying functional attributes that underscore their complex roles in atherosclerotic pathology. Intercellular communication analysis revealed robust macrophage interactions with multiple cell types and detailed pathways differing between proximal adjacent and atherosclerotic core groups. Furthermore, pseudotime trajectories charted the developmental course of macrophage subpopulations, offering insights into their differentiation fates within the plaque microenvironment. The use of machine learning identified potential diagnostic markers, culminating in the identification of RNASE1 and CD14. The risk score model based on these biomarkers exhibited high accuracy in diagnosing atherosclerosis. Immune characteristic analysis validated the risk score model's efficacy in defining patient profiles, distinguishing high-risk individuals with pronounced immune cell activities. Finally, experimental validation affirmed RNASE1's involvement in atherosclerotic progression, suggesting its potential as a therapeutic target. Conclusion: Our findings have advanced our understanding of atherosclerosis immunopathology and paved the way for novel diagnostic and therapeutic strategies.


Asunto(s)
Aterosclerosis , Perfilación de la Expresión Génica , Macrófagos , Análisis de la Célula Individual , Transcriptoma , Aterosclerosis/genética , Aterosclerosis/inmunología , Animales , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Placa Aterosclerótica/genética , Placa Aterosclerótica/inmunología , Inflamación/genética , Inflamación/inmunología , Medición de Riesgo , Aprendizaje Automático
13.
J Anat ; 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367691

RESUMEN

The sentinel lymph node (SN) concept has a significant impact on cancer surgery. We aimed to examine which morphology of dendritic cells (DCs) and macrophages corresponds to "preconditioning" of the SN against cancer. Although macrophages are generally able to tolerate cancer metastasis, the CD169-positive subtype is believed to be a limited exception. Immunohistochemical and morphometric analyses were performed to examine DC-SIGN-, CD68-, and CD169-positive cells in SNs and non-SNs of 23 patients with gastric cancer with or without nodal metastasis. All patients survived for >5 years without recurrence. DCs were present in the subcapsular, paracortical, and medullary sinuses, the endothelia of which expressed DC-SIGN and smooth muscle actin (SMA). In the non-SNs of patients without metastasis, subcapsular DCs occupied a larger area than SNs, and this difference was statistically significant. Conversely, subcapsular DCs were likely to have migrated to the paracortical area of the SNs. DC clusters often overlapped with macrophage clusters; however, histiocytosis-like clusters of CD169-negative macrophages showed a smaller overlap. We found a significantly larger overlap between DC-SIGN and CD169-positive clusters in SNs than in non-SNs; the larger overlap seemed to correspond to a higher cross-presentation of cancer antigens between these cell populations. DC-SIGN-CD169-double positive cells might exist within this overlap. SNs in gastric cancers are usually preconditioned as a frontier of cancer immunity, but they may sometimes be suppressed earlier than non-SNs. DC-SIGN- and CD169-positive cells appeared to decrease owing to a long lag time from the primary lesion occurrence and a short distance from the metastasis.

14.
Front Immunol ; 15: 1432334, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39351225

RESUMEN

Background: Environmental lipopolysaccharide (LPS) and microbial component-enriched organic dusts cause significant lung disease. These environmental exposures induce the recruitment and activation of distinct lung monocyte/macrophage subpopulations involved in disease pathogenesis. Aconitate decarboxylase 1 (Acod1) was one of the most upregulated genes following LPS (vs. saline) exposure of murine whole lungs with transcriptomic profiling of sorted lung monocyte/macrophage subpopulations also highlighting its significance. Given monocyte/macrophage activation can be tightly linked to metabolism, the objective of these studies was to determine the role of the immunometabolic regulator ACOD1 in environmental exposure-induced lung inflammation. Methods: Wild-type (WT) mice were intratracheally (i.t.) instilled with 10 µg of LPS or saline. Whole lungs were profiled using bulk RNA sequencing or sorted to isolate monocyte/macrophage subpopulations. Sorted subpopulations were then characterized transcriptomically using a NanoString innate immunity multiplex array 48 h post-exposure. Next, WT and Acod1-/- mice were instilled with LPS, 25% organic dust extract (ODE), or saline, whereupon serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected. BALF metabolites of the tricarboxylic acid (TCA) cycle were quantified by mass spectrometry. Cytokines/chemokines and tissue remodeling mediators were quantitated by ELISA. Lung immune cells were characterized by flow cytometry. Invasive lung function testing was performed 3 h post-LPS with WT and Acod1-/- mice. Results: Acod1-/- mice treated with LPS demonstrated decreased BALF levels of itaconate, TCA cycle reprogramming, decreased BALF neutrophils, increased lung CD4+ T cells, decreased BALF and lung levels of TNF-α, and decreased BALF CXCL1 compared to WT animals. In comparison, Acod1-/- mice treated with ODE demonstrated decreased serum pentraxin-2, BALF levels of itaconate, lung total cell, neutrophil, monocyte, and B-cell infiltrates with decreased BALF levels of TNF-α and IL-6 and decreased lung CXCL1 vs. WT animals. Mediators of tissue remodeling (TIMP1, MMP-8, MMP-9) were also decreased in the LPS-exposed Acod1-/- mice, with MMP-9 also reduced in ODE-exposed Acod1-/- mice. Lung function assessments demonstrated a blunted response to LPS-induced airway hyperresponsiveness in Acod1-/- animals. Conclusion: Acod1 is robustly upregulated in the lungs following LPS exposure and encodes a key immunometabolic regulator. ACOD1 mediates the proinflammatory response to acute inhaled environmental LPS and organic dust exposure-induced lung inflammation.


Asunto(s)
Carboxiliasas , Lipopolisacáridos , Ratones Noqueados , Animales , Ratones , Carboxiliasas/metabolismo , Carboxiliasas/genética , Lipopolisacáridos/inmunología , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/citología , Ratones Endogámicos C57BL , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/patología , Exposición a Riesgos Ambientales/efectos adversos , Neumonía/inmunología , Neumonía/inducido químicamente , Neumonía/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Citocinas/metabolismo , Masculino , Hidroliasas
15.
BMC Cancer ; 24(1): 1219, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354397

RESUMEN

BACKGROUND: The study evaluated the prognostic impact of the immune microenvironment in LSCC with markers of major immune cells to identify the key determinants of short-term disease-free survival (ST DFS) and reveal factors related to disease progression. METHODS: The study cohort included 61 patients who underwent total laryngectomy, 83.6% of whom were male with a mean age of 64.3 years at the time of surgery. Twenty-five patients had long term DFS (over 5 years), 8 - had moderate DFS (between 2 and 5 years), and 28 had short-term DFS (less than 2 years). Immunohistochemical staining and evaluation were performed on samples collected after the laryngectomy. RESULTS: The samples' assessment revealed that the mean expression of all analysed markers was the highest both in stroma and the tumor compartment for short term DFS (ST DFS) patients. Analysis confirmed that a high stromal density of CD8 cells (p = 0.038) significantly correlated with DFS, and that the increased presence of CD57 cells (p = 0.021) was significantly associated with ST DFS. Moreover, the high density of CD68 cells in the tumor epithelial compartment had a negative prognostic impact on DFS (p = 0.032). Analysis of overall survival in the studied cohort with Kaplan-Meyer curves revealed that a high stromal density of CD68 cells was a significant negative predictor of OS (p = 0.008). CONCLUSIONS: The observed associations of CD68 cells infiltration with progression and prognosis in patients with LSCC provide potential screening and therapeutic opportunities for patients with unfavourable outcomes.


Asunto(s)
Neoplasias Laríngeas , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Masculino , Neoplasias Laríngeas/patología , Neoplasias Laríngeas/inmunología , Neoplasias Laríngeas/mortalidad , Neoplasias Laríngeas/cirugía , Persona de Mediana Edad , Femenino , Anciano , Pronóstico , Laringectomía , Supervivencia sin Enfermedad , Biomarcadores de Tumor/metabolismo , Progresión de la Enfermedad , Inmunomodulación , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Estadificación de Neoplasias
16.
Cancer Immunol Immunother ; 73(12): 245, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39358493

RESUMEN

Neoantigen vaccines represent an emerging and promising strategy in the field of tumor immunotherapy. Despite their potential, designing an effective neoantigen vaccine remains a challenge due to the current limitations in predicting CD4+ T cell epitopes with high accuracy. Here, we introduce a novel approach to neoantigen vaccine design that does not rely on computational prediction of CD4+ T cell epitopes. Utilizing nitrated helper T cell epitope containing p-nitrophenylalanine, termed "NitraTh epitope," we have successfully engineered a series of tumor neoantigen vaccines capable of eliciting robust neoantigen-specific immune responses. With the help of NitraTh epitope, even mutations with low predicted affinity for MHC class I molecules were successfully induced to elicit neoantigen-specific responses. In H22 cell allograft and patient-derived xenograft (PDX) liver cancer mouse models, the NitraTh epitope-based neoantigen vaccines significantly suppressed tumor progression. More strikingly, through single-cell sequencing we found that the NitraTh epitope-based neoantigen vaccines regulate macrophage reprogramming and modulate macrophages to decrease the levels of the immunosuppressive molecule prostaglandin E2 (PGE2), which in turn reshapes the tumor immunosuppressive microenvironment. In summary, NitraTh epitope-based neoantigen vaccines possess the dual effects of potently activating neoantigen-specific immunity and alleviating immunosuppression, potentially providing a new paradigm for the design of tumor neoantigen vaccines.


Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Inmunoterapia , Vacunas contra el Cáncer/inmunología , Animales , Ratones , Humanos , Inmunoterapia/métodos , Antígenos de Neoplasias/inmunología , Epítopos de Linfocito T/inmunología , Microambiente Tumoral/inmunología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/terapia , Neoplasias/inmunología , Neoplasias/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino
17.
Orphanet J Rare Dis ; 19(1): 363, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358794

RESUMEN

BACKGROUND: Gaucher disease (GD) is one of the most common types of lysosomal storage diseases (LSDs) caused by pathogenic variants of lysosomal ß-glucocerebrosidase gene (GBA1), resulting in the impairment of Glucocerebrosidase (GCase) enzyme function and the accumulation of a glycolipid substrate, glucosylceramide (GlcCer) within lysosomes. Current therapeutic approaches such as enzyme replacement therapy and substrate reduction therapy cannot fully rescue GD pathologies, especially neurological symptoms. Meanwhile, delivery of lysosomal enzymes to the endocytic compartment of affected human cells is a promising strategy for treating neuropathic LSDs. RESULT: Here, we describe a novel approach to restore GCase enzyme in cells from neuropathic GD patients by producing extracellular vesicle (EVs)-containing GCase from cells overexpressing GBA1 gene. Lentiviral vectors containing modified GBA1 were introduced into HEK293T cells to produce a stable cell line that provides a sustainable source of functional GCase enzyme. The GBA1-overexpressing cells released EV-containing GCase enzyme, that is capable of entering into and localizing in the endocytic compartment of recipient cells, including THP-1 macrophage, SH-SY5Y neuroblastoma, and macrophages and neurons derived from induced pluripotent stem cells (iPSCs) of neuropathic GD patients. Importantly, the recipient cells exhibit higher GCase enzyme activity. CONCLUSION: This study presents a promising therapeutic strategy to treat severe types of LSDs. It involves delivering lysosomal enzymes to the endocytic compartment of human cells affected by conditions such as GDs with neurological symptoms, as well as potentially other neurological disorders impacting lysosomes.


Asunto(s)
Vesículas Extracelulares , Enfermedad de Gaucher , Glucosilceramidasa , Humanos , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/patología , Glucosilceramidasa/metabolismo , Glucosilceramidasa/genética , Vesículas Extracelulares/metabolismo , Células HEK293 , Terapia de Reemplazo Enzimático/métodos , Lisosomas/metabolismo
18.
Endocrinol Diabetes Metab ; 7(6): e70002, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39358901

RESUMEN

OBJECTIVE: Tumour necrosis factor (TNF)-α is a proinflammatory marker and has been shown to affect mitochondrial function in different tissues. We investigated the effect on adipose tissue (AT) inflammation and mitochondrial respiration in patients with hidradenitis suppurativa (HS) after 12 weeks of treatment with adalimumab, a TNF-α inhibitor. METHODS: We sampled blood and an AT biopsy from 13 patients with HS and 10 control subjects after an overnight fast. The patients were retested after at least 12 weeks of treatment with adalimumab (40 mg/week). We measured macrophage content and mitochondrial respiration in the AT and interleukin (IL)-1ß, IL-6, IL-10, high-sensitivity C-reactive protein (hsCRP), interferon-γ, TNF-α, adiponectin and leptin in plasma. Clinical scores and Dermatology Quality of Life Index (DLQI) were assessed. RESULTS: We found a higher anti-inflammatory macrophage content (CD206+) in the patient group compared with the control group, but no differences between before and after the intervention. No difference in mitochondrial respiration was observed. We observed higher plasma IL-6 and hsCRP concentrations in patients with HS compared to controls, with no differences before and after the intervention. The difference between controls and HS patients was abolished after the intervention. HS patients improved their DLQI after the intervention with no change in clinical scores. CONCLUSION: Treatment with adalimumab in patients with HS does not alter AT inflammation or mitochondrial respiratory capacity; however, we did see a higher content of anti-inflammatory macrophages in the patient group compared with the control group.


Asunto(s)
Adalimumab , Tejido Adiposo , Hidradenitis Supurativa , Inflamación , Mitocondrias , Humanos , Adalimumab/uso terapéutico , Adalimumab/farmacología , Masculino , Hidradenitis Supurativa/tratamiento farmacológico , Hidradenitis Supurativa/metabolismo , Femenino , Adulto , Mitocondrias/metabolismo , Tejido Adiposo/metabolismo , Inflamación/tratamiento farmacológico , Persona de Mediana Edad , Respiración de la Célula/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Macrófagos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
19.
Int Immunopharmacol ; 143(Pt 1): 113314, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39395381

RESUMEN

Gliomas are the most common malignant brain tumor in the central nervous system. They are characterized by high invasiveness and heterogeneity. In recent years, cancer-derived immunoglobulin G (Cancer-IgG) has received significant attention from researchers. Cancer-IgG, identified from tumors, can promote tumorigenesis and tumor progression. In this study, we explored the expression patterns of Cancer-IgG using available datasets and validated these patterns in our patient samples. Several loss-of-function and gain-of function assays were performed to investigate the roles of Cancer-IgG. Potential mechanisms underlying these roles were investigated using co-immunoprecipitation and RNA sequencing. Our result demonstrated that Cancer-IgG is expressed in gliomas. Furthermore, the expression of Cancer-IgG is associated with a poor prognosis and malignant molecular characterization. Functional assays confirmed that Cancer-IgG can promote glioma cells proliferation, migration, invasion, and resistant to apoptosis. The cGMP/PKG/VASP pathway is potentially involved in the effects of Cancer-IgG. Evidence from co-culture assay suggest that Cancer-IgG can induce M2 polarization of macrophages. In conclusion, Cancer-IgG can be identified in glioma cells and promotes the development of a malignant biological phenotype in vivo and in vitro. In glioma microenvironment, Cancer-IgG can induce M2 polarization of macrophages.

20.
Front Immunol ; 15: 1474688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39386212

RESUMEN

Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-ß (TGF-ß) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.


Asunto(s)
Fibrosis , Macrófagos , Miofibroblastos , Transducción de Señal , Miofibroblastos/metabolismo , Miofibroblastos/patología , Miofibroblastos/inmunología , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Factor de Crecimiento Transformador beta/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA