RESUMEN
The V-type porous starch (VPS) displays remarkable adsorption capability, and has potential for encapsulating guest compounds within its unique single helical cavity. In this investigation, VPS was produced via a "one-pot method" utilizing thermostable α-amylase in a hot ethanol solution. The study demonstrates that the activity of thermostable α-amylase remains high, reaching up to 86 % when employing a 40-50 % ethanol concentration, and up to 74 % with ≤70 % ethanol concentration. Furthermore, the enzyme exhibits robust stability at 90 °C for up to 10 h of reaction time. The resultant VPS exhibits enhanced V-type crystallinity and superior adsorption capacity compared to conventional A-type porous starch (APS). Notably, the hydrolysis of normal maize starch (NMS) by thermostable α-amylase in a 50 % ethanol solution at 90 °C yields 49.36 % VPS, which manifests a densely porous distributed structure. Additionally, the VPS is characterized by superior oil adsorption capacity (253.11 %), specific surface area (38.89 m2/g), and total pore volume (0.147 cm3/g).
Asunto(s)
Etanol , Almidón , Zea mays , alfa-Amilasas , Almidón/química , Zea mays/química , Hidrólisis , Etanol/química , Porosidad , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Calor , Estabilidad de Enzimas , Adsorción , Agua/químicaRESUMEN
Internal lipids of normal amylose (NMS) and two high amylose (HMS56, HMS72) maize starches were removed to investigate the effect of proanthocyanidins (PA) on starch short-term (1 d) and long-term (21 d) retrogradation. Removal of internal lipids decreased the degree of retrogradation in PA-starch complexes after 1 d and 21 d retrogradation. The relative crystallinity (RC) of PA-NMS, PA-HMS56 and PA-HMS72 without internal lipid complexes after short-term retrogradation decreased by 5.46â¯%, 6.47â¯% and 7.52â¯% when the addition of PA was 10â¯%, respectively, compared with corresponding samples without PA. Compared with PA-native starch complexes, PA-starch without internal lipids complexes had lower correlation length (ξ) and tended to form smaller polymeric assemblies suggesting that the size of aggregates growing within gels was decreased because more PA molecules impeded the reformation of ordered starch structures. Removal of internal lipids exposed hydrogen bonds and the cavities of amylose, promoting the interaction between PA and amylose and more formation of PA-amylose complexes, which in turn reduced amylose available for crystal nucleus formation delaying retrogradation. Overall, retrogradation could further slow down by PA after internal lipid removal, which provided a new perspective for enhancing the modification effect of PA on starch.
RESUMEN
This study developed a novel thermoreversible emulsion gel system based on high amylose maize starch (HAMS) and investigated the impact of the oil-to-water ratio on its physicochemical properties and encapsulation performance (using curcumin as model guest molecule). Electron microscopy showed a tightly porous network structure of the HAMS-based emulsion gels. Thermal results revealed a sol-gel transition occurring in the range of 59.41 to 67.64⯰C for the prepared emulsion gels. Rheological analysis suggested that all samples displayed shear-thinning behavior and HAMS-based emulsion gels exhibited typical gel-like behavior with the gel strength bolstered by higher aqueous phases. Particle size analysis showed that droplet size of emulsion gel decreased from 245 to 184â¯nm with increased starch aqueous phase content. Texture profile analysis indicated enhanced strength, hardness, and chewiness of the emulsion gel with increased aqueous phases. Curcumin encapsulation efficiency in the HAMS-based emulsion gel also improved with higher aqueous phase content, reaching up to 93.82â¯%, which attributed to the smaller droplets caused increased interfacial area. The novel HAMS-based emulsion gel system showed considerable encapsulation capacity and desirable mechanical properties. It provided valuable insights into the application of starch-based emulsion gels in food and medical area.
RESUMEN
Starch-based pH-sensing films with bacterial nanocellulose (BNC) and red cabbage anthocyanins (RCA) as active components were investigated in this research. Their structural, physical, surface and colorimetric properties were analyzed, mainly as a function of BNC concentration. The aim of the research was to relate the changes in the intermolecular interactions between the components of the films (starch, anthocyanins and BNC) to the physical, surface and colorimetric properties that are important for the primary intended application of the produced films as pH indicators in smart packaging. The results showed that maize starch (MS) was more suitable as a matrix for the stabilization of anthocyanins compared to potato starch (PS). PS-based films showed a lower value of water contact angle than MS-based films, indicating stronger hydrophilicity. The swelling behavior results indicate that the concentrations of BNC in MS-based films (cca 10%) and the concentration of about 50% BNC in PS-based films are required if satisfactory properties of the indicator in terms of stability in a wet environment are to be achieved. The surface free energy results of PS-based films with BNC were between 62 and 68 mJ/m2 and with BNC and RCA between 64 and 68 mJ/m2; for MS-based films, the value was about 65 mJ/m2 for all samples with BNC and about 68 mJ/m2 for all samples with BNC and RCA. The visual color changes after immersion in different buffer solutions (pH 2.0-10.5) showed a gradual transition from red/pink to purple, blue and green for the observed samples. Films immersed in different buffers showed lower values of 2 to 10 lightness points (CIE L*) for PS-based films and 10 to 30 lightness points for MS-based films after the addition of BNC. The results of this research can make an important contribution to defining the influence of intermolecular interactions and structural changes on the physical, surface and colorimetric properties of bio-based pH indicators used in smart packaging applications.
RESUMEN
This study examined multi-scale structural alterations of maize starches varying in amylose content during pasting and gelation, using Rapid Visco Analyser (RVA). At 50 °C, starch granules maintained their morphology with low viscosity. As the temperature increased to 95 °C, helical and crystal structures were destroyed, leading to granule swelling, distortion and porosity, as identified by Wide Angle X-ray Scattering and Fourier Transforms Infrared measurements at 90% moisture. This resulted in increased viscosity and the formation of a loose gel network structure. Subsequently, maintaining the temperature at 95 °C caused a decrease in viscosity as most granules disappeared, forming a reorganized flaky gel structure with larger pores. As the temperature decreased, gel porosity reduced. In high amylose content starch, the viscosity remained low and granules were partially gelatinized since the heating temperature was below the gelatinization temperature. This study is the first to detail starch multilevel structural dynamics during RVA gelatinization.
Asunto(s)
Amilosa , Geles , Almidón , Zea mays , Zea mays/química , Amilosa/química , Almidón/química , Viscosidad , Geles/química , CalorRESUMEN
Gelatinizing high-amylose maize starch (HAMSt) requires high temperatures to allow complexation with lipids, making it a challenging process. An octenylsuccinylation method was examined as a part of a strategy to decrease the gelatinization temperature of HAMSt, thereby promoting the complexation between HAMSt and myristic acid (MAc). Octenyl succinic anhydride (OSA) modification of HAMSt reduces the onset gelatinization temperature of HAMSt from 71.63 °C to 66.97 °C. Moreover, as the OSA concentration increased from 2 % to 11 %, the degree of substitution and molecular weights of the esterified HAMSt gradually increased from 0.0069 to 0.0184 and from 0.97 × 106 to 1.17 × 106 g/mol, respectively. Fourier transform infrared analysis indicated that the octenyl-succinate groups were grafted onto the HAMSt chains. The formation of HAMSt-MAc complexes improved the thermal stability of OSA-treated HAMSt (peak temperature increased by 0.11 °C-13.95 °C). Moreover, the diffraction intensity of the V-type peak of the 11 % sample was greater than that of other samples. Finally, the anti-retrogradation ability was in the order of OSA-HAMSt-MAc complexes > HAMSt-MAc complexes > HAMSt. Overall, our results indicate that octenylsuccinylation can be an effective strategy to promote the formation of OSA-HAMSt-MAc complexes and delay starch retrogradation.
Asunto(s)
Amilosa , Ácido Mirístico , Almidón , Succinatos , Zea mays , Zea mays/química , Amilosa/química , Almidón/química , Almidón/análogos & derivados , Succinatos/química , Ácido Mirístico/química , Temperatura , Anhídridos Succínicos/químicaRESUMEN
High-amylose maize starch (69.3 % amylose) was debranched to increase the level of linear molecules and enhance the formation of spherulites. Debranched high-amylose maize starch (25 %, w/w) was heated to 180 °C in a Parr reactor followed by crystallization at different temperatures between 25 and 150 °C. The objectives of this study were to investigate the effects of crystallization temperature on the yield, morphology, structure, crystallinity, and digestibility of the spherulites formed. When the crystallization temperature was 150 °C, spherulites with negative birefringent sign were formed. High crystallization temperature caused molecular degradation and the degree of degradation was severe at 150 °C, resulting in relatively short chain amylose (DP < 150). When crystallized at 25 to 120 °C, spherulites with strong positive birefringence were produced. The long chain amylose was attributed to the positive birefringence. All spherulites had a predominant B-type crystalline structure. The spherulites with negative birefringence showed a lower degree of crystallinity and lower resistance to enzyme digestion, but all the spherulites with positive birefringence had a high resistant starch content (89-94 %). α-Amylase was not able to penetrate inside the spherulites as revealed by the confocal laser scanning microscopic images.
Asunto(s)
Amilosa , Cristalización , Zea mays , Zea mays/química , Amilosa/química , Almidón/química , Temperatura , HidrólisisRESUMEN
This study systematically analyzed the effect of Aspergillus flavus infection on the maize starch multi-scale structure, physicochemical properties, processing characteristics, and synthesis regulation. A. flavus infection led to a decrease in the content of starch, an increase in the content of reactive oxygen species (ROS) and malondialdehyde (MDA), a significant decrease in the activities of peroxidase (POD) and superoxide dismutase (SOD). In addition, A. flavus infection had a significant destructive effect on the double helix structure, relative crystallinity and lamellar structure of starch, resulting in the reduction of starch viscosity, affecting the viscoelastic properties of starch, and complicating the gel formation process. However, the eugenol treatment group significantly inhibited the growth of A. flavus during maize storage, protecting the multi-scale structure and processing characteristics of maize starch from being damaged. Transcriptome analysis showed that genes involved in carbohydrate synthesis in maize were significantly downregulated and genes involved in energy synthesis were significantly upregulated, indicating that maize converted its energy storage into energy synthesis to fight the invasion of A. flavus. These results of this study enriched the mechanism of quality deterioration during maize storage, and provide theoretical and technical support for the prevention of A. flavus infection during maize storage.
Asunto(s)
Aspergillus flavus , Almidón , Zea mays , Zea mays/química , Zea mays/microbiología , Aspergillus flavus/metabolismo , Almidón/química , Almidón/metabolismo , Almacenamiento de Alimentos , Especies Reactivas de Oxígeno/metabolismo , Viscosidad , Malondialdehído/metabolismo , Superóxido Dismutasa/metabolismoRESUMEN
Biodegradable and biocompatible polymer-based nanoparticles (NPs) hold great promise for various industries. We report the first development of composite NPs consisting of starch (St) and polyvinyl alcohol (PVA) using the nanoprecipitation technique with ethanol as an antisolvent. We varied the St:PVA ratios in the precursor solutions to evaluate their impact on the structure and properties of the composite NPs. The ratios used were 4:1, 1:1, and 1:4. Characterization by X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis revealed distinct XRD and TGA patterns for the composite St/PVANPs compared to their corresponding physical blends. This indicated the presence of mixed St/PVA crystallites within their structures. Additionally, the crystallinity of St/PVANPs increased with rising St content. Dynamic light scattering and scanning electron microscopy showed that nanoparticle sizes increased with higher PVA proportions. The St/PVANPs showed superior performance as stabilizers in Pickering emulsions, forming denser continuous networks in the gel-like structure of the emulsions. Additionally, increasing the PVA content in the composition of St/PVANPs strengthened the structure of Pickering emulsions. The emulsion stabilized by St20/PVA80NPs showed exceptional stability for one month. These findings highlight the potential of St/PVANPs as innovative materials for various applications, including emulsion stabilization.
Asunto(s)
Emulsiones , Nanopartículas , Alcohol Polivinílico , Almidón , Almidón/química , Alcohol Polivinílico/química , Nanopartículas/química , Emulsiones/química , Difracción de Rayos X , Tamaño de la Partícula , Rastreo Diferencial de Calorimetría , TermogravimetríaRESUMEN
Normal and waxy maize starches were treated with mild alkali treatment (pH 8.5, 9.9, 11.3) in two temperature-time combinations (25 °C for 1 h and 50 °C for 18 h) to investigate the effect on starch structure and properties. Mild alkali treatment partly removed the starch granule-associated proteins and lipids of normal (from 0.31 % to 0.24 % and from 0.77 % to 0.55 %, respectively) and waxy maize starches (from 0.22 % to 0.18 % and from 0.24 % to 0.15 %, respectively). Gelatinization enthalpy of waxy maize starch increased with alkali treatment from 16.20 J·g-1 to 21.95 J·g-1, indicating that amylopectin (AP) rearrangement and AP-AP double helices formation might occur. But amylose could inhibit these effects by restricting mobility of amylopectin, and no such changes occurred for normal maize starch. Alkali treatment decreased gelatinization temperature and increased peak and final viscosity. Alkali treatment decreased trough viscosity and increased setback of normal maize starch. The hydrothermal treatment promoted the effect of alkali, attributed to the more rapid molecular motion at higher temperature. Normal and waxy starches showed different changes after alkali treatment, indicating that amylose played an important role in controlling the effect of alkali and hydrothermal treatment, primarily as an obstructer of amylopectin rearrangement in mild alkali treatment.
Asunto(s)
Álcalis , Amilopectina , Amilosa , Almidón , Zea mays , Zea mays/química , Almidón/química , Álcalis/química , Viscosidad , Amilopectina/química , Amilosa/química , Temperatura , Concentración de Iones de HidrógenoRESUMEN
Freeze-drying (FD) and cryo-milling (CM) are common methods for preparing powder gelatinized starch samples. This study investigates the structural characterization of raw/gelatinized maize starches and digestibility after FD/CM processes to elucidate their effect on starch digestibility determination. Results showed that FD slightly increased digestibility, while higher initial glucose content in CM samples, especially for gelatinized samples. Only FD retained the granular morphology and relative crystallinity (RC), while gelatinized-FD decreased RC by 75%. CM decreased RC by 12%, while gelatinized-CM decreased it by 97%. Combined with short-range and chain structural results, FD tended to disrupt internal connected chains through volume stress, while CM cleaved glycosidic bonds in external chain. Stretched chains in gelatinized starch promoted the breakage of chains during shearing and their efficient binding with digestive enzymes. These findings would provide a basis for pre-treatment of powder samples and processes of starch- rich foods.
Asunto(s)
Digestión , Liofilización , Almidón , Zea mays , Almidón/química , Zea mays/química , Gelatina/química , Manipulación de Alimentos , Polvos/químicaRESUMEN
The effects of dynamic high-pressure microfluidization (DHPM) treatment on the rheological properties, multiscale structure and in vitro digestibility of complex of maize starch (MS), konjac glucomannan (KGM), and bamboo leaf flavonoids (BLFs) were investigated. Compared with MS, the MS-KGM-BLF complex exhibited reduced viscosity and crystallinity, along with increased lamellar thickness to 10.26 nm. MS-KGM-BLF complex had lower viscosity after DHPM treatment. The highest ordered structure and crystallinity were observed at 50 MPa, with the α value increasing from 3.40 to 3.59 and the d value decreasing from 10.26 to 9.81 nm. However, higher DHPM pressures resulted in a decrease in the α value and an increase in the d value. The highest gelatinization enthalpy and resistant starch content were achieved at 100 MPa DHPM, while the fractal structure shifted from surface fractal to mass fractal at 150 MPa. This study presents an innovative method for enhancing the properties of MS.
Asunto(s)
Digestión , Flavonoides , Mananos , Hojas de la Planta , Presión , Reología , Almidón , Zea mays , Almidón/química , Hojas de la Planta/química , Mananos/química , Zea mays/química , Flavonoides/química , Viscosidad , Bambusa/química , Extractos Vegetales/química , Amorphophallus/químicaRESUMEN
The recently characterized Limosilactobacillus reuteri N1 GtfB (LrN1 GtfB) from glycoside hydrolase family 70 is a novel 4,6-α-glucanotransferase acting on starch/maltooligosaccharides with high enzyme activity and soluble protein yield (in heterogenous system). In this study, the influence of the treatment by LrN1 GtfB on the fine structure and functional characteristics of three maize starches were furtherly investigated and elucidated. Due to the treatment of LrN1 GtfB, the starch molecules were transformed into reuterans containing linear and branched (α1 â 6) linkages with notably smaller molecular weight and shorter chain length. Moreover, the (α1 â 6) linkage ratios in the GtfB-modified high-amylose maize starch (GHMS)/normal maize starch (GNMS)/waxy maize starch (GWMS) increased by 18.3 %/12.6 %/9.0 % as compared to their corresponding controls. In vitro digestibility experiment revealed that the resistant starch content of GHMS, GNMS and GWMS increased by 16 %, 18 % and 25 % as compared to the starch substrates. Furthermore, the butyric acid yielded from GHMS, GNMS and GWMS in the in vitro fermentation experiments were 1.4, 1.5 and 1.4 times higher than those of commercial galactose oligosaccharides. These results indicated that the highly-branched short-clustered reuteran synthesized by LrN1 GtfB might serve as novel potential prebiotics, and provide insights for the synthesis of promising prebiotic dietary fiber from starch.
Asunto(s)
Limosilactobacillus reuteri , Prebióticos , Almidón , Zea mays , Zea mays/química , Almidón/química , Almidón/metabolismo , Oligosacáridos/químicaRESUMEN
Structural factors that determine the amylolysis of starch-lipid complexes have remained unclear. Understanding the relationship between the structure and amylolysis of starch-lipid complexes is important for the design and preparation of complexes with predictable digestibility. In this study, the multiscale structures and amylolytic properties of complexes formed under different conditions between debranched high-amylose starch (DHAMS) and lauric, myristic, palmitic, and stearic acids were investigated. Higher complexing temperatures facilitated the formation of DHAMS-fatty acid (FA) complexes, especially the more stable type II crystallites. Longer complexing times also promoted the formation of complexes and the type II crystallites, except for DHAMS-lauric acid (LA). Molecular dynamics simulations showed that the binding free energy for the formation of DHAMS-LA complexes (10 kJ/mol) was lower than those for the other three DHAMS-FA complexes (20-50 kJ/mol), accounting for the lower stability of DHAMS-LA complexes at longer complexing times. The rate and extent of enzymatic digestion of the DHAMS-FA complexes were much lower in comparison to those of gelatinized HAMS. Correlation analyses showed that the rate and extent of enzymic digestion of DHAMS-FA complexes were mainly determined by the degree of crystallite perfection of the complexes.
RESUMEN
The aim of this work was to investigate the impact of the addition of salivary α-amylase on starch hydrolysis in protein-containing dispersions during an in vitro digestion process. In vitro digestion provides useful insights on the fate of nutrients during gastro-intestinal transit in complex food matrices, an important aspect to consider when developing highly nutritious foods. Many foods contain polysaccharides, and as their disruption in the gastric stage is limited, salivary α-amylase is often neglected in in vitro studies. A reference study on the effect of salivary α-amylase using one of the most advanced and complex in vitro digestion models (INFOGEST) is, however, not available. Hence, this work reports the gastrointestinal breakdown of three mixed dispersions containing whey protein isolate with different polysaccharides: potato starch, pectin from citrus peel and maize starch. The latter was also studied after heating. No polysaccharide or salivary α-amylase-dependent effect on protein digestion was found, based on the free NH2 and SDS-PAGE. However, in the heat-treated samples, the addition of salivary α-amylase showed a significantly higher starch hydrolysis compared to the sample without α-amylase, due to the gelatinization of the starch granules, which improved the accessibility of the starch molecules to the enzyme. This work demonstrated that the presence of different types of polysaccharides does not affect protein digestion, but also it emphasizes the importance of considering the influence of processing on food structure and its digestibility, even in the simplest model systems.
RESUMEN
This study aimed to examine the impact of trivalent, divalent, or monovalent cations dissolving into water and being mixed with maize starch to influence its retrogradation, gelatinization, and gel characteristics. The result of the analysis using a differential scanning calorimeter showed that all cations raised the peak of gelatinization temperature of maize starch, especially Al3+ or Fe3+, while trivalent cations reduced the enthalpy. The result of the analysis using a rapid viscosity analyzer showed that trivalent cation caused lower trough viscosity, final viscosity, and pasting temperature but higher breakdown viscosity of maize starch than monovalent or divalent cations. Confocal laser scanning microscopy showed that the cation promoted the destruction of gelatinized maize starch granules, especially Zn2+, Fe3+, or Al3+. Additionally, trivalent Fe3+ or Al3+ caused higher gel strength of maize starch. Generally, the cation with higher valence changed more retrogradation, gelatinization, and gel characteristics of maize starch.
Asunto(s)
Cationes , Geles , Almidón , Zea mays , Zea mays/química , Almidón/química , Geles/química , Cationes/química , Viscosidad , Temperatura , Gelatina/químicaRESUMEN
This study discusses interaction differences between three phenols (protocatechuic acid, naringin and tannic acid) and starch helix, investigates influences of phenols at different doses on properties of maize starch, and further determines their effects on quality and function of maize-starchy foods. Simulated results indicate variations of phenolic structure (phenolic hydroxyl group amount, glycoside structure and steric hindrance) and dose induce phenols form different complexes with starch helix. Formation of different starch-phenols complexes alters gelatinization (1.65-5.63 J/g), pasting form, water binding capacity (8.83-12.69 g/g) and particle size distribution of starch. Meanwhile, differences in starch-phenols complexes are reflected in fingerprint area (R1045/1022: 0.920 to 1.047), crystallinity (8.3% to 17.0%), rheology and gel structure of starch. Additionally, phenols change texture and color of cold maize cake, giving them different antioxidant capacity and lower digestibility. Findings are beneficial for understanding interaction between starch and different phenols and their potential application.
Asunto(s)
Fenoles , Almidón , Zea mays , Zea mays/química , Almidón/química , Fenoles/química , Calidad de los Alimentos , Reología , Antioxidantes/química , Tamaño de la PartículaRESUMEN
Traditionally fermented maize starch, called ogi, is produced to prepare akpan, a yoghurt-like street food widely consumed in Benin. Current maize ogi production practices were compared to assess the impact of different processing technologies on the characteristics of the fermented product as a basis to determine best practices. Maize starch slurry samples were collected from processors in five municipalities in southern Benin and analysed before fermentation (starch samples) and after spontaneous fermentation (ogi samples). Four technological pathways for maize starch production were distinguished based on variations in the duration of steeping the grains, which ranged from 6 to 72 h, and whether or not kneading of the wet flour before filtration was practised. Six categories of maize ogi were derived from the four technology groups based on the duration of the fermentation, which lasted from 6 to 24 h. The average pH of maize starch varied from 3.2 to 5.3, with the lowest values for the two technology groups that also had the highest lactate concentrations (9-11.8 g/L). The six maize ogi categories had a pH ranging from 3.1 to 4.0. Viable plate counts of lactic acid bacteria were similar for maize starch samples and for ogi samples, whereas yeast counts showed clear differences. Members of the genera Limosilactobacillus, Lactobacillus, Weissella, Streptococcus and Ligilactobacillus, dominated the bacterial community in maize starch, and were also dominant in maize ogi. The members of the genera dominating the fungal community in maize starch were also dominant in maize ogi, except for Aspergillus and Stenocarpella spp., which decreased in relative abundance by fermentation. The highest total free essential amino acid concentration was 61.6 mg/L in maize starch and 98.7 mg/L in ogi. The main volatile organic compounds in maize starch samples were alcohols, esters, and carboxylic acids, which also prevailed in maize ogi samples. The results indicate that the characteristics of traditional maize ogi depend on the processing technologies used to produce the maize starch before the intentional fermentation into ogi, with no clear-cut connection with the production practices due to high variations between samples from the same technology groups. This revealed the importance of a standardized maize starch production process, which would benefit controlling the starch fermentation and the characteristics of maize ogi. Further research is needed to understand the hidden fermentation during maize starch production for determination of the best practices that support the production of quality maize ogi.
Asunto(s)
Microbiota , Zea mays , Zea mays/microbiología , Lactobacillus/metabolismo , Almidón , Saccharomyces cerevisiae/metabolismo , FermentaciónRESUMEN
In this study, four types of maize starch with different amylose contents (3 %, 25 %, 40 %, and 70 %) were used to prepare butyrylated starches. Based on amylose contents, the influence of butyryl group distribution on the structure, thermal and digestive properties of butyrylated maize starch was investigated. The butyrylation reaction mainly substituted butyryl groups on amylose, and the butyryl groups were most easily substituted for the hydroxyl group at the C6 position. The degree of substitution of butyrylated starch reached its maximum when the amylose content was 40 %, and the degree of substitution did not correlate linearly with the amylose content. The butyrylation reaction increased the surface roughness, decreased the crystallinity, enthalpy value and molecular weight of native starch granules, resulting in a decrease in the degree of internal order of the starch and inducing the rearrangement of the amylose molecular chains in the amorphous region of the starch. The combination of the amylose content and the substitution of butyryl groups on amylose affected the digestibility of starch and ultimately increased its resistance. The Pearson correlation coefficient further confirmed the correlation between the distribution of butyryl groups and the structure and properties of butyrylated starch.
Asunto(s)
Amilosa , Zea mays , Amilosa/química , Zea mays/química , Almidón/química , Peso Molecular , DigestiónRESUMEN
The impact of recrystallization conditions and drying temperatures on the crystallization and digestibility of native waxy maize (Zea mays L.) starch (NWMS) was explored. This study involved subjecting NWMS to concurrent debranching and crystallization at 50 °C for up to 7 days. Samples were collected by oven-drying at 40, 60, and 80 °C for 24 h. This simultaneous debranching and crystallization process increased the resistant starch (RS) content by approximately 48 % compared to the native starch. The drying temperatures significantly influenced the RS content, with samples dried at 60 °C exhibiting the lowest digestibility. X-ray diffraction (XRD) analysis revealed that most crystals demonstrated a characteristic A-type arrangement. Debranching and crystallization processes enhanced the crystallinity of the samples. The specific crystal arrangement (A- or B-type) depended on the crystallization conditions. A 15 min heating of NWMS in a boiling water bath increased the digestible fraction to over 90 %, while the samples subjected to debranching and crystallization showed an increase to only about 45 %. A linear correlation between starch fractions and enthalpy was also observed.