Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Vet Res Commun ; 48(5): 3437-3443, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39133398

RESUMEN

Malignant catarrhal fever (MCF) presents a sporadic yet significant threat to livestock and wildlife. A comprehensive investigation in Karnataka, India into the prevalence and transmission patterns of sheep-associated MCF (SA-MCF) was conducted. A total of 507 sheep peripheral blood leukocyte samples from 13 districts along with 27 cows and 10 buffalo samples from various regions in Karnataka were tested for SA-MCF infection i.e. Ovine gammaherpesvirus 2 (OvHV-2) using heminested PCR. Furthermore, serum samples collected from 73 cows and 15 buffalo suspected of MCF were tested using a commercially available ELISA kit. Additionally, histopathological examinations of affected tissues and phylogenetic analysis of viral tegument protein sequences were conducted. Our findings indicated a 20.11%, 33.33% and 20% positivity for OvHV-2 in sheep, cows and buffalo respectively by PCR. Statistical analysis revealed a significant association between the age of sheep and the detection of OvHV-2. Seven cows and one buffalo serum samples tested positive for ELISA. Clinical findings in bovids were consistent with typical MCF signs, and histopathological results revealed multi-organ involvement characterised by necrotising vasculitis and lymphoid hyperplasia. The nucleotide pairwise identity matrix revealed 99.5% identity between the sequences obtained in the study with sequences from other states. The phylogenetic analysis of partial tegument protein sequences from bovid and sheep samples suggested a close genetic relationship between the local OvHV-2 strains and those from various global regions. Crucially, this study underscores the widespread presence of SA-MCF in Karnataka, with significant implications for both livestock management and wildlife conservation.


Asunto(s)
Búfalos , Gammaherpesvirinae , Fiebre Catarral Maligna , Filogenia , Animales , Fiebre Catarral Maligna/virología , Fiebre Catarral Maligna/transmisión , Fiebre Catarral Maligna/epidemiología , Fiebre Catarral Maligna/patología , India/epidemiología , Ovinos , Gammaherpesvirinae/genética , Gammaherpesvirinae/aislamiento & purificación , Gammaherpesvirinae/clasificación , Bovinos , Búfalos/virología , Enfermedades de las Ovejas/virología , Enfermedades de las Ovejas/transmisión , Enfermedades de las Ovejas/epidemiología , Enfermedades de las Ovejas/patología , Femenino , Prevalencia , Ensayo de Inmunoadsorción Enzimática/veterinaria , Enfermedades de los Bovinos/virología , Enfermedades de los Bovinos/epidemiología , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/patología , Reacción en Cadena de la Polimerasa/veterinaria
2.
Proc Natl Acad Sci U S A ; 121(32): e2404536121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39088396

RESUMEN

Alcelaphine gammaherpesvirus 1 (AlHV-1) asymptomatically persists in its natural host, the wildebeest. However, cross-species transmission to cattle results in the induction of an acute and lethal peripheral T cell lymphoma-like disease (PTCL), named malignant catarrhal fever (MCF). Our previous findings demonstrated an essential role for viral genome maintenance in infected CD8+ T lymphocytes but the exact mechanism(s) leading to lymphoproliferation and MCF remained unknown. To decipher how AlHV-1 dysregulates T lymphocytes, we first examined the global phenotypic changes in circulating CD8+ T cells after experimental infection of calves. T cell receptor repertoire together with transcriptomics and epigenomics analyses demonstrated an oligoclonal expansion of infected CD8+ T cells displaying effector and exhaustion gene signatures, including GZMA, GNLY, PD-1, and TOX2 expression. Then, among viral genes expressed in infected CD8+ T cells, we uncovered A10 that encodes a transmembrane signaling protein displaying multiple tyrosine residues, with predicted ITAM and SH3 motifs. Impaired A10 expression did not affect AlHV-1 replication in vitro but rendered AlHV-1 unable to induce MCF. Furthermore, A10 was phosphorylated in T lymphocytes in vitro and affected T cell signaling. Finally, while AlHV-1 mutants expressing mutated forms of A10 devoid of ITAM or SH3 motifs (or both) were able to induce MCF, a recombinant virus expressing a mutated form of A10 unable to phosphorylate its tyrosine residues resulted in the lack of MCF and protected against a wild-type virus challenge. Thus, we could characterize the nature of this γ-herpesvirus-induced PTCL-like disease and identify an essential mechanism explaining its development.


Asunto(s)
Linfocitos T CD8-positivos , Gammaherpesvirinae , Animales , Linfocitos T CD8-positivos/inmunología , Gammaherpesvirinae/genética , Gammaherpesvirinae/inmunología , Bovinos , Fiebre Catarral Maligna/virología , Fiebre Catarral Maligna/inmunología , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología
3.
Microorganisms ; 12(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39203450

RESUMEN

The Macavirus genus, Gammaherpesvirinae subfamily, Herpesviridae family, contains ovine gammaherpesvirus 2 (OvGHV2), the cause of sheep-associated malignant catarrhal fever (SA-MCF). Members of the Macavirus genus associated with the development of malignant catarrhal fever (MCF) in their respective hosts share the 15A antigenic epitope, are conserved within the DNA polymerase gene and are collectively referred to as the malignant catarrhal fever virus (MCFV) complex. The ability of MCFV and/or OvGHV2 to produce abortions in ruminants is currently unknown, with little documentation of infections by these agents in bovine fetuses. This report presents the findings observed due to the detection of OvGHV2 DNA and MCFV tissue antigens in aborted bovine fetuses from southern Brazil. Four aborted bovine fetuses from three farms, located in a geographical region of Paraná State with elevated immunohistochemical (IHC) prevalence of MCFV tissue antigens, with gestational ages varying between 78 to 208 days were investigated. Significant gross and histopathological alterations were not observed in any of these fetuses. An IHC assay using the 15A-monoclonal antibody (15A-MAb), which is based on the 15A antigenic epitope of Macavirus, identified MCFV tissue antigens in multiple organs from two fetuses (#1 and #4); however, positive immunoreactivity to the 15A-MAb IHC assay was not detected in Fetus #2 and #3. Molecular testing amplified OvGHV2 DNA only from the myocardium and lungs of Fetus #1 that had positive intracytoplasmic immunoreactivity to the 15A-MAb IHC assay in these tissues. Furthermore, infections by Leptospira spp. were confirmed by molecular assays in fetuses #1, #3, and #4, while PCR detected Neospora caninum in the myocardium of Fetus #2. Additionally, molecular assays to identify well-known fetopathy agents of cattle, including bovine viral diarrhea virus, bovine alphaherpesvirus 1, Histophilus somni, and Listeria monocytogenes, did not amplify the nucleic acids of these pathogens. PCR assays to identify bovine gammaherpesvirus 6 (BoGHV6), another Macavirus known to infect cattle in Brazil, were unsuccessful. These findings confirmed that the 15A-MAb IHC assay can be efficiently used to detect MCFV antigens in organs of aborted bovine fetuses. The identification of MCFV antigens with the simultaneous detection of OvGHV2 DNA confirmed that Fetus #1 was infected by OvGHV2 and added to the few descriptions of this infection in aborted fetuses of ruminants worldwide. Moreover, the IHC detection of MCFV in multiple organs of Fetus #4, without the molecular detection of OvGHV2 or BoGHV6, may suggest that this fetus was infected by a Macavirus that was not previously diagnosed in cattle herds from Brazil. These findings strongly suggest that OvGHV2 and MCFV can produce transplacental infections in cattle.

4.
Pathogens ; 13(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38921812

RESUMEN

Ovine gammaherpesvirus 2 (OvGHV2), is a Macavirus and the cause of sheep-associated malignant catarrhal fever (SA-MCF), in which sheep are the asymptomatic reservoir hosts. Susceptible mammalian populations infected by OvGHV2 may develop clinical SA-MCF or subclinical infections. All members of the Macavirus genus known to be associated with MCF are collectively referred to as the MCF virus (MCFV) complex. This report describes the occurrence of subclinical OvGHV2-related infections in free-ranging wild boars (Sus scrofa) from southern Brazil. Specific body organs (n = 14) and biological samples (nasal and oral swabs; n = 17) were collected from 24 asymptomatic wild boars from a conservation unit located within the Central-eastern mesoregion of Paraná State. Organs were processed to observe histopathological patterns suggestive of diseases of domestic animals; only pulmonary samples were used in an immunohistochemical assay designed to detect MCFV tissue antigens. Furthermore, all samples were submitted to molecular assays designed to detect the OvGHV2 tegument protein gene. Viral-induced pneumonia was diagnosed in two wild boars; one of these contained OvGHV2 DNA, with MCFV antigens identified in the other. Additionally, MCFV tissue antigens were detected within pulmonary epithelial cells of the lungs with and without pulmonary disease. Collectively, OvGHV2 was detected in 37.5% (9/24) of all wild boars, with detection occurring in the organs of 57.1% (8/14) wild boars and the oral cavity of one animal. These results demonstrated that these wild boars were subclinically infected by OvGHV2, and that infection produced typical pulmonary alterations. In addition, the detection of OvGHV2 within the oral cavity of one wild boar may suggest that this animal may be a potential disseminator of this pathogen to susceptible animal populations, including livestock and wildlife, acting as a possible bridge host for OvGHV2. Furthermore, infection by OvGHV2 probably occurred due to incidental contact with asymptomatic sheep maintained within the surrounding rural areas and not within the conservation units.

5.
Braz J Microbiol ; 55(2): 1949-1959, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696038

RESUMEN

Ovine gammaherpesvirus 2 (OvGHV2) produces sheep-associated malignant catarrhal fever (SA-MCF), a frequently lethal, lymphoproliferative disease that is characterized by widespread vascular lesions. Most studies that evaluated the viral load in tissues of animals with SA-MCF were done in the Northern Hemisphere, with scant information from the Southern part of the globe. This study investigated the viral load of OvGHV2 in the tissues of cattle and an underdeveloped fetus with SA-MCF from three distinct biomes of Brazil. All animals had clinical and histopathological manifestations consistent with SA-MCF. Molecular testing identified the OvGHV2 tegument protein and glycoprotein B genes in the tissues of all animals and the fetus. Viral quantification based on the DNA polymerase gene detected elevated loads of OvGHV2 in tissues with histopathological evidence of SA-MCF and organs with unknown histological data, except for the tissues of the fetus, where the viral load was comparatively reduced. The viral loads detected in multiple organs of cattle from this study with SA-MCF are consistent with those identified in different animal species from the USA and Europe. The detection of a low viral load of OvGHV2 in fetal tissue confirmed transplacental dissemination since elevated viral loads were detected in multiple tissues of the cow with SA-MCF. Furthermore, the elevated viral loads detected in the pulmonary tissues of cattle with interstitial pneumonia indicate that OvGHV2 is an inductor of pulmonary disease in cattle.


Asunto(s)
Gammaherpesvirinae , Fiebre Catarral Maligna , Carga Viral , Animales , Fiebre Catarral Maligna/virología , Fiebre Catarral Maligna/patología , Gammaherpesvirinae/aislamiento & purificación , Gammaherpesvirinae/genética , Bovinos , Brasil , Ovinos , Femenino , Enfermedades de las Ovejas/virología , Enfermedades de las Ovejas/patología , ADN Viral/genética , Enfermedades de los Bovinos/virología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Feto/virología
6.
Pathogens ; 13(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38535562

RESUMEN

Ovine herpesvirus 2 (OvHV-2) and bovine herpesvirus 4 (BoHV-4) are gamma herpesviruses that belong to the genera Macavirus and Rhadinovirus, respectively. As with all herpesviruses, both OvHV-2 and BoHV-4 express glycoprotein B (gB), which plays an essential role in the infection of host cells. In that context, it has been demonstrated that a BoHV-4 gB-null mutant is unable to infect host cells. In this study, we used homologous recombination to insert OvHV-2 ORF 8, encoding gB, into the BoHV-4 gB-null mutant genome, creating a chimeric BoHV-4 virus carrying and expressing OvHV-2 gB (BoHV-4∆gB/OvHV-2-gB) that was infectious and able to replicate in vitro. We then evaluated BoHV-4∆gB/OvHV-2-gB as a potential vaccine candidate for sheep-associated malignant catarrhal fever (SA-MCF), a fatal disease of ungulates caused by OvHV-2. Using rabbits as a laboratory model for MCF, we assessed the safety, immunogenicity, and efficacy of BoHV-4∆gB/OvHV-2-gB in an immunization/challenge trial. The results showed that while BoHV-4∆gB/OvHV-2-gB was safe and induced OvHV-2 gB-specific humoral immune responses, immunization conferred only 28.5% protection upon challenge with OvHV-2. Therefore, future studies should focus on alternative strategies to express OvHV-2 proteins to develop an effective vaccine against SA-MCF.

7.
Braz J Microbiol ; 55(2): 1923-1929, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38478359

RESUMEN

Ovine gammaherpesvirus 2 (OvGHV2) is a member of Macavirus genus, subfamily Gammaherpesvirinae, family Herpesviridae, and causes sheep associated-malignant catarrhal fever (SA-MCF) in a wide range of ungulates. However, no descriptions of SA-MCF and/or infections due to OvGHV2 were identified in the wild boar (Sus scrofa). This study investigated the occurrence of OvGHV2 in the lungs (n = 44) of asymptomatic, free ranging wild boars captured in several regions of Paraná State, Southern Brazil. A PCR assay targeting the OvGHV2 tegument protein gene amplified OvGHV2 DNA in 4.55% (2/44) of the pulmonary tissues evaluated. Sequence analysis confirmed that the OvGHV2 strains herein identified have 98.4% deduced amino acid (aa) sequence identity with the prototype strain of OvGHV2 and 96.4-100% aa identity with similar strains of OvGHV2 detected in several animal species from diverse countries. These findings confirmed that these two wild boars were infected by OvGHV2, represent the first description of this infection in these animals, and add to the number of pathogens identified in this animal species. Furthermore, these findings contrast earlier descriptions of OvGHV2 in swine since in all previous reports the infected pigs demonstrated clinical manifestations of disease. Consequently, these wild boars from Southern Brazil were subclinically infected or suffered asymptomatic infections by OvGHV2.


Asunto(s)
Gammaherpesvirinae , Infecciones por Herpesviridae , Filogenia , Sus scrofa , Enfermedades de los Porcinos , Animales , Brasil , Gammaherpesvirinae/genética , Gammaherpesvirinae/aislamiento & purificación , Gammaherpesvirinae/clasificación , Sus scrofa/virología , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Enfermedades de los Porcinos/virología , Porcinos , Pulmón/virología , ADN Viral/genética
8.
Virol J ; 21(1): 49, 2024 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395934

RESUMEN

BACKGROUND: Viruses within the γ-herpesviruses subfamily include the causative agents of Malignant Catarrhal Fever (MCF) in several species of the order Artiodactyla. MCF is a usually fatal lymphoproliferative disease affecting non-adapted host species. In adapted host species these viruses become latent and recrudesce and transmit during times of stress or immunosuppression. The undetected presence of MCF-causing viruses (MCFVs) is a risk to non-adapted hosts, especially within non-sympatric zoological collections. This study investigated the presence of MCFVs in six different zoological collections in the UK, to evaluate the presence of subclinical/latent MCFVs in carrier animals. METHODS: One-hundred and thirty eight samples belonging to 54 different species of Artiodactyla were tested by Consensus Pan-herpes PCR. The positive samples were sequenced and subjected to phylogenetic analyses to understand their own evolutionary relationships and those with their hosts. RESULTS: Twenty-five samples from 18 different species tested positive. All viruses but one clustered in the γ-herpesvirus family and within the Macavirus as well as the non-Macavirus groups (caprinae and alcelaphinae/hippotraginae clusters, respectively). A strong association between virus and host species was evident in the Macavirus group and clustering within the caprinae group indicated potential pathogenicity. CONCLUSION: This study shows the presence of pathogenic and non-pathogenic MCFVs, as well as other γ-herpesviruses, in Artiodactyla species of conservation importance and allowed the identification of new herpesviruses in some non-adapted species.


Asunto(s)
Artiodáctilos , Herpesviridae , Fiebre Catarral Maligna , Animales , Bovinos , Filogenia , Herpesviridae/genética , Rumiantes , Fiebre Catarral Maligna/patología
9.
J Vet Diagn Invest ; 36(2): 243-247, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212885

RESUMEN

Malignant catarrhal fever (MCF), caused by ovine herpesvirus 2 (OvHV2; Orthoherpesviridae, Macavirus ovinegamma2), has sheep as natural hosts. OvHV2 is an important macavirus globally that induces fatal disease in dead-end hosts. Goats, which can be infected subclinically with OvHV2, rarely develop MCF. A 28-wk-old female goat was presented with fever and multifocal crusty skin lesions. Histologic examination of a skin biopsy suggested erythema multiforme (EM), with pyoderma and dermal vasculitis. The doe was euthanized and subjected to postmortem and histologic examination. MCF was suspected and PCR assays for macaviruses were performed, followed by immunohistochemistry (IHC) for OvHV2 latency-associated nuclear antigen (oLANA), RNA in situ hybridization for Ov2.5 mRNA, and IHC to characterize infiltrating leukocytes. The main postmortem finding was severe multifocal ulcerative dermatitis with macrophage- and T cell-mediated arteritis. The latter was also detected in kidney, spleen, heart, and intestinal wall. The PCR assay detected high loads of OvHV2 in tissues. OvHV2 oLANA and Ov2.5 mRNA were expressed within the lesions in leukocytes, endothelial cells, fibroblasts, and/or keratinocytes. Our case confirms that MCF can initially manifest clinically as a skin disease in goats and as EM with confirmed viral etiology.


Asunto(s)
Enfermedades de los Bovinos , Eritema Multiforme , Gammaherpesvirinae , Enfermedades de las Cabras , Fiebre Catarral Maligna , Enfermedades de las Ovejas , Femenino , Bovinos , Animales , Ovinos , Fiebre Catarral Maligna/diagnóstico , Cabras , Células Endoteliales/patología , Eritema Multiforme/diagnóstico , Eritema Multiforme/veterinaria , ARN Mensajero , Gammaherpesvirinae/genética , Enfermedades de las Cabras/diagnóstico , Enfermedades de las Ovejas/patología
10.
Braz J Microbiol ; 55(1): 855-866, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37999912

RESUMEN

The Macavirus, ovine gammaherpesvirus 2 (OvGHV2), is the cause of sheep-associated malignant catarrhal fever (SA-MCF). Although SA-MCF occurs in a wide range of mammalian hosts, there are few descriptions of this disease and/or infection in goats. This report describes the findings observed in a goat that was infected by OvGHV2 and adds to the rare description of this infection in this animal species. A 6.5-year-old, female, Anglo Nubian goat, with a neurological syndrome, that was euthanized after severe esophageal obstruction was investigated to determine the cause of the brain disease. Histopathology revealed cerebral cortical edema, hemorrhagic rhombencephalitis, severe hepatic necrosis, and atrophic enteritis. An immunohistochemical (IHC) assay identified intracytoplasmic antigens of a malignant catarrhal fever virus (MCFV) within epithelial cells of the intestine, liver, lungs, and kidneys. A semi-nested PCR assay amplified the partial fragment of the OvGHV2 tegument protein gene from the intestine, confirming that the MCFV identified by IHC was OvGHV2. A qPCR assay that targeted the OvGHV2 polymerase gene revealed an elevated quantification cycle (Cq), while nanoplate-based digital PCR (dPCR) detected low viral copy load within the OvGHV2 DNA. Furthermore, the nucleic acids of several disease pathogens associated with diseases in ruminants were not amplified. However, the exact cause of the neurological syndrome remained obscure since nucleic acids of neurological disease pathogens such as bovine viral diarrhea virus, bovine alphaherpesvirus 1 and 5, Histophilus somni, and OvGHV2 were not detected from the brain. Collectively, the results of the Cq and dPCR confirmed that this goat was infected with a low viral load of OvGHV2, which probably was insufficient to induce the typical histopathological alterations and subsequent clinical manifestations associated with SA-MCF and/or infections by OvGHV2. Therefore, elevated viral loads of OvGHV2 would have been required for the development of histological lesions and/or clinical manifestations of SA-MCF in this goat. Furthermore, the dPCR methodology can be used for the efficient detection and quantification of OvGHV2 DNA in animals with or without clinical and/or histopathological evidence of SA-MCF. Additionally, since previous cases of OvGHV2 infections in goats did not have the typical clinical manifestations of SA-MCF, one wonders if this Macavirus can induce SA-MCF in goats.


Asunto(s)
Gammaherpesvirinae , Fiebre Catarral Maligna , Ácidos Nucleicos , Ovinos , Femenino , Animales , Bovinos , Fiebre Catarral Maligna/patología , Cabras , Gammaherpesvirinae/genética , ADN , Reacción en Cadena de la Polimerasa/métodos
11.
Trop Anim Health Prod ; 55(5): 344, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37782428

RESUMEN

Malignant catarrhal fever (MCF) is a viral infectious disease caused by specific members of the Macavirus genus that are referred to as the MCF virus (MCFV) complex group. This study determined the prevalence of MCFV-associated infections in cattle within the mesoregions of the state of Paraná, Southern Brazil, by analyzing the histopathologic patterns of renal lesions in association with positive immunoreactivity to intralesional antigens of MCFV. Intracytoplasmic MCFV antigens were identified in 41.7% (48/115) of the kidneys of cattle evaluated. Lymphocytic interstitial nephritis, vascular degeneration, and ballooning degeneration of the renal tubules were the principal histopathological findings associated with positive immunoreactivity to MCFV. The results indicate that MCFV infections are endemic within the state of Paraná and suggest that the kidney can be of diagnostic value in suspected cases of MCF-associated infections in cattle. Furthermore, the utilization of an in situ diagnostic technique resulted in the detection of a greater number of cases of infections by MCFV than previously identified using other diagnostic methods. Additionally, degenerative vascular lesions of the kidney should be considered during the establishment of a histological diagnosis of MCFV-induced infections in cattle in the absence of fibrinoid change or necrotizing vasculitis.


Asunto(s)
Enfermedades de los Bovinos , Gammaherpesvirinae , Fiebre Catarral Maligna , Bovinos , Animales , Fiebre Catarral Maligna/epidemiología , Brasil/epidemiología , Estudios Retrospectivos , Riñón , Enfermedades de los Bovinos/epidemiología
12.
Vet Pathol ; 60(6): 876-887, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37515544

RESUMEN

Granulomatous mural folliculitis (GMF) is an uncommon reaction pattern occasionally observed in nonadapted ruminant hosts infected with malignant catarrhal fever viruses. This report characterizes GMF and concurrent cutaneous lesions in 16 goats with crusting dermatitis using histochemistry including hematoxylin and eosin, periodic acid-Schiff, and Grocott's methenamine silver, and immunohistochemistry for CD3, CD20, ionized calcium binding adaptor molecule 1, and cytokeratin AE1/3. Infiltrates in all 16 GMF cases consisted of macrophages and fewer T lymphocytes, and variably included eosinophils, multinucleated histiocytic giant cells, and/or neutrophils. Formalin-fixed paraffin-embedded skin and fresh skin samples from caprine GMF cases were tested using pan-herpesvirus nested conventional polymerase chain reaction (PCR) and partial sequencing, ovine herpesvirus-2 (OvHV-2) real-time PCR, and OvHV-2 colorimetric in situ hybridization (ISH). Five of 16 goats with GMF (31%) were PCR positive for malignant catarrhal fever viruses, including caprine herpesvirus 3 in 1 goat and OvHV-2 in 4 goats. Three goats also had positive intranuclear OvHV-2 hybridization signal in follicular keratinocytes, among other cell types, localized to areas of GMF. Herpesviruses were not detected in the formalin-fixed paraffin-embedded skin of 9 goats without GMF. This case series describes relatively frequent detections of malignant catarrhal fever viruses in the skin of goats with GMF, including the first report of caprine herpesvirus 3, and localizes OvHV-2 infected follicular keratinocytes within areas of GMF.


Asunto(s)
Enfermedades de los Bovinos , Foliculitis , Gammaherpesvirinae , Herpesviridae , Fiebre Catarral Maligna , Enfermedades de las Ovejas , Bovinos , Animales , Ovinos , Cabras , Factor de Maduración de la Glia , Gammaherpesvirinae/genética , Rumiantes , Foliculitis/veterinaria , Foliculitis/patología , Hibridación in Situ/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Formaldehído
13.
Viruses ; 15(3)2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36992358

RESUMEN

Upon the sudden death of two captive roan antelopes (Hippotragus equinus) that had suffered from clinical signs reminiscent of malignant catarrhal fever (MCF) in a German zoo, next generation sequencing of organ samples provided evidence of the presence of a novel gammaherpesvirus species. It shares 82.40% nucleotide identity with its so far closest relative Alcelaphine herpesvirus 1 (AlHV-1) at the polymerase gene level. The main histopathological finding consisted of lympho-histiocytic vasculitis of the pituitary rete mirabile. The MCF-like clinical presentation and pathology, combined with the detection of a nucleotide sequence related to that of AlHV-1, indicates a spillover event of a novel member of the genus Macavirus of the Gammaherpesvirinae, probably from a contact species within the zoo. We propose the name Alcelaphine herpesvirus 3 (AlHV-3) for this newly identified virus.


Asunto(s)
Antílopes , Gammaherpesvirinae , Fiebre Catarral Maligna , Bovinos , Animales , Fiebre Catarral Maligna/genética , Fiebre Catarral Maligna/patología , Gammaherpesvirinae/genética , Secuencia de Bases , Secuenciación de Nucleótidos de Alto Rendimiento
14.
Viruses ; 15(2)2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36851740

RESUMEN

Gammaherpesviruses (γHVs) include viruses that can induce lymphoproliferative diseases and tumors. These viruses can persist in the long term in the absence of any pathological manifestation in their natural host. Alcelaphine gammaherpesvirus 1 (AlHV-1) belongs to the genus Macavirus and asymptomatically infects its natural host, the wildebeest (Connochaetes spp.). However, when transmitted to several susceptible species belonging to the order Artiodactyla, AlHV-1 is responsible for the induction of a lethal lymphoproliferative disease, named wildebeest-derived malignant catarrhal fever (WD-MCF). Understanding the pathogenic mechanisms responsible for the induction of WD-MCF is important to better control the risks of transmission and disease development in susceptible species. The aim of this review is to synthesize the current knowledge on WD-MCF with a particular focus on the mechanisms by which AlHV-1 induces the disease. We discuss the potential mechanisms of pathogenesis from viral entry into the host to the maintenance of viral genomes in infected CD8+ T lymphocytes, and we present current hypotheses to explain how AlHV-1 infection induces a peripheral T cell lymphoma-like disease.


Asunto(s)
Antílopes , Gammaherpesvirinae , Linfoma de Células T Periférico , Fiebre Catarral Maligna , Bovinos , Animales
15.
Animals (Basel) ; 13(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36766305

RESUMEN

Bovine gammaherpesvirus 6 (BoGHV6), previously known as bovine lymphotropic virus, is a member of the Macavirus genus, subfamily Gammaherpesvirinae. Other members of the genus Macavirus include viruses that produce malignant catarrhal fever (MCF) in mammalian hosts, collectively referred to as the MCF virus (MCFV) complex, and the porcine lymphotropic herpesvirus (PLHV). However, the current role of BoGHV6 in the development of diseases and/or disease syndromes remains uncertain and controversial. This paper investigated the participation of BoGHV6 in the development of pulmonary disease in a cow with interstitial pneumonia by histopathology and molecular testing. Tissue antigens of common viral agents of respiratory diseases and Mycoplasma bovis were not identified by immunohistochemistry. Additionally, molecular assays designed to amplify common bacterial and viral pathogens of pulmonary disease did not amplify the nucleic acids of these agents. However, a pan-PCR assay amplified the DNA of the herpesvirus polymerase gene, while the specific BoGHV6 nested-PCR assay amplified the partial fragment of the BoGHV6 polymerase gene derived from the pulmonary tissue with interstitial pneumonia. Phylogenetic analysis revealed that the BoGHV6 strain herein identified had 99.8% nucleotide (nt) sequence identity with reference strains of BoGHV6, but only 72.2-73.5% and 67.9-68.6% nt identity with reference strains of MCFV and PLHV, respectively. Consequently, these results suggest that BoGHV6 was associated with the pulmonary disease observed in this cow.

16.
Braz J Microbiol ; 54(2): 1169-1179, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36759491

RESUMEN

This report investigated the cause of cattle mortality in two farms in Southern Brazil. The tissues of one animal from each farm (animals #1 and #2) respectively were used in pathological and molecular investigations to determine the possible cause of death. The principal pathological findings observed in animal #1 were pulmonary, myocardial, and encephalitic hemorrhages with vasculitis, and lymphoplasmacytic interstitial pneumonia with proliferative vascular lesions (PVL). The main pathological findings observed in animal #2 were purulent bronchopneumonia, hemorrhagic myocarditis, and lymphoplasmacytic interstitial pneumonia with PVL. An immunohistochemical assay detected intralesional antigens of a malignant catarrhal fever virus (MCFV) from multiple tissues of animal #2 while PCR confirmed that the MCFV amplified was ovine gammaherpesvirus 2 (OvGHV2), genus Macavirus, subfamily Gammaherpesvirinae; OvGHV2 was also amplified from multiple tissues of animal #1. Furthermore, PCR assays amplified Histophilus somni DNA from multiple fragments of both animals. However, the nucleic acids of Mannheimia haemolytica, Pasteurella multocida, Mycoplasma bovis, bovine respiratory syncytial virus, bovine alphaherpesvirus virus 1 and 5, bovine coronavirus, and bovine parainfluenza virus 3 were not amplified from any of the tissues analyzed, suggesting that these pathogens did not participate in the development of the lesions herein described. These findings demonstrated that both animals were concomitantly infected by H. somni and OvGHV2 and developed the septicemic and encephalitic manifestations of H. somni. Furthermore, the interstitial pneumonia observed in cow #2 was more likely associated with infection by OvGHV2.


Asunto(s)
Enfermedades de los Bovinos , Gammaherpesvirinae , Mannheimia haemolytica , Animales , Femenino , Ovinos , Bovinos , Enfermedades de los Bovinos/microbiología , Brasil/epidemiología , Gammaherpesvirinae/genética
17.
Front Vet Sci ; 10: 1321172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38362467

RESUMEN

Introduction: Herpesvirus infections have been highlighted as emerging diseases affecting wildlife health and the conservation of several taxa. Malignant catarrhal fever (MCF) and infectious keratoconjunctivitis (IKC) are two viruses that infect wild ruminants. Nevertheless, epidemiological data on herpesviruses in South American wild ruminants are limited. An outbreak of caprine gammaherpesvirus-2 (CpHV-2) that recently was suspected as the cause of MCF in southern pudus (Pudu puda) prompted the need to conduct molecular screenings in Chilean cervids to understand the epidemiology of herpesviruses. The aim of this study was to determine the occurrence and genetic diversity of herpesviruses in free-ranging cervids from Chile. Methods: Herpesvirus infection was assessed in antemortem blood samples (n = 86) from pudus (n = 81) and huemuls (Hippocamelus bisulcus) (n = 5), as well as postmortem samples of spleen (n = 24) and lung (n = 3) from pudus, using a nested pan-herpesvirus PCR assay. Results: Combining all suitable sample types, DNA of pudu gammaherpesvirus-1 was detected in five pudues and five huemuls, with an overall prevalence of 9.90% (n = 10/101; 95% CI = 5.11-17.87%). One pudu tested positive for ovine gammaherpesvirus-2 (n = 1/96; 1.04%; 95% CI = 0.05-6.49%), and one pudu tested positive for a Macavirus sequence with 98.63 similarity to ovine gammaherpesvirus-2 (n = 96; 1.04%; 95% CI = 0.05-6.49%). Discussion: To the best of our knowledge, this is the first report of a herpesvirus in huemul and of ovine gammaherpesvirus-2 in Chile. Our results also confirm the active circulation of herpesvirus in free-ranging cervids in Chilean Patagonia, and as such, MCF should be considered as a possible cause of disease in free-ranging Chilean pudus and livestock species. Further research is necessary to develop a plan of systematic monitoring (serological and pathological screening) of herpesviruses in Chilean wild and domestic ruminants to understand their diversity and impact on animal health and conservation.

18.
Vaccines (Basel) ; 10(12)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36560568

RESUMEN

Malignant catarrhal fever (MCF) is a complex and often fatal disease of ungulates. Effective vaccines are needed to avoid MCF outbreaks and mitigate losses. This study aimed to evaluate a sheep-associated MCF (SA-MCF) vaccine candidate targeting ovine herpesvirus 2 (OvHV-2) glycoprotein B (gB). Rabbits were used as a laboratory animal model to test the safety, immunogenicity, and protective efficacy of a chimeric virus consisting of a recombinant, non-pathogenic strain of alcelaphine herpesvirus-1 encoding OvHV-2 ORF8 to express gB (AlHV-1∆ORF73/OvHV-2-ORF8). Viral-vectored immunizations were performed by using the AlHV-1∆ORF73/OvHV-2-ORF8 chimera alone or as a DNA prime (OvHV-2-ORF8)-virus boost regimen. The viral vector was inoculated by intravenous or intramuscular routes and the DNA was delivered by intradermal shots using a gene gun. The vaccine candidates were deemed safe as no clinical signs were observed following any of the immunizations. Anti-OvHV-2 gB antibodies with neutralizing activity were induced by all immunogens. At three weeks post-final immunization, all animals were challenged intranasally with a lethal dose of OvHV-2. MCF protection rates ranging from 66.7% to 71.4% were observed in vaccinated rabbits, while all mock-vaccinated animals developed the disease. The significant protective efficacy obtained with the vaccine platforms tested in this study encourages further trials in relevant livestock species, such as cattle and bison.

19.
Viruses ; 14(12)2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36560701

RESUMEN

The family Herpesviridae includes viruses identified in mammals, birds and reptiles. All herpesviruses share a similar structure, consisting of a large linear double-stranded DNA genome surrounded by a proteic icosahedral capsid further contained within a lipidic bilayer envelope. The continuous rise of genetic variability and the evolutionary selective pressure underlie the appearance and consolidation of novel viral strains. This applies also to several gamma(γ)-herpesviruses, whose role as primary pathogen has been often neglected and, among these to newly emerged viruses or virus variants responsible for the development of Malignant Catarrhal Fever (MCF) or MCF-like disease. The identification of γ-herpesviruses adapted to new zoological hosts requires specific molecular tools for detection and characterization. These viruses can cause MCF in livestock and wild animals, a disease generally sporadic but with serious welfare implications and which, in many cases, leads to death within a few days from the appearance of the clinical signs. In the absence of a vaccine, the first step to improve disease control is based on the improvement of molecular tools to identify and characterize these viruses, their phylogenetic relationships and evolutionary interaction with the host species. A Panherpes PCR-specific test, based on the conserved DNA polymerase gene, employing consensus/degenerate and deoxyinosine-substituted primers followed by sequencing, is still the preferred diagnostic test to confirm and characterize herpesviral infections. The drawback of this test is the amplification of a relatively short sequence, which makes phylogenetic analysis less stringent. Based on these diagnostic requirements, and with a specific focus on γ-herpesviruses, the present review aims to critically analyze the currently available methods to identify and characterize novel MCFV strains, to highlight advantages and drawbacks and to identify the gaps to be filled in order to address research priorities. Possible approaches for improving or further developing these molecular tools are also suggested.


Asunto(s)
Artiodáctilos , Herpesviridae , Fiebre Catarral Maligna , Bovinos , Animales , Fiebre Catarral Maligna/diagnóstico , Filogenia , Rumiantes , Herpesviridae/genética
20.
Vet Sci ; 9(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36006357

RESUMEN

Using a multidisciplinary approach, this report describes a clinical case of malignant catarrhal fever (MCF) occurring in a calf, which shared the pasture with sheep on a farm located in the island of Sardinia (Italy). We confirmed the conventional clinico-histopathological features of MCF, as well was the presence of Ovine herpesvirus type 2 (OvHV-2) DNA in several tissues, employing histological and virological investigations. The phylogenetic analysis revealed that this Sardinian OvHV-2 strain is genetically similar to all the other Italian strains. By Real Time PCR examinations of blood samples collected across Sardinia's sheep population, which is considered the most important reservoir species, we discovered an OvHV-2 prevalence ranging from 20 to 30 percent. Despite the high prevalence of OvHV-2 in the Sardinian sheep population, clinical disease in bovine remains sporadic; further investigations are needed to understand the risk factors that regulate this epidemiological aspect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA