Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 909
Filtrar
1.
Development ; 151(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39092608

RESUMEN

Melanocytes evolved to produce the melanin that gives colour to our hair, eyes and skin. The melanocyte lineage also gives rise to melanoma, the most lethal form of skin cancer. The melanocyte lineage differentiates from neural crest cells during development, and most melanocytes reside in the skin and hair, where they are replenished by melanocyte stem cells. Because the molecular mechanisms necessary for melanocyte specification, migration, proliferation and differentiation are co-opted during melanoma initiation and progression, studying melanocyte development is directly relevant to human disease. Here, through the lens of advances in cellular omic and genomic technologies, we review the latest findings in melanocyte development and differentiation, and how these developmental pathways become dysregulated in disease.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Melanocitos , Melanoma , Melanocitos/metabolismo , Melanocitos/citología , Humanos , Animales , Melanoma/patología , Melanoma/metabolismo , Melanoma/genética , Cresta Neural/metabolismo , Proliferación Celular , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética
2.
Heliyon ; 10(15): e35295, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170163

RESUMEN

Many autologous melanocytes are required for surgical treatment of depigmentation diseases such as vitiligo. However, primary cultured melanocytes have a limited number of in vitro passages. The production of functional epidermal melanocytes from stem cells provides an unprecedented source of cell therapy for vitiligo. This study explores the clinical application of melanocytes induced by hair follicle neural crest stem cells (HFNCSCs). This study established an in vitro differentiation model of HFNCSCs into melanocytes. Results demonstrate that most differentiated melanocytes expressed the proteins C-KIT, MITF, S-100B, TYRP1, TYRP2, and tyrosinase. The HFNCSC-derived melanocytes were successfully transplanted onto the dorsal skin of mice and survived in the local tissues, expressing marker protein of melanocytes. In conclusion, HFNCSCs in mice can be induced to differentiate into melanocytes under specific conditions. These induced melanocytes exhibit the potential to facilitate repigmentation in the lesion areas of vitiligo-affected mice, suggesting a promising avenue for therapeutic intervention.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39169669

RESUMEN

Photobiomodulation (PBM) using 830 nm light-emitting diode (LED) benefits tissue regeneration, wound healing and neural stimulation. However, there is not much exploration of its effect on melanocytes and ex vivo skin model. This study aims to investigate the mechanism behind the anti-melanogenic activity of 830 nm LED and provides evidence for its activity in human ex vivo skin model. Our results showed that 830 nm LED at fluences ranging from 5 to 20 J/cm2 inhibited melanosome maturation and reduced melanin content, tyrosinase activity and melanogenesis-related proteins. 830 nm LED inhibited the phosphorylation of AKT and its downstream FOXO3a, leading to nuclear translocation of FOXO3a. Furthermore, FOXO3a knockdown and AKT activator like SC79 could reverse the melanogenesis inhibition phenotype induced by 830 nm LED. In human ex vivo skin model, Fontana-Masson staining revealed a decrease in epidermal basal pigmentation after 830 nm LED irradiation. Taken together, 830 nm LED demonstrated the anti-melanogenic activity via FOXO3a.

4.
Cureus ; 16(7): e65428, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39184650

RESUMEN

Dermal melanocytosis includes various congenital and acquired pigmentary disorders characterized by dermal dendritic melanocytes. Blue nevi typically present as papulonodular lesions, whereas other dermal melanocytoses manifest as patches. This report describes a case of a blue nevus associated with acquired dermal melanocytosis on the back of a 46-year-old Japanese woman. The patient presented with a black nodule on a blue-greyish hyperpigmented area on the upper back. Histopathological analysis of the nodule confirmed a common blue nevus, whereas the adjacent hyperpigmented area showed features consistent with acquired dermal melanocytosis. Blue nevi and acquired dermal melanocytoses share a common pathophysiology involving ectopic melanocyte accumulation during embryogenesis. The coexistence of blue nevus and acquired dermal melanocytosis on the back is rare, highlighting the broad spectrum of dermal melanocytosis and the variability of its clinical manifestations. Recognition of such unusual presentations is critical for appropriate diagnosis and management.

5.
Sci Rep ; 14(1): 18842, 2024 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138334

RESUMEN

Fuchs endothelial corneal dystrophy is a heterogenous disease with multifactorial etiology, and genetic, epigenetic, and exogenous factors contributing to its pathogenesis. DNA damage plays a significant role, with ultraviolet-A (UV-A) emerging as a key contributing factor. We investigate the potential application of neuropeptide α-melanocyte stimulating hormone (α-MSH) in mitigating oxidative stress induced endothelial damage. First, we examined the effects of α-MSH on a cultured human corneal endothelial cell line (HCEnC-21T) exposed to hydrogen peroxide (H2O2) induced oxidative DNA damage. We performed immunofluorescence and flow cytometry to assess DNA damage and cell death in the cultured cells. Additionally, we used an established mouse model that utilizes ultraviolet light to induce corneal endothelial cell damage resulting in decreased CEnC number, increased cell size variability, and decreased percentage of hexagonal cells. This endothelial decompensation leads to an increase in corneal thickness. Following UV-A exposure, the mice were systemically treated with α-MSH, either immediately after exposure (early treatment) or beginning two weeks post-exposure (delayed treatment). To evaluate treatment efficacy, we analyzed CEnC density and morphology using in vivo confocal microscopy, and central corneal thickness using anterior segment optical coherence tomography. Our findings demonstrated that α-MSH treatment effectively protects HCEnC-21T from free-radical induced oxidative DNA damage and subsequent cell death. In vivo, α-MSH treatment, mitigated the loss of CEnC density, deterioration of cell morphology and suppression of the resultant corneal swelling. These results underline the potential application of α-MSH as a therapeutic agent for mitigating corneal endothelial damage.


Asunto(s)
Daño del ADN , Modelos Animales de Enfermedad , Endotelio Corneal , Distrofia Endotelial de Fuchs , Estrés Oxidativo , alfa-MSH , Animales , alfa-MSH/farmacología , Ratones , Endotelio Corneal/efectos de los fármacos , Endotelio Corneal/patología , Humanos , Distrofia Endotelial de Fuchs/patología , Distrofia Endotelial de Fuchs/tratamiento farmacológico , Daño del ADN/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Rayos Ultravioleta/efectos adversos , Línea Celular , Peróxido de Hidrógeno/farmacología
7.
J Invest Dermatol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182565

RESUMEN

Vitiligo is a common chronic autoimmune disease characterized by white macules and patches of the skin, having a negative impact on patients' life, and without any definitive cure at present. Identification of new compounds to reverse depigmentation is therefore a pressing need for this disease. The pharmacologic compounds phosphodiesterase-4 inhibitors (PDE4i) are small molecules with immunomodulatory properties, used for treatment of inflammatory dermatoses. PDE4i have shown repigmentation effects in vitiligo patients, in some case reports. We characterized the proliferative and melanogenic potential of two known PDE4i, crisaborole and roflumilast, and of a more recently designed compound, PF-07038124. We used two in vitro model systems, the primary human melanocyte culture and a 3D co-cultured skin model (MelanoDermTM), with an exploratory testing platform composed of complementary assays (spectrophotometry, melanin and proliferation assays, immunostaining, Fontana-Masson staining, qRT-PCR, western blot and whole transcriptome RNA-Sequencing). We identified that the treatment with PDE4i was associated with increased melanocyte proliferation and melanization in both in vitro models, and with increase in the melanogenic genes and proteins expression in cultured melanocytes. These effects were found to be enhanced by addition of α-MSH. Our findings support the further evaluation of PDE4i with or without α-MSH agonists in vitiligo trials.

8.
J Am Acad Dermatol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182674

RESUMEN

BACKGROUND: Vitiligo lesions are often challenging to repigment with conventional medical therapies. Surgical autologous melanocyte transfer methods can be utilized for stable vitiligo but demand specialized skills and equipment. A point-of-care autologous cell harvesting device was designed enabling simple preparation of autologous skin cell suspension (ASCS) containing melanocytes, keratinocytes, and fibroblasts providing a straightforward approach for cellular transplantation. OBJECTIVE: To evaluate the safety and effectiveness of ASCS for repigmentation of stable vitiligo lesions among adults. METHODS: A US multicenter, randomized, within-subject controlled trial compared ASCS to NB-UVB only (Control) in similar vitiligo lesions. ASCS was applied after laser skin resurfacing and followed by NB-UVB treatment. The primary effectiveness endpoint was the proportion of lesions achieving ≥80% repigmentation at week-24. Repigmentation durability was assessed at week-52. RESULTS: Among 25 subjects, 36% of ASCS-treated lesions achieved ≥80% repigmentation at week-24 compared to 0% for Control (p<0.025), with durability through week-52. The safety profile of ASCS was acceptable, with favorable patient- and investigator-reported outcomes. LIMITATIONS: Study sample size limited robust subgroup analyses. CONCLUSION: Application of ASCS is a safe and effective treatment for repigmentation of stable vitiligo lesions with the potential to improve health-related quality of life and reduce burden of disease.

9.
Ecancermedicalscience ; 18: 1716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021544

RESUMEN

Vitiligo is a disease characterised by the autoimmune destruction of melanocytes, manifesting as depigmentation of the skin. We present the case of a female patient with a history of breast cancer who developed vitiligo in the area of the treatment field 12 months after the end of radiotherapy. It has been reported in the literature that vitiligo can occur in patients with a history of vitiligo after radiotherapy, attributable to the Koebner phenomenon, where some treatments can induce new vitiligo lesions in the patient.

10.
Mol Pharm ; 21(8): 4004-4011, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38973113

RESUMEN

The purpose of this study was to examine how the introduction of ibuprofen (IBU) affected tumor-targeting and biodistribution properties of 177Lu-labeled IBU-conjugated alpha-melanocyte-stimulating hormone peptides. The IBU was used as an albumin binder and conjugated to the DOTA-Lys moiety without or with a linker to yield DOTA-Lys(IBU)-GG-Nle-CycMSHhex {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-Lys(IBU)-Gly-Gly-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-CONH2}, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex peptides. Their melanocortin-receptor 1 (MC1R) binding affinities were determined on B16/F10 melanoma cells first. Then the biodistribution of 177Lu-labeled peptides was determined on B16/F10 melanoma-bearing C57 mice at 2 h postinjection to choose the lead peptide for further examination. The full biodistribution and melanoma imaging properties of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex were further evaluated using B16/F10 melanoma-bearing C57 mice. DOTA-Lys(IBU)-GG-Nle-CycMSHhex, DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex, DOTA-Lys(Asn-IBU)-GGNle-CycMSHhex, and DOTA-Lys(Dab-IBU)-GGNle-CycMSHhex displayed the IC50 values of 1.41 ± 0.37, 1.52 ± 0.08, 0.03 ± 0.01, and 0.58 ± 0.06 nM on B16/F10 melanoma cells, respectively. 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex exhibited the lowest liver and kidney uptake among all four designed 177Lu peptides. Therefore, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was further evaluated for its full biodistribution and melanoma imaging properties. The B16/F10 melanoma uptake of 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex was 19.5 ± 3.12, 24.12 ± 3.35, 23.85 ± 2.08, and 10.80 ± 2.89% ID/g at 0.5, 2, 4, and 24 h postinjection, respectively. Moreover, 177Lu-DOTA-Lys(Asp-IBU)-GGNle-CycMSHhex could clearly visualize the B16/F10 melanoma lesions at 2 h postinjection. The conjugation of IBU with or without a linker to GGNle-CycMSHhex affected the MC1R binding affinities of the designed peptides. The charge of the linker played a key role in the liver and kidney uptake of 177Lu-Asp-IBU, 177Lu-Asn-IBU, and 177Lu-Dab-IBU. 177Lu-Asp-IBU exhibited higher tumor/liver and tumor/kidney uptake ratios than those of 177Lu-Asn-IBU and 177Lu-Dab-IBU, underscoring its potential evaluation for melanoma therapy in the future.


Asunto(s)
Ibuprofeno , Lutecio , alfa-MSH , Animales , Ratones , alfa-MSH/química , alfa-MSH/farmacocinética , Lutecio/química , Distribución Tisular , Ibuprofeno/química , Ibuprofeno/farmacocinética , Ibuprofeno/farmacología , Línea Celular Tumoral , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Ratones Endogámicos C57BL , Radioisótopos/química , Melanoma/metabolismo , Melanoma/tratamiento farmacológico , Albúminas/química , Radiofármacos/farmacocinética , Radiofármacos/química , Radiofármacos/farmacología , Péptidos/química , Péptidos/farmacocinética , Péptidos/farmacología , Femenino
11.
Neuropharmacology ; 257: 110058, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960135

RESUMEN

Postnatal hippocampal neurogenesis is essential for learning and memory. Hippocampal neural precursor cells (NPCs) can be induced to proliferate and differentiate into either glial cells or dentate granule cells. Notably, hippocampal neurogenesis decreases dramatically with age, partly due to a reduction in the NPC pool and a decrease in their proliferative activity. Alpha-melanocyte-stimulating hormone (α-MSH) improves learning, memory, neuronal survival and plasticity. Here, we used postnatally-isolated hippocampal NPCs from Wistar rat pups (male and female combined) to determine the role of the melanocortin analog [Nle4, D-Phe7]-α-MSH (NDP-MSH) in proliferation and fate acquisition of NPCs. Incubation of growth-factor deprived NPCs with 10 nM NDP-MSH for 6 days increased the proportion of Ki-67- and 5-bromo-2'-deoxyuridine (BrdU)-positive cells, compared to the control group, and these effects were blocked by the MC4R antagonist JKC-363. NDP-MSH also increased the proportion of glial fibrillar acidic protein (GFAP)/Ki-67, GFAP/sex-determining region Y-box2 (SOX2) and neuroepithelial stem cell protein (NESTIN)/Ki-67-double positive cells (type-1 and type-2 precursors). Finally, NDP-MSH induced peroxisome proliferator-activated receptor (PPAR)-γ protein expression, and co-incubation with the PPAR-γ inhibitor GW9662 prevented the effect of NDP-MSH on NPC proliferation and differentiation. Our results indicate that in vitro activation of MC4R in growth-factor-deprived postnatal hippocampal NPCs induces proliferation and promotes the relative expansion of the type-1 and type-2 NPC pool through a PPAR-γ-dependent mechanism. These results shed new light on the mechanisms underlying the beneficial effects of melanocortins in hippocampal plasticity and provide evidence linking the MC4R and PPAR-γ pathways in modulation of hippocampal NPC proliferation and differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Hipocampo , Células-Madre Neurales , Neurogénesis , Ratas Wistar , Receptor de Melanocortina Tipo 4 , alfa-MSH , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Receptor de Melanocortina Tipo 4/metabolismo , alfa-MSH/farmacología , alfa-MSH/análogos & derivados , Femenino , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Masculino , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Ratas , Células Cultivadas , Factores de Transcripción SOXB1/metabolismo , Animales Recién Nacidos , Proteína Ácida Fibrilar de la Glía/metabolismo , PPAR gamma/metabolismo
12.
Cureus ; 16(6): e63206, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39070423

RESUMEN

Waardenburg syndrome (WS) is an autosomal dominant genetic disorder characterized by the absence of melanocytes, leading to distinctive pigmentary abnormalities and sensorineural hearing loss. This case report describes extremely rare concurrent anomalies in a preterm male infant diagnosed with WS type 1. The newborn, delivered prematurely at 35 weeks due to maternal complications, presented with multiple congenital anomalies and required immediate resuscitation. He exhibited hallmark features of WS, including a white forelock, dystopia canthorum, and bilateral sensorineural hearing loss. Genetic testing confirmed a PAX3 gene mutation. The infant experienced significant respiratory and feeding challenges, necessitating intensive care. Management included mechanical ventilation, surfactant therapy, phototherapy for hyperbilirubinemia, and broad-spectrum antibiotics for suspected sepsis. The cardiac assessment revealed multiple anomalies, such as a patent foramen ovale and left ventricular hypertrophy, while renal ultrasound identified multicystic dysplastic kidney and bilateral hydronephrosis. Multidisciplinary care facilitated the infant's stabilization, transition to oral feeding, and ongoing specialized care. WS type 1 is associated with mutations in the PAX3 gene and presents with diverse clinical manifestations. Although renal and cardiac anomalies are uncommon in WS, their presence in this case underscores the complexity of the syndrome. Early intervention for hearing impairment and genetic counseling are critical for optimal outcomes. This report highlights the importance of a comprehensive and interdisciplinary approach to managing infants with WS, addressing both typical and atypical manifestations. It is worth noting that effective management of WS in neonates requires prompt identification and treatment of associated complications.

13.
Cureus ; 16(6): e61652, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38966437

RESUMEN

Bullous pemphigoid (BP) is an autoimmune skin disorder that causes fluid-filled blisters to appear on various body parts, often preceded by urticaria and pruritis. This case report describes the perifollicular melanocyte regeneration within diseased areas in a skin of color patient with BP. By reviewing the various pathologies that can result in melanocyte destruction and the basic science of melanocyte regeneration, we can better identify and explain this phenomenon to patients and lead to earlier diagnoses. Furthermore, due to the lack of published information on skin conditions in skin of color patients, this report can assist in raising awareness of an atypical BP presentation in the dermatological community.

14.
J Pathol ; 264(1): 30-41, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38989633

RESUMEN

The basement membrane zone is the interface between the epidermis and dermis, and it is disrupted in several skin conditions. Here, we report the results of a comprehensive investigation into the structural and molecular factors of the basement membrane zone in vitiligo, a dermatological disorder characterised by depigmented patches on the skin. Using electron microscopy and immunofluorescence staining, we confirmed abnormal basement membrane zone morphology and disrupted basement membrane zone architecture in human vitiliginous skin. Furthermore, we identified elevated expression of matrix metalloproteinase 2 (MMP2) in human dermal fibroblasts as a key factor responsible for basement membrane zone matrix degradation. In our in vitro and ex vivo models, overexpression of MMP2 in fibroblasts led to basement membrane zone disruption and melanocyte disappearance. Importantly, we reveal that the loss of melanocytes in vitiligo is primarily linked to their weakened adhesion to the basement membrane, mediated by binding between integrin ß1 and laminin and discoidin domain receptor 1 and collagen IV. Finally, inhibition of matrix metalloproteinase 2 expression reversed depigmentation in a mouse model of vitiligo. In conclusion, our research shows the importance of basement membrane zone integrity in melanocyte residence and offers new avenues for therapeutic interventions to address this challenging skin condition. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Membrana Basal , Melanocitos , Vitíligo , Vitíligo/patología , Vitíligo/metabolismo , Melanocitos/patología , Melanocitos/metabolismo , Membrana Basal/patología , Membrana Basal/metabolismo , Humanos , Animales , Ratones , Metaloproteinasa 2 de la Matriz/metabolismo , Fibroblastos/patología , Fibroblastos/metabolismo , Masculino , Femenino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
15.
Stem Cell Res Ther ; 15(1): 176, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886861

RESUMEN

AIMS AND OBJECTIVES: The aim of this study is to systematically review randomized controlled clinical trials (RCTs) studying various types of regenerative medicine methods (such as platelet-rich plasma, stromal vascular fraction, cell therapy, conditioned media, etc.) in treating specific dermatologic diseases. Rejuvenation, scarring, wound healing, and other secondary conditions of skin damage were not investigated in this study. METHOD: Major databases, including PubMed, Scopus, and Web of Science, were meticulously searched for RCTs up to January 2024, focusing on regenerative medicine interventions for specific dermatologic disorders (such as androgenetic alopecia, vitiligo, alopecia areata, etc.). Key data extracted encompassed participant characteristics and sample sizes, types of regenerative therapy, treatment efficacy, and adverse events. RESULTS: In this systematic review, 64 studies involving a total of 2888 patients were examined. Women constituted 44.8% of the study population, while men made up 55.2% of the participants, with an average age of 27.64 years. The most frequently studied skin diseases were androgenetic alopecia (AGA) (45.3%) and vitiligo (31.2%). The most common regenerative methods investigated for these diseases were PRP and the transplantation of autologous epidermal melanocyte/keratinocyte cells, respectively. Studies reported up to 68.4% improvement in AGA and up to 71% improvement in vitiligo. Other diseases included in the review were alopecia areata, melasma, lichen sclerosus et atrophicus (LSA), inflammatory acne vulgaris, chronic telogen effluvium, erosive oral lichen planus, and dystrophic epidermolysis bullosa. Regenerative medicine was found to be an effective treatment option in all of these studies, along with other methods. The regenerative medicine techniques investigated in this study comprised the transplantation of autologous epidermal melanocyte/keratinocyte cells, isolated melanocyte transplantation, cell transplantation from hair follicle origins, melanocyte-keratinocyte suspension in PRP, conditioned media injection, a combination of PRP and basic fibroblast growth factor, intravenous injection of mesenchymal stem cells, concentrated growth factor, stromal vascular fraction (SVF), a combination of PRP and SVF, and preserving hair grafts in PRP. CONCLUSION: Regenerative medicine holds promise as a treatment for specific dermatologic disorders. To validate our findings, it is recommended to conduct numerous clinical trials focusing on various skin conditions. In our study, we did not explore secondary skin lesions like scars or ulcers. Therefore, assessing the effectiveness of this treatment method for addressing these conditions would necessitate a separate study.


Asunto(s)
Ensayos Clínicos Controlados Aleatorios como Asunto , Medicina Regenerativa , Enfermedades de la Piel , Adulto , Femenino , Humanos , Masculino , Plasma Rico en Plaquetas , Medicina Regenerativa/métodos , Enfermedades de la Piel/terapia
16.
J Invest Dermatol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38897541

RESUMEN

RAS proteins regulate cell division, differentiation, and apoptosis through multiple downstream effector pathways. Oncogenic RAS variants are the commonest drivers in cancers; however, they also drive many benign lesions predisposing to malignancy, such as melanocytic nevi, thyroid nodules, and colonic polyps. Reversal of these benign lesions could reduce cancer incidence; however, the effects of oncogenic RAS have been notoriously difficult to target with downstream pathway inhibitors. In this study, we show effective suppression of oncogenic and currently undruggable NRASQ61K in primary cells from melanocytic nevi using small interfering RNA targeted to the recurrent causal variant. This results in striking reduction in expression of ARL6IP1, a known inhibitor of endoplasmic reticulum stress-induced apoptosis not previously linked to NRAS. We go on to show that a single dose of small interfering RNA in primary cells triggers an apoptotic cascade, in contrast to treatment with a MAPK/extracellular signal-regulated kinase kinase inhibitor. Protective packaging of the targeted small interfering RNA into lipid nanoparticles permits successful delivery into a humanized mouse model of melanocytic nevi and results in variant NRAS knockdown in vivo. These data show that RAS-induced protection from apoptosis is involved in persistence of NRAS-driven melanocytic nevi and anticipate that targeted small interfering RNA could form the basis of clinical trials for RAS-driven benign tumors.

17.
Artículo en Inglés | MEDLINE | ID: mdl-38857302

RESUMEN

The physiological role of α-melanocyte stimulating hormone in regulating integumental pigmentation of many vertebrate species has been recognized since the 1960's. However, its physiological significance for human pigmentation remained enigmatic until the 1990's. α-Melanocyte stimulating hormone and related melanocortins are synthesized locally in the skin, primarily by keratinocytes, in addition to the pituitary gland, and therefore act as paracrine factors for melanocytes. Human melanocytes express the melanocortin 1 receptor, which recognizes α-melanocyte stimulating hormone and the related adrenocorticotropic hormone as agonists. This review summarizes the current knowledge of the pleotropic effects of the activated melanocortin 1 receptor that maintain human melanocyte homeostasis by regulating melanogenesis and the response to environmental stressors, mainly solar radiation. Certain allelic variants of the melanocortin 1 receptor gene are associated with specific pigmentary phenotypes in various human populations. Variants associated with red hair phenotype compromise the function of the encoded receptor. Activation of the human melanocortin 1 receptor regulates eumelanin synthesis and enhances DNA damage response of melanocytes to solar radiation and oxidative stressors. We describe how synthetic selective melanocortin 1 receptor agonists can be efficacious as sunless tanning agents, for treatment of vitiligo and photosensitivity disorders, and for prevention of skin cancer, including melanoma.

18.
Neuroendocrinology ; : 1, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38852579

RESUMEN

INTRODUCTION: Immunoglobulins (Ig) reactive with α-melanocyte-stimulating hormone (α-MSH), an anorexigenic neuropeptide, are present in humans and were previously associated with eating disorders. In this longitudinal study involving patients with anorexia nervosa (AN), we determined whether α-MSH in serum is bound to IgG and analyzed long-term dynamics of both α-MSH peptide and α-MSH-reactive Ig in relation to changes in BMI and gut microbiota composition. METHODS: The study included 64 adolescents with a restrictive form of AN, whose serum samples were collected at hospital admission, discharge, and during a 1-year follow-up visit and 41 healthy controls, all females. RESULTS: We found that in both study groups, approximately 40% of serum α-MSH was reversibly bound to IgG and that levels of α-MSH-reactive IgG but not of α-MSH peptide in patients with AN were low at hospital admission but recovered 1 year later. Total IgG levels were also low at admission. Moreover, BMI-standard deviation score correlated positively with α-MSH IgG in both groups studied but negatively with α-MSH peptide only in controls. Significant correlations between the abundance of specific bacterial taxa in the gut microbiota and α-MSH peptide and IgG levels were found in both study groups, but they were more frequent in controls. CONCLUSION: We conclude that IgG in the blood plays a role as an α-MSH-binding protein, whose characteristics are associated with BMI in both patients with AN and controls. Furthermore, the study suggests that low production of α-MSH-reactive IgG during the starvation phase in patients with AN may be related to altered gut microbiota composition.

19.
Elife ; 132024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900147

RESUMEN

Transport and localization of melanosome at the periphery region of melanocyte are depended on myosin-5a (Myo5a), which associates with melanosome by interacting with its adaptor protein melanophilin (Mlph). Mlph contains four functional regions, including Rab27a-binding domain, Myo5a GTD-binding motif (GTBM), Myo5a exon F-binding domain (EFBD), and actin-binding domain (ABD). The association of Myo5a with Mlph is known to be mediated by two specific interactions: the interaction between the exon-F-encoded region of Myo5a and Mlph-EFBD and that between Myo5a-GTD and Mlph-GTBM. Here, we identify a third interaction between Myo5a and Mlph, that is, the interaction between the exon-G-encoded region of Myo5a and Mlph-ABD. The exon-G/ABD interaction is independent from the exon-F/EFBD interaction and is required for the association of Myo5a with melanosome. Moreover, we demonstrate that Mlph-ABD interacts with either the exon-G or actin filament, but cannot interact with both of them simultaneously. Based on above findings, we propose a new model for the Mlph-mediated Myo5a transportation of melanosomes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Melanosomas , Miosina Tipo V , Unión Proteica , Melanosomas/metabolismo , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Humanos , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Melanocitos/metabolismo
20.
J Invest Dermatol ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38848986

RESUMEN

A better understanding of human melanocyte (MC) and MC stem cell biology is essential for treating MC-related diseases. This study employed an inherited pigmentation disorder carrying the SASH1S519N variant in a Hispanic family to investigate SASH1 function in the MC lineage and the underlying mechanism for this disorder. We used a multidisciplinary approach, including clinical examinations, human cell assays, yeast 2-hybrid screening, and biochemical techniques. Results linked early hair graying to the SASH1S519N variant, a previously unrecognized clinical phenotype in hyperpigmentation disorders. In vitro, we identified SASH1 as a regulator in MC stem cell maintenance and discovered that TNKS2 is crucial for SASH1's role. In addition, the S519N variant is located in one of multiple tankyrase-binding motifs and alters the binding kinetics and affinity of the interaction. In summary, this disorder links both gain and loss of pigmentation in the same individual, hinting to accelerated aging in human MC stem cells. The findings offer insights into the roles of SASH1 and TNKS2 in MC stem cell maintenance and the molecular mechanisms of pigmentation disorders. We propose that a comprehensive clinical evaluation of patients with MC-related disorders should include an assessment and history of hair pigmentation loss.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA