Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(12): 3365-3372, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041100

RESUMEN

This study aims to investigate the effect of ergosterol peroxide(EP) on the apoptosis of human hepatocellular carcinoma and its mechanism of action. The cell viability of HepG2 and SK-Hep-1 cells with 0(blank control), 2.5, 5, 10, 20, 40, and 80 µmol·L~(-1) of EP after 24, 48, and 72 h of action was detected by using CCK-8 assay, and the half inhibitory concentrations(IC_(50)) at 24, 48, and 72 h were calculated. Formal experiments were performed to detect the effect of EP on intracellular reactive oxygen species(ROS) using DCFH-DA staining, the effect of EP on intracellular mitochondrial membrane potential using JC-1 staining, the number of apoptotic cells using Annexin V-FITC/PI double-staining after HepG2 cells were co-cultured with 0(blank control), 10, 20, 40 µmol·L~(-1) EP for 48 h. The effects of EP at different concentrations on apoptotic morphology were detected using AO/EB staining. The effects of different concentrations of EP on the protein expression of mitochondrial apoptosis pathway-related proteins B cell lymphoma 2(Bcl-2), cytochrome C(Cyt-C), Bcl-2-related X protein(Bax), caspase-3, cleaved caspase-3, caspase-9, and cleaved caspase-9 were examined by using Western blot. The results showed that different concentrations of EP could inhibit the proliferation of hepatocellular carcinoma with concentration-and time-dependent trends. Compared with the blank control group, the ROS level in the EP-treated group increased significantly(P<0.05). The mitochondrial membrane potential decreased significantly(P<0.05). The total apoptosis rate increased significantly(P<0.05). The expression of Bcl-2 protein was significantly down-regulated, and the expression of Cyt-C, Bax, cleaved caspase-9, and cleaved caspase-3 were significantly up-regulated(P<0.05). In summary, EP may inhibit the proliferation of hepatocellular carcinoma by modulating the mitochondria-mediated apoptosis pathway and induce apoptosis.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Ergosterol , Neoplasias Hepáticas , Potencial de la Membrana Mitocondrial , Mitocondrias , Especies Reactivas de Oxígeno , Humanos , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ergosterol/farmacología , Ergosterol/análogos & derivados , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Células Hep G2 , Citocromos c/metabolismo , Caspasa 3/metabolismo , Caspasa 3/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Caspasa 9/metabolismo , Caspasa 9/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética
2.
Sci Rep ; 14(1): 16809, 2024 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039202

RESUMEN

Long-term exposure to hyperglycemic conditions leads to ß-cell dysfunction, particularly mitochondrial dysfunction, and inflammatory and oxidative stress responses, which are considered the primary causes of ß-cell death and the hallmarks of diabetes. Plant-active ingredients may play a key role in glycemic control. Epigallocatechin gallate (EGCG) is a characteristic catechin derived from tea that possesses anti-diabetic properties. Nonetheless, its underlying mechanisms remain elusive. Herein, the protective role of EGCG on high glucose (33 mM)-induced pancreatic beta cell dysfunction and its possible molecular mechanisms were investigated. Briefly, MIN6 cells were treated with glucose and EGCG (10 µM, 20 µM, and 40 µM) for 48 h. Our results revealed that EGCG dose-dependently restored mitochondrial membrane potential and concomitantly alleviated cell apoptosis. Mechanistically, the expression level of apoptotic protein BAX and Dynamic related protein 1 (DRP1) was significantly downregulated following EGCG treatment, whereas that of the anti-apoptotic protein BCL-2 was significantly upregulated. Taken together, EGCG alleviated high glucose-induced pancreatic beta cell dysfunction by targeting the DRP1-related mitochondrial apoptosis pathway and thus can serve as a nutritional intervention for the preservation of beta cell dysfunction in patients with type 2 diabetes mellitus.


Asunto(s)
Apoptosis , Catequina , Dinaminas , Glucosa , Células Secretoras de Insulina , Mitocondrias , Catequina/análogos & derivados , Catequina/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Apoptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Glucosa/metabolismo , Dinaminas/metabolismo , Dinaminas/genética , Animales , Ratones , Línea Celular , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteína X Asociada a bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
3.
Neurochem Res ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916813

RESUMEN

Dysfunction of Schwann cells, including cell apoptosis, autophagy inhibition, dedifferentiation, and pyroptosis, is a pivotal pathogenic factor in induced diabetic peripheral neuropathy (DPN). Histone deacetylases (HDACs) are an important family of proteins that epigenetically regulate gene transcription by affecting chromatin dynamics. Here, we explored the effect of HDAC1 on high glucose-cultured Schwann cells. HDAC1 expression was increased in diabetic mice and high glucose-cultured RSC96 cells, accompanied by cell apoptosis. High glucose also increased the mitochondrial pathway apoptosis-related Bax/Bcl-2 and cleaved caspase-9/caspase-9 ratios and decreased endoplasmic reticulum response-related GRP78, CHOP, and ATF4 expression in RSC96 cells (P < 0.05). Furthermore, overexpression of HDAC1 increased the ratios of Bax/Bcl-2, cleaved caspase-9/caspase-9, and cleaved caspase-3 and reduced the levels of GRP78, CHOP, and ATF4 in RSC96 cells (P < 0.05). In contrast, knockdown of HDAC1 inhibited high glucose-promoted mitochondrial pathway apoptosis and suppressed the endoplasmic reticulum response. Moreover, RNA sequencing revealed that U4 spliceosomal RNA was significantly reduced in HDAC1-overexpressing RSC96 cells. Silencing of U4 spliceosomal RNA led to an increase in Bax/Bcl-2 and cleaved caspase-9 and a decrease in CHOP and ATF4. Conversely, overexpression of U4 spliceosomal RNA blocked HDAC1-promoted mitochondrial pathway apoptosis and inhibited the endoplasmic reticulum response. In addition, alternative splicing analysis of HDAC1-overexpressing RSC96 cells showed that significantly differential intron retention (IR) of Rpl21, Cdc34, and Mtmr11 might be dominant downstream targets that mediate U4 deficiency-induced Schwann cell dysfunction. Taken together, these findings indicate that HDAC1 promotes mitochondrial pathway-mediated apoptosis and inhibits the endoplasmic reticulum stress response in high glucose-cultured Schwann cells by decreasing the U4 spliceosomal RNA/IR of Rpl21, Cdc34, and Mtmr11.

4.
Phytomedicine ; 130: 155745, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38833788

RESUMEN

BACKGROUND AND AIMS: Isogarcinol, a natural compound extracted from the fruits of Garcinia oblongifolia, has potential chemopreventive activity. This study aimed to elucidate the anti-tumor effects and mechanism of action of isogarcinol on nasopharyngeal carcinoma (NPC). METHODS: Isogarcinol was isolated from Garcinia oblongifolia by using chromatographic separation. The anti-tumor effects of isogarcinol in NPC cells were tested by MTT assay, flow cytometry, wound healing assay, western blotting, transwell assay, colony formation assay, immunofluorescence, and transmission electron microscopy (TEM). The anti-tumor efficacy in vivo was evaluated in NPC cells xenograft models. RESULTS: Functional studies revealed that isogarcinol inhibited the proliferation, colony formation, migration and invasion abilities of NPC cells in vitro. Isogarcinol caused mitochondrial damage to overproduce reactive oxygen species through reducing the mitochondrial membrane potential and ΔΨm. Isogarcinol also substantially inhibited NPC cells growth in a xenograft tumor model without any obvious toxicity when compared with paclitaxel (PTX). Mechanistic studies have illustrated that isogarcinol increased the Bax/Bcl-2 ratio, cleaved caspase-3, and cytoplasmic cytochrome C levels to induce mitochondrial apoptosis. The ROS overproduction by isogarcinol could suppress EMT pathway via decreasing the levels of p-Akt and Snail. Furthermore, isogarcinol promoted the conversion of LC3-Ⅰ to LC3-Ⅱ, but increased p62 level to block autophagic flux, resulting in the accumulation of damaged mitochondria to promote autophagic cell death in NPC cells. CONCLUSION: This study provides a new theoretical foundation for the anti-tumor application of Garcinia oblongifolia and confirms that isogarcinol could be developed as a candidate drug for NPC treatment with low toxicity.


Asunto(s)
Antineoplásicos Fitogénicos , Garcinia , Ratones Desnudos , Mitocondrias , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Garcinia/química , Animales , Mitocondrias/efectos de los fármacos , Línea Celular Tumoral , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Antineoplásicos Fitogénicos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Muerte Celular Autofágica/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Frutas/química
5.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2230-2246, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38812238

RESUMEN

Total triterpenoids from the fruits of Chaenomeles speciosa(TCS) are active components in the prevention and treatment of gastric mucosal damage, which have potential anti-aging effects. However, it is still unclear whether TCS can improve gastric aging, especially its molecular mechanism against gastric aging. On this basis, this study explored the effect and mechanism of TCS on senescent GES-1 cells induced by D-galactose(D-gal) to provide scientific data for the clinical use of TCS to prevent gastric aging. GES-1 cells cultured in vitro and those transfected with overexpression GLS1(GLS1-OE) plasmid of glutaminase 1(GLS1) were induced to aging by D-gal, and then TCS and or GLS1 inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl) ethyl sulfide(BPTES) were given. Cell survival rate, positive rate of ß-galactosidase(SA-ß-gal) staining, mitochondrial membrane potential(MMP), and apoptosis were investigated. GLS1 activity, levels of glutamine(Gln), glutamate(Glu), α-ketoglutarate(α-KG), urea, and ammonia in supernatant and cells were detected by enzyme-linked immunosorbent assay(ELISA) and colorimetric methods. The mRNA and protein expressions of GLS1 and the related genes of the mitochondrial apoptosis signaling pathway were measured by real-time fluorescence quantitative PCR and Western blot. The results manifested that compared with the D-gal model group and GLS1-OE D-gal model group, TCS significantly decreased the SA-ß-gal staining positive cell rate and MMP of D-gal-induced senescent GES-1 cells and GLS1-OE senescent GES-1 cells, inhibited the survival of senescent cells, and promoted their apoptosis(P<0.01). It decreased the activity of GLS1 and the content of Gln, Glu, α-KG, urea, and ammonia in supernatant and cell(P<0.01), reduced the concentration of cytochrome C(Cyto C) in mitochondria and the mRNA and protein expressions of GLS1 and proliferating nuclear antigen in cells(P<0.01). The mRNA expression of Bcl-2 and Bcl-xl, the protein expression of pro-caspase-9 and pro-caspase-3, and the ratio of Bcl-2/Bax and Bcl-xl/Bad in cells were decreased(P<0.01). Cyto C concentration in the cytoplasm, the mRNA expressions of Bax, Bad, apoptosis protease activating factor 1(Apaf-1), and protein expressions of cleaved-caspase-9, cleaved-caspase-3, cleaved-PARP-1 were increased(P<0.01). The aforementioned results indicate that TCS can counteract the senescent GES-1 cells induced by D-gal, and its mechanism may be closely related to suppressing the Gln/GLS1/α-KG metabolic axis, activating the mitochondrial apoptosis pathway, and thereby accelerating the apoptosis of the senescent cells and eliminating senescent cells.


Asunto(s)
Apoptosis , Frutas , Galactosa , Glutaminasa , Glutamina , Mitocondrias , Transducción de Señal , Triterpenos , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Triterpenos/farmacología , Triterpenos/química , Humanos , Transducción de Señal/efectos de los fármacos , Línea Celular , Frutas/química , Glutamina/farmacología , Glutamina/metabolismo , Glutaminasa/metabolismo , Glutaminasa/genética , Senescencia Celular/efectos de los fármacos , Ácidos Cetoglutáricos/farmacología , Ácidos Cetoglutáricos/metabolismo
6.
J Ethnopharmacol ; 331: 118277, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697407

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Chemotherapy tolerance weakened efficacy of chemotherapy drugs in the treating gastric cancer (GC). Banxiaxiexin decoction (BXXXD) was widely used in digestive diseases for thousands of years in Traditional Chinese medicine (TCM). In order to better treat GC, three other herbs were added to BXXXD to create a new prescription named Modified Banxiaxiexin decoction (MBXXXD). Although MBXXXD potentially treated GC by improving chemotherapy tolerance, the possible mechanisms were still unknown. AIM OF THE STUDY: To explore the therapeutic effect of MBXXXD on GC patients and explore the possible anti-cancer mechanism. MATERIALS AND METHODS: A randomized controlled trial (n = 146) was conducted to evaluate the clinical efficacy between MBXXXD + chemotherapy (n = 73) and placebo + chemotherapy (n = 73) in GC patients by testing overall survival, progression free survival, clinical symptoms, quality of life score, tumor markers, T cell subpopulation, and adverse reactions. Network pharmacology was conducted to discover the potential mechanism of MBXXXD in treating GC. Metabolic activity assay, cell clone colony formation and mitochondrial apoptosis were detected in human GC cell lines including AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD. Multiple pathways including P53, AKT, IκB, P65, P38, ERK, JNK p-AKT, p-P65, p-P38, p-ERK and p-JNK in AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy were also detected. RESULTS: MBXXXD + chemotherapy promoted overall survival and progression free survival, improved clinical symptoms and quality of life score, increased T4 lymphocyte ratio and T8 lymphocyte ratio as well as T4/T8 lymphocyte ratio, and alleviated adverse reactions in GC patients. Network pharmacology predicted multiple targets and pathways of MBXXXD in treating GC including apoptosis, P53 pathway, AKT pathway, MAPK pathway. MBXXXD inhibited cell viability, decreased cell clone colony formation, and promoted mitochondrial apoptosis by producing reactive oxygen species (ROS), promoting mitochondrial permeability transition pore (MPTP) and the cleavage of pro-caspase-3 and pro-caspase-9, and decreasing mito-tracker red Chloromethyl-X-rosamine (CMXRos) in AGS cell, KNM-45 cell and SGC7901 cell. MBXXXD up-regulated the expression of P53 and IκB, and down-regulated the expression of p-AKT, p-P65, p-P38, p-ERK, p-JNK, AKT, P65, P38, ERK and JNK AGS cell, KNM-45 cell and SGC7901 cell treated by MBXXXD and GC patients treated by MBXXXD + chemotherapy. CONCLUSION: MBXXXD benefitted chemotherapy for GC by regulating multiple targets and pathways.


Asunto(s)
Medicamentos Herbarios Chinos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Femenino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Persona de Mediana Edad , Masculino , Línea Celular Tumoral , Anciano , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Adulto , Farmacología en Red
7.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673741

RESUMEN

A widely used organophosphate flame retardant (OPFR), triphenyl phosphate (TPP), is frequently detected in various environmental media and humans. However, there is little known on the human corneal epithelium of health risk when exposed to TPP. In this study, human normal corneal epithelial cells (HCECs) were used to investigate the cell viability, morphology, apoptosis, and mitochondrial membrane potential after they were exposed to TPP, as well as their underlying molecular mechanisms. We found that TPP decreased cell viability in a concentration-dependent manner, with a half maximal inhibitory concentration (IC50) of 220 µM. Furthermore, TPP significantly induced HCEC apoptosis, decreased mitochondrial membrane potential in a dose-dependent manner, and changed the mRNA levels of the apoptosis biomarker genes (Cyt c, Caspase-9, Caspase-3, Bcl-2, and Bax). The results showed that TPP induced cytotoxicity in HCECs, eventually leading to apoptosis and changes in mitochondrial membrane potential. In addition, the caspase-dependent mitochondrial pathways may be involved in TPP-induced HCEC apoptosis. This study provides a reference for the human corneal toxicity of TPP, indicating that the risks of OPFR to human health cannot be ignored.


Asunto(s)
Apoptosis , Supervivencia Celular , Epitelio Corneal , Retardadores de Llama , Potencial de la Membrana Mitocondrial , Mitocondrias , Humanos , Apoptosis/efectos de los fármacos , Retardadores de Llama/toxicidad , Retardadores de Llama/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Epitelio Corneal/efectos de los fármacos , Epitelio Corneal/metabolismo , Epitelio Corneal/citología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Caspasas/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Organofosfatos/farmacología , Organofosfatos/toxicidad , Células Cultivadas
8.
J Hazard Mater ; 471: 134357, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38643584

RESUMEN

The compound 6PPD is widely acknowledged for its antioxidative properties; however, concerns regarding its impact on aquatic organisms have spurred comprehensive investigations. In our study, we advanced our comprehension by revealing that exposure to 6PPD could induce cardiac dysfunction, myocardial injury and DNA damage in adult zebrafish. Furthermore, our exploration unveiled that the exposure of cardiomyocytes to 6PPD resulted in apoptosis and mitochondrial injury, as corroborated by analyses using transmission electron microscopy and flow cytometry. Significantly, our study demonstrated the activation of the autophagy pathway in both the heart of zebrafish and cardiomyocytes, as substantiated by transmission electron microscopy and immunofluorescent techniques. Importantly, the increased the expression of P62 in the heart and cardiomyocytes suggested an inhibition of the autophagic process. The reduction in autophagy flux was also verified through in vivo experiments involving the infection of mCherry-GFP-LC3. We further identified that the fusion of autophagosomes and lysosomes was impaired in the 6PPD treatment group. In summary, our findings indicated that the impaired fusion of autophagosomes and lysosomes hampered the autophagic degradation process, leading to apoptosis and ultimately resulting in cardiac dysfunction and myocardial injury. This study discovered the crucial role of the autophagy pathway in regulating 6PPD-induced cardiotoxicity. SYNOPSIS: 6PPD exposure inhibited the autophagic degradation process and induced mitochondrial injury and apoptosis in the heart of adult zebrafish.


Asunto(s)
Apoptosis , Autofagia , Mitocondrias , Miocitos Cardíacos , Pez Cebra , Animales , Autofagia/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Daño del ADN , Corazón/efectos de los fármacos
9.
Chem Biol Interact ; 395: 110994, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38582339

RESUMEN

Exposure to environmental pollutants, including nanomaterials, has a significant impact on tumor progression. The increased demand for black phosphorus nanosheets (BPNSs), driven by their exceptional properties, raises concerns about potential environmental contamination. Assessing their toxicity on tumor growth is essential. Herein, we employed a range of biological techniques, including cytotoxicity measurement, bioinformatics tools, proteomics, target gene overexpression, Western blot analysis, and apoptosis detection, to investigate the toxicity of BPNSs across A549, HepG-2, MCF-7, and Caco-2 cell lines. Our results demonstrated that BPNSs downregulated the expression of ADIPOQ and its associated downstream pathways, such as AMP-activated protein kinase (AMPK), nuclear factor erythroid 2-related factor 2 (Nrf2), and other unidentified pathways. These downregulated pathways ultimately led to mitochondria-dependent apoptosis. Notably, the specific downstream pathways involved varied depending on the type of tumors. These insightful findings not only confirm the consistent inhibitory effects of BPNSs across different tumor cells, but also elucidate the cytotoxicity mechanisms of BPNSs in different tumors, providing valuable information for their safe application and health risk assessment.


Asunto(s)
Adiponectina , Apoptosis , Proliferación Celular , Regulación hacia Abajo , Nanoestructuras , Fósforo , Transducción de Señal , Humanos , Fósforo/química , Proliferación Celular/efectos de los fármacos , Adiponectina/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Nanoestructuras/química , Nanoestructuras/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proteínas Quinasas Activadas por AMP/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética
10.
Heliyon ; 10(8): e29515, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38638982

RESUMEN

Of all malignancies, pancreatic ductal adenocarcinoma (PDAC), constituting 90% of pancreatic cancers, has the worst prognosis. Glycolysis is overactive in PDAC patients and is associated with poor prognosis. Drugs that inhibit glycolysis as well as induce cell death need to be identified. However, glycolysis inhibitors often fail to induce cell death. We here found that FV-429, a derivative of the natural flavonoid wogonin, can induce mitochondrial apoptosis and inhibit glycolysis in PDAC in vivo and in vitro. In vitro, FV-429 inhibited intracellular ATP content, glucose uptake, and lactate generation, consequently leading to mitochondrial dysfunction and apoptosis in PDAC cells. Furthermore, it decreased the expression of PKM2 (a specific form of pyruvate kinase) through the ERK signaling pathway and enhanced PKM2 nuclear translocation. TEPP-46, the activator of PKM2, reversed FV-429-induced glycolysis inhibition and mitochondrial apoptosis in the PDAC cells. In addition, FV-429 exhibited significant tumor suppressor activity and high safety in BxPC-3 cell xenotransplantation models. These results thus demonstrated that FV-429 decreases PKM2 expression through the ERK signaling pathway and enhances PKM2 nuclear translocation, thereby resulting in glycolysis inhibition and mitochondrial apoptosis in PDAC in vitro and in vivo, which makes FV-429 a promising candidate for pancreatic cancer treatment.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38568407

RESUMEN

Myocardial ischemia/reperfusion injury (MI/RI) is identified as a severe vascular emergency, and the treatment strategy of MI/RI still needs further improvement. The present study aimed to investigate the potential effects of mild therapeutic hypothermia (MTH) on MI/RI and underlying mechanisms. In ischemia/reperfusion (I/R) rats, MTH treatment significantly improved myocardial injury, attenuated myocardial infarction, and inhibited the mitochondrial apoptosis pathway. The results of proteomics identified SLC25A10 as the main target of MTH treatment. Consistently, SLC25A10 expressions in I/R rat myocardium and hypoxia and reoxygenation (H/R) cardiomyocytes were significantly suppressed, which was effectively reversed by MTH treatment. In H/R cardiomyocytes, MTH treatment significantly improved cell injury, mitochondrial dysfunction, and inhibited the mitochondrial apoptosis pathway, which were partially reversed by SLC25A10 deletion. These findings suggested that MTH treatment could protect against MI/RI by modulating SLC25A10 expression to suppress mitochondrial apoptosis pathway, providing new theoretical basis for clinical application of MTH treatment for MI/RI.

12.
Int Immunopharmacol ; 131: 111802, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38467082

RESUMEN

Acute lung injury (ALI) is an acute respiratory-related progressive disorder, which lacks specific pharmacotherapy. Icariin (ICA) has been shown to be effective in treating ALI. However, the targets and pharmacological mechanisms underlying the effects of ICA in the treatment of ALI are relatively lacking. Based on network pharmacology and molecular docking analyses, the gene functions and potential target pathways of ICA in the treatment of ALI were determined. In addition, the underlying mechanisms of ICA were verified by immunohistochemistry, immunofluorescence, quantitative Real-time PCR, and Western blot in LPS-induced ALI mice. The biological processes targeted by ICA in the treatment of ALI included the pathological changes, inflammatory response, and cell signal transduction. Network pharmacology, molecular docking, and in vivo experimental results revealed that ICA inhibited the complement C5a-C5aR1 axis, TLR4 mediated NF-κB, MAPK, and JAK2-STAT3 signaling pathways related gene and protein expressions, and decreased inflammatory cytokine, chemokine, adhesion molecule expressions, and mitochondrial apoptosis in LPS-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda , Complemento C5a , Flavonoides , Lipopolisacáridos , Receptores de Complemento , Animales , Ratones , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Complemento C5a/metabolismo , Flavonoides/uso terapéutico , Lipopolisacáridos/farmacología , Pulmón/patología , Simulación del Acoplamiento Molecular , FN-kappa B/metabolismo , Transducción de Señal , Receptor Toll-Like 4/metabolismo , Receptores de Complemento/metabolismo
13.
Virology ; 594: 110053, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38492518

RESUMEN

Paramyxoviruses are reported to block apoptosis for their replication, but the mechanisms remain unclear. Furthermore, regulation of mitochondrial apoptosis by paramyxoviruses has been hardly reported. We investigated whether and how human parainfluenza virus type 2 (hPIV-2) counteracts apoptosis. Infection of recombinant hPIV-2 carrying mutated V protein showed higher caspase 3/7 activity and higher cytochrome c release from mitochondria than wild type hPIV-2 infection. This indicates that V protein controls mitochondrial apoptosis pathway. hPIV-2 V protein interacted with Bad, an apoptotic promoting protein, and this interaction inhibited the binding of Bad to Bcl-XL. V protein also bound to 14-3-3ε, which was essential for inhibition of 14-3-3ε cleavage. Our data collectively suggest that hPIV-2 V protein has two means of preventing mitochondrial apoptosis pathway: the inhibition of Bad-Bcl-XL interaction and the suppression of 14-3-3ε cleavage. This is the first report of the mechanisms behind how paramyxoviruses modulate mitochondrial apoptosis pathways.


Asunto(s)
Mitocondrias , Virus de la Parainfluenza 2 Humana , Humanos , Virus de la Parainfluenza 2 Humana/metabolismo , Mitocondrias/metabolismo , Apoptosis , Proteínas Portadoras/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
14.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542067

RESUMEN

Porcine epidemic diarrhea virus (PEDV), a member of the Alpha-coronavirus genus in the Coronaviridae family, induces acute diarrhea, vomiting, and dehydration in neonatal piglets. This study aimed to investigate the genetic dependencies of PEDV and identify potential therapeutic targets by using a single-guide RNA (sgRNA) lentiviral library to screen host factors required for PEDV infection. Protein kinase C θ (PKCθ), a calcium-independent member of the PKC family localized in the cell membrane, was found to be a crucial host factor in PEDV infection. The investigation of PEDV infection was limited in Vero and porcine epithelial cell-jejunum 2 (IPEC-J2) due to defective interferon production in Vero and the poor replication of PEDV in IPEC-J2. Therefore, identifying suitable cells for PEDV investigation is crucial. The findings of this study reveal that human embryonic kidney (HEK) 293T and L929 cells, but not Vero and IPEC-J2 cells, were suitable for investigating PEDV infection. PKCθ played a significant role in endocytosis and the replication of PEDV, and PEDV regulated the expression and phosphorylation of PKCθ. Apoptosis was found to be involved in PEDV replication, as the virus activated the PKCθ-B-cell lymphoma 2 (BCL-2) ovarian killer (BOK) axis in HEK293T and L929 cells to increase viral endocytosis and replication via mitochondrial apoptosis. This study demonstrated the suitability of HEK293T and L929 cells for investigating PEDV infection and identified PKCθ as a host factor essential for PEDV infection. These findings provide valuable insights for the development of strategies and drug targets for PEDV infection.


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Humanos , Porcinos , Chlorocebus aethiops , Virus de la Diarrea Epidémica Porcina/genética , Proteína Quinasa C-theta/genética , Sistemas CRISPR-Cas , Células HEK293 , ARN Guía de Sistemas CRISPR-Cas , Células Vero , Enfermedades de los Porcinos/genética , Replicación Viral/genética
15.
Int J Pharm ; 654: 123970, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38447779

RESUMEN

Multidrug resistance (MDR) poses a significant impediment to the efficacy of chemotherapy in clinical settings. Despite Paclitaxel (PTX) being designated as the primary pharmaceutical agent for treating recurrent and metastatic breast cancer, the emergence of PTX resistance frequently results in therapeutic shortcomings, representing a substantial obstacle in clinical breast cancer management. In response, we developed a delivery system exhibiting dual specificity for both tumors and mitochondria. This system facilitated the sequential administration of small interfering B-cell lymphoma-2 (siBcl-2) and PTX to the tumor cytoplasm and mitochondria, respectively, with the aim of surmounting PTX resistance in tumor cells through the activation of the mitochondrial apoptosis pathway. Notably, we employed genetic engineering techniques to fabricate a recombinant ferritin containing the H-subunit (HFn), known for its tumor-targeting capabilities, for loading siBcl-2. This HFn-siBcl-2 complex was then combined with positively charged Triphenylphosphine-Liposome@PTX (TL@PTX) nanoparticles (NPs) to formulate HFn/siBcl-2@TL/PTX. Guided by HFn, these nanoparticles efficiently entered cells and released siBcl-2 through the action of triphenylphosphine (TPP)-mediated "proton sponge," thereby precisely modulating the expression of Bcl-2 protein. Simultaneously, PTX was directed to the mitochondria through the accurate targeting of TL@PTX, synergistically initiating the mitochondrial apoptosis pathway and effectively suppressing PTX resistance both in vitro and in vivo. In conclusion, the development of this dual-targeting delivery system presents a promising therapeutic strategy for overcoming PTX resistance in the clinical treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Compuestos Organofosforados , Humanos , Femenino , Paclitaxel , Resistencia a Antineoplásicos , Mitocondrias , Neoplasias de la Mama/patología , Resistencia a Múltiples Medicamentos , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos
16.
Food Chem Toxicol ; 185: 114506, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331085

RESUMEN

Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a frequently detected organophosphorus flame retardants (OPFRs) in various environmental media, and has been evidenced as reproductive toxicity. However, its adverse effects on spermatogenic cells are unknown. In this study, mouse spermatocyte GC-2spd (GC-2) cells were selected as an in vitro model, and the impact of mitochondrial structure and function, endoplasmic reticulum (ER) stress, cell apoptosis and the related molecular mechanisms were investigated. Our study indicated that cell viability was decreased significantly in a dose-dependent manner after TDCIPP treatment with the half lethal concentration (LC50) at 82.8 µM, 50.0 µM and 39.6 µM for 24 h, 48 h and 72 h, respectively. An apoptosis was observed by Annexin V-FITC/PI stain. In addition, fragmentation of mitochondrial structure, an increase of mitochondrial membrane potential (MMP), reduction of cellular adenosine triphosphate (ATP) content, release of cytochrome c and activation of Caspase-3 and Caspase-9 activity implicated that Caspase-3 dependent mitochondrial pathway might play a key role in the process of GC-2 cell apoptosis. Furthermore, ER stress induction was convinced by altered morphology of ER and up-regulation of ER targeting genes, including (Bip, eIF2α, ATF4, XBP1, CHOP, ATF6 and Caspase-12). Taken together, these results demonstrate that both mitochondrial apoptotic pathways and ER stress apoptotic pathways might play important roles in the process of apoptosis in GC-2 cells induced by TDCIPP treatment. Therefore, the potential reproductive toxicity of TDCIPP should not be ignored.


Asunto(s)
Organofosfatos , Fosfatos , Espermatocitos , Masculino , Ratones , Animales , Fosfatos/farmacología , Caspasa 3/metabolismo , Apoptosis , Estrés del Retículo Endoplásmico
17.
Bioorg Chem ; 145: 107218, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377820

RESUMEN

Melanoma, a highly metastatic malignant tumour, necessitated early detection and intervention. This study focuses on a hemicyanine fluorescent probe activated by near-infrared (NIR) light for bioimaging and targeted mitochondrial action in melanoma cells. IR-418, our newly designed hemicyanine-based NIR fluorescent probe, demonstrated effective targeting of melanoma cell mitochondria for NIR imaging. In vitro and in vivo experiments revealed IR-418's inhibition of melanoma growth through the promotion of mitochondrial apoptosis (Bax/Bcl-2/Cleaved Caspase pathway). Moreover, IR-418 inhibited melanoma metastasis by inhibiting mitochondrial fission through the ERK/DRP1 pathway. Notably, IR-418 mitigated abnormal ATL and ASL elevations caused by tumours without inflicting significant organ damage, indicating its high biocompatibility. In conclusion, IR-418, a novel hemicyanine-based NIR fluorescent probe targeting the mitochondria, exhibits significant fluorescence imaging capability, anti-melanoma proliferation, anti-melanoma lung metastasis activities and high biosafety. Therefore, it has significant potential in the early diagnosis and treatment of melanoma.


Asunto(s)
Carbocianinas , Colorantes Fluorescentes , Melanoma , Humanos , Colorantes Fluorescentes/farmacología , Melanoma/diagnóstico por imagen , Melanoma/tratamiento farmacológico , Dinámicas Mitocondriales , Apoptosis
18.
Molecules ; 29(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38398665

RESUMEN

I propose a new strategy to suppress human cancer completely with two entirely new drug compounds exploiting cancer's Warburg effect characterized by a defective mitochondrial aerobic respiration, substituted by cytosolic aerobic fermentation/glycolysis of D-(+)-glucose into L-(+)-lactic acid. The two essentially new drugs, compound 1 [P(op)T(est)162] and compound 3 (PT167), represent new highly symmetric, four-bladed propeller-shaped polyammonium cations. The in vitro antineoplastic highly efficacious drug compound 3 represents a covalent combination of compound 1 and compound 2 (PT166). The intermediate drug compound 2 is an entirely new colchic(in)oid derivative synthesized from colchicine. Compound 2's structure was determined using X-ray crystallography. Compound 1 and compound 3 were active in vitro versus 60 human cancer cell lines of the National Cancer Institute (NCI) Developmental Therapeutics Program (DTP) 60-cancer cell testing. Compound 1 and compound 3 not only stop the growth of cancer cells to ±0% (cancerostatic effect) but completely kill nearly all 60 cancer cells to a level of almost -100% (tumoricidal effect). Compound 1 and compound 3 induce mitochondrial apoptosis (under cytochrome c release) in all cancer cells tested by (re)activating (in most cancers impaired) p53 function, which results in a decrease in cancer's dysregulated cyclin D1 and an induction of the cell cycle-halting cyclin-dependent kinase inhibitor p21Waf1/p21Cip1.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Apoptosis , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Ciclo Celular
19.
Environ Toxicol ; 39(5): 2667-2680, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38224486

RESUMEN

BACKGROUND: Hexokinase (HK) is the first rate-limiting enzyme of glycolysis, which can convert glucose to glucose-6-phosphate. There are several subtypes of HK, including HK2, which is highly expressed in a variety of different tumors and is closely associated with survival. METHODS: Non-small cell lung cancer (NSCLC) A549 cells with stable overexpression and knockdown of HK2 were obtained by lentivirus transfection. The effects of overexpression and knockdown of HK2 on proliferation, migration, invasion, and glycolytic activity of A549 cells were investigated. The effects on apoptosis were also analyzed using western blot and flow cytometry. In addition, the mitochondria and cytoplasm were separated and the expression of apoptotic proteins was detected by western blot respectively. RESULTS: Upregulation of HK2 could promote glycolysis, cell proliferation, migration, and invasion, which would be inhibited through the knockdown of HK2. HK2 overexpression contributed to cisplatin resistance, whereas HK2 knockdown enhanced cisplatin-induced apoptosis in A549 cells. CONCLUSIONS: Overexpression of HK2 can promote the proliferation, migration, invasion, and drug resistance of A549 cells by enhancing aerobic glycolysis and inhibiting apoptosis. Reducing HK2 expression or inhibiting HK2 activity can inhibit glycolysis and induce apoptosis in A549 cells, which is expected to be a potential treatment method for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Cisplatino/farmacología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Hexoquinasa/genética , Hexoquinasa/metabolismo , Pulmón/patología , Línea Celular Tumoral , Proliferación Celular , Apoptosis
20.
Dig Dis Sci ; 69(2): 476-490, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38170336

RESUMEN

BACKGROUND: Cholangiocarcinoma (CCA) is a malignant tumor with a high mortality rate. Resistance to chemotherapy remains a major challenge related to cancer treatment, and increasing the sensitivity of cancer cells to therapeutic drugs is a major focus of cancer treatment. AIMS: We purposed to explore the role of Metformin in CCA involved in chemotherapeutic sensitivity and Pyruvate kinase M2 (PKM2) through regulating mitochondrial apoptosis in the present study. METHODS: CCA cell lines of HCC9810 and RBE were treated with Metformin companied with antagonists or agonists of PKM2, cells sensitivity to Gemcitabine, cell migration and invasion along with apoptosis, which is mediated by JC-1 and LDH were assayed. RESULTS: Our results indicated that Metformin and Gemcitabine exhibit synergistic effect on inhibition of cholangiocarcinoma cell viability, cell migration and invasion as well as promotion apoptosis of cholangiocarcinoma cells. In vivo, Metformin combined with Gemcitabine has cooperation in inhibiting the growth of cholangiocarcinoma cell-derived tumors. Moreover, Metformin and Gemcitabine inhibited expression of PKM2 and PDHB in HCC9810 and RBE. CONCLUSION: Our study suggested that Metformin may increase the response of cholangiocarcinoma cells to Gemcitabine by suppressing PKM2 to activate mitochondrial apoptosis.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Metformina , Humanos , Gemcitabina , Metformina/farmacología , Metformina/uso terapéutico , Piruvato Quinasa/farmacología , Piruvato Quinasa/uso terapéutico , Línea Celular Tumoral , Neoplasias de los Conductos Biliares/patología , Colangiocarcinoma/patología , Apoptosis , Conductos Biliares Intrahepáticos/patología , Proliferación Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA