Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Astrobiology ; 22(11): 1337-1350, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282180

RESUMEN

Increasingly, national space agencies are expanding their goals to include Mars exploration with sample return. To better protect Earth and its biosphere from potential extraterrestrial sources of contamination, as set forth in the Outer Space Treaty of 1967, international efforts to develop planetary protection measures strive to understand the danger of cross-contamination processes in Mars sample return missions. We aim to better understand the impact of the martian surface on microbial dormancy and survivability. Radiation resistance of microbes is a key parameter in considering survivability of microbes over geologic times on the frigid, arid surface of Mars that is bombarded by solar and galactic cosmic radiation. We tested the influence of desiccation and freezing on the ionizing radiation survival of six model microorganisms: vegetative cells of two bacteria (Deinococcus radiodurans, Escherichia coli) and a strain of budding yeast (Saccharomyces cerevisiae); and vegetative cells and endospores of three Bacillus bacteria (B. subtilis, B. megaterium, B. thuringiensis). Desiccation and freezing greatly increased radiation survival of vegetative polyploid microorganisms when applied separately, and when combined, desiccation and freezing increased radiation survival even more so. Thus, the radiation survival threshold of polyploid D. radiodurans cells can be extended from the already high value of 25 kGy in liquid culture to an astonishing 140 kGy when the cells are both desiccated and frozen. However, such synergistic radioprotective effects of desiccation and freezing were not observed in monogenomic or digenomic Bacillus cells and endospores, which are generally sterilized by 12 kGy. This difference is associated with a critical requirement for survivability under radiation, that is, repair of genome damage caused by radiation. Deinococcus radiodurans and S. cerevisiae accumulate similarly high levels of the Mn antioxidants that are required for extreme radiation resistance, as do endospores, though they greatly exceed spores in radioresistance because they contain multiple identical genome copies, which in D. radiodurans are joined by persistent Holliday junctions. We estimate ionizing radiation survival limits of polyploid DNA-based life-forms to be hundreds of millions of years of background radiation while buried in the martian subsurface. Our findings imply that forward contamination of Mars will essentially be permanent, and backward contamination is a possibility if life ever existed on Mars.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Humanos , Desecación , Congelación , Saccharomyces cerevisiae , Esporas Bacterianas/efectos de la radiación , Radiación Ionizante , Poliploidía
2.
mBio ; 13(1): e0339421, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35012337

RESUMEN

Denham Harman's oxidative damage theory identifies superoxide (O2•-) radicals as central agents of aging and radiation injury, with Mn2+-dependent superoxide dismutase (MnSOD) as the principal O2•--scavenger. However, in the radiation-resistant nematode Caenorhabditis elegans, the mitochondrial antioxidant enzyme MnSOD is dispensable for longevity, and in the model bacterium Deinococcus radiodurans, it is dispensable for radiation resistance. Many radiation-resistant organisms accumulate small-molecule Mn2+-antioxidant complexes well-known for their catalytic ability to scavenge O2•-, along with MnSOD, as exemplified by D. radiodurans. Here, we report experiments that relate the MnSOD and Mn-antioxidant content to aging and oxidative stress resistances and which indicate that C. elegans, like D. radiodurans, may rely on Mn-antioxidant complexes as the primary defense against reactive oxygen species (ROS). Wild-type and ΔMnSOD D. radiodurans and C. elegans were monitored for gamma radiation sensitivities over their life spans while gauging Mn2+-antioxidant content by electron paramagnetic resonance (EPR) spectroscopy, a powerful new approach to determining the in vivo Mn-antioxidant content of cells as they age. As with D. radiodurans, MnSOD is dispensable for radiation survivability in C. elegans, which hyperaccumulates Mn-antioxidants exceptionally protective of proteins. Unexpectedly, ΔMnSOD mutants of both the nematodes and bacteria exhibited increased gamma radiation survival compared to the wild-type. In contrast, the loss of MnSOD renders radiation-resistant bacteria sensitive to atmospheric oxygen during desiccation. Our results support the concept that the disparate responses to oxidative stress are explained by the accumulation of Mn-antioxidant complexes which protect, complement, and can even supplant MnSOD. IMPORTANCE The current theory of cellular defense against oxidative damage identifies antioxidant enzymes as primary defenders against ROS, with MnSOD being the preeminent superoxide (O2•-) scavenger. However, MnSOD is shown to be dispensable both for radiation resistance and longevity in model organisms, the bacterium Deinococcus radiodurans and the nematode Caenorhabditis elegans. Measured by electron paramagnetic resonance (EPR) spectroscopy, small-molecule Mn-antioxidant content was shown to decline in unison with age-related decreases in cell proliferation and radioresistance, which again are independent of MnSOD presence. Most notably, the Mn-antioxidant content of C. elegans drops precipitously in the last third of its life span, which links with reports that the steady-state level of oxidized proteins increases exponentially during the last third of the life span in animals. This leads us to propose that global responses to oxidative stress must be understood through an extended theory that includes small-molecule Mn-antioxidants as potent O2•--scavengers that complement, and can even supplant, MnSOD.


Asunto(s)
Antioxidantes , Deinococcus , Animales , Antioxidantes/metabolismo , Caenorhabditis elegans/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Deinococcus/metabolismo , Deinococcus/efectos de la radiación , Manganeso/metabolismo , Superóxidos/metabolismo , Superóxido Dismutasa/metabolismo , Envejecimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA