Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Microbiol ; 15: 1377763, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962139

RESUMEN

Introduction: Arbuscular mycorrhizal fungi (AMF) are vital in terrestrial ecosystems. However, the community structure characteristics and influencing factors of AMF in the forest ecosystems of arid desert grassland areas require further investigation. Methods: Therefore, we employed high-throughput sequencing technology to analyze the soil AMF community characteristics at different elevations in the Helan mountains. Results: The results revealed that significant differences (P < 0.05) were observed in the soil physicochemical properties among different elevations, and these properties exhibited distinct trends with increasing elevation. Through high-throughput sequencing, we identified 986 operational taxonomic units (OTUs) belonging to 1 phylum, 4 classes, 6 orders, 12 families, 14 genera, and 114 species. The dominant genus was Glomus. Furthermore, significant differences (P < 0.05) were observed in the α-diversity of the soil AMF community across different elevations. Person correlation analysis, redundancy analysis (RDA), and Monte Carlo tests demonstrated significant correlations between the diversity and abundance of AMF communities with soil organic matter (OM) (P < 0.01) and soil water content (WC) (P < 0.05). Discussion: This study provides insights into the structural characteristics of soil AMF communities at various altitudes on the eastern slope of Helan mountain and their relationships with soil physicochemical properties. The findings contribute to our understanding of the distribution pattern of soil AMF and its associations with environmental factors in the Helan mountains, as well as the stability of forest ecosystems in arid desert grassland areas.

2.
Microb Ecol ; 87(1): 90, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958675

RESUMEN

Endophytes play an important role in plant development, survival, and establishment, but their temporal dynamics in young conifer plants are still largely unknown. In this study, the bacterial community was determined by metabarcoding of the 16S rRNA gene in the rhizoplane, roots, and aerial parts of 1- and 5-month-old seedlings of natural populations of Abies religiosa (Kunth) Schltdl. & Cham. In 1-month-old seedlings, Pseudomonas dominated aerial parts (relative abundance 71.6%) and roots (37.9%). However, the roots exhibited significantly higher bacterial species richness than the aerial parts, with the dissimilarity between these plant sections mostly explained by the loss of bacterial amplification sequence variants. After 5 months, Mucilaginibacter dominated in the rhizoplane (9.0%), Streptomyces in the roots (12.2%), and Pseudomonas in the aerial parts (18.1%). The bacterial richness and community structure differed significantly between the plant sections, and these variations were explained mostly by 1-for-1 substitution. The relative abundance of putative metabolic pathways significantly differed between the plant sections at both 1 and 5 months. All the dominant bacterial genera (e.g., Pseudomonas and Burkholderia-Caballeronia-Paraburkholderia) have been reported to have plant growth-promoting capacities and/or antagonism against pathogens, but what defines their role for plant development has still to be determined. This investigation improves our understanding of the early plant-bacteria interactions essential for natural regeneration of A. religiosa forest.


Asunto(s)
Abies , Bacterias , Endófitos , Raíces de Plantas , ARN Ribosómico 16S , Plantones , Plantones/microbiología , Plantones/crecimiento & desarrollo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Endófitos/clasificación , Endófitos/aislamiento & purificación , Endófitos/fisiología , Endófitos/genética , ARN Ribosómico 16S/genética , Abies/microbiología , Raíces de Plantas/microbiología , Microbiología del Suelo , Biodiversidad , Microbiota , ADN Bacteriano/genética
3.
Mol Ecol ; 33(14): e17426, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825980

RESUMEN

The animal gut microbiota is strongly influenced by environmental factors that shape their temporal dynamics. Although diet is recognized as a major driver of gut microbiota variation, dietary patterns have seldom been linked to gut microbiota dynamics in wild animals. Here, we analysed the gut microbiota variation between dry and rainy seasons across four Sceloporus species (S. aeneus, S. bicanthalis, S. grammicus and S. spinosus) from central Mexico in light of temporal changes in diet composition. The lizard microbiota was dominated by Firmicutes (now Bacillota) and Bacteroidota, and the closely related species S. aeneus and S. bicanthalis shared a great number of core bacterial taxa. We report species-specific seasonal changes in gut microbiota diversity and composition: greater alpha diversity during the dry compared to the rainy season in S. bicanthalis, the opposite pattern in S. aeneus, and no seasonal differences in S. grammicus and S. spinosus. Our findings indicated a positive association between gut bacterial composition and dietary composition for S. bicanthalis and S. grammicus, but bacterial diversity did not increase linearly with dietary richness in any lizard species. In addition, seasonality affected bacterial composition, and microbial community similarity increased between S. aeneus and S. bicanthalis, as well as between S. grammicus and S. spinosus. Together, our results illustrate that seasonal variation and dietary composition play a role in shaping gut microbiota in lizard populations, but this is not a rule and other ecological factors influence microbiota variation.


Asunto(s)
Bacterias , Dieta , Microbioma Gastrointestinal , Lagartos , Estaciones del Año , Animales , Microbioma Gastrointestinal/genética , Lagartos/microbiología , México , Bacterias/clasificación , Bacterias/genética , Artrópodos/microbiología , ARN Ribosómico 16S/genética , Biodiversidad
4.
Environ Pollut ; 355: 124089, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38729508

RESUMEN

Glacial bodies in the Peruvian Andes Mountains store and supply freshwater to hundreds of thousands of people in central Peru. Atmospheric black carbon (BC) is known to accelerate melting of snow and ice, in addition to contributing to air pollution and the health of people. Currently there is limited understanding on the sources and temporal variability of BC in valley and mountain environments in Peru. To address this problem, this study combined surface observations of BC collected during 2022-2023 with WRF model simulations and HYSPLIT trajectories to analyze the dispersion and sources of BC in valley and high elevation environments and the associated local atmospheric circulations. Results show high BC concentrations are associated with the valley-mountain wind system that occurs on both sides of the Huaytapallana mountain range. A pronounced circulation occurs on the western slopes of Huaytapallana when concentrations of BC increase during daylight hours, which transports atmospheric pollutants from cities in the Mantaro River Valley to the Huaytapallana mountain range. Low concentrations of BC are associated with circulations from the east that are channeled by the pronounced ravines of the Andes-Amazon transition. On average, during the season of highest BC concentrations (July-November), the relative contributions of fossil fuels are dominant to biomass burning at the valley observatory and are slightly lower at the Huaytapallana observatory. These results demonstrate the need to promote mitigation actions to reduce emissions of BC and air pollution associated with forest fires and local anthropogenic activity.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Atmósfera , Monitoreo del Ambiente , Hollín , Perú , Contaminantes Atmosféricos/análisis , Hollín/análisis , Atmósfera/química , Contaminación del Aire/estadística & datos numéricos
5.
Sci Rep ; 14(1): 5471, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443610

RESUMEN

Plant community assembly is the outcome of long-term evolutionary events (evident as taxonomic diversity; TD) and immediate adaptive fitness (functional diversity; FD); a balance expected to shift in favour of FD in 'harsh' habitats under intense selection pressures. We compared TD and FD responses along climatic and edaphic gradients for communities of two species (Dianthus pseudocrinitus and D. polylepis) endemic to the montane steppes of the Khorassan-Kopet Dagh floristic province, NE Iran. 75 plots at 15 sites were used to relate TD and FD to environmental gradients. In general, greater TD was associated with variation in soil factors (potassium, lime, organic matter contents), whereas FD was constrained by aridity (drought adaptation). Crucially, even plant communities hosting different subspecies of D. polylepis responded differently to aridity: D. polylepis subsp. binaludensis communities included a variety of broadly stress-tolerant taxa with no clear environmental response, but TD of D. polylepis subsp. polylepis communities was directly related to precipitation, with consistently low FD reflecting a few highly specialized stress-tolerators. Integrating taxonomic and functional diversity metrics is essential to understand the communities hosting even extremely closely related taxa, which respond idiosyncratically to climate and soil gradients.


Asunto(s)
Dianthus , Rosaceae , Benchmarking , Evolución Biológica , Sequías , Suelo
6.
Conserv Biol ; 38(3): e14240, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38407527

RESUMEN

Conserving mountains is important for protecting biodiversity because they have high beta diversity and endemicity, facilitate species movement, and provide numerous ecosystem benefits for people. Mountains are often thought to have lower levels of human modification and contain more protected area than surrounding lowlands. To examine this, we compared biogeographic attributes of the largest, contiguous, mountainous region on each continent. In each region, we generated detailed ecosystems based on Köppen-Geiger climate regions, ecoregions, and detailed landforms. We quantified anthropogenic fragmentation of these ecosystems based on human modification classes of large wild areas, shared lands, and cities and farms. Human modification for half the mountainous regions approached the global average, and fragmentation reduced the ecological integrity of mountain ecosystems up to 40%. Only one-third of the major mountainous regions currently meet the Kunming-Montreal Global Biodiversity Framework target of 30% coverage for all protected areas; furthermore, the vast majority of ecosystem types present in mountains were underrepresented in protected areas. By measuring ecological integrity and human-caused fragmentation with a detailed representation of mountain ecosystems, our approach facilitates tracking progress toward achieving conservation goals and better informs mountain conservation.


Evaluación de la protección y fragmentación ambiental de las principales regiones montañosas del mundo Resumen La conservación de las montañas es importante para proteger a la biodiversidad pues tienen una alta diversidad beta y endemismos, facilitan el movimiento y proporcionan numerosos beneficios ambientales para las personas. Con frecuencia creemos que las montañas tienen niveles más bajos de modificaciones humanas y que contienen más áreas protegidas que las tierras bajas que las rodean. Para evaluar lo anterior, hicimos una comparación entre los atributos biogeográficos de la región montañosa más grande y contigua en cada continente. En cada región generamos ecosistemas detallados con base en las regiones climáticas de Köppen­Geiger, ecorregiones y relieves detallados. Cuantificamos la fragmentación antropogénica de estos ecosistemas con base en las clases de modificación humana de las grandes áreas silvestres, tierras compartidas y ciudades y granjas. Las modificaciones humanas en la mitad de las regiones montañosas se aproximaron al promedio mundial, mientras que la fragmentación redujo la integridad ecológica de los ecosistemas montañosas hasta un 40%. Sólo un tercio de las principales regiones montañosas cumplen actualmente con el objetivo de 30% de cobertura para todas las áreas protegidas del Marco Mundial de Biodiversidad de Kunming­Montreal; además, la gran mayoría de los tipos de ecosistemas presentes en las montañas estaban subrepresentados dentro de las áreas protegidas. Con la medida de la integridad ecológica y la fragmentación antropogénica mediante una representación detallada de los ecosistemas montañosos, nuestra estrategia facilita el seguimiento del progreso hacia la obtención de los objetivos de conservación e informa de mejor manera a la conservación de las montañas.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Altitud
7.
Front Microbiol ; 15: 1323887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38410396

RESUMEN

Introduction: The pivotal roles of both abundant and rare bacteria in ecosystem function are widely acknowledged. Despite this, the diversity elevational patterns of these two bacterial taxa in different seasons and influencing factors remains underexplored, especially in the case of rare bacteria. Methods: Here, a metabarcoding approach was employed to investigate elevational patterns of these two bacterial communities in different seasons and tested the roles of soil physico-chemical properties in structuring these abundant and rare bacterial community. Results and discussion: Our findings revealed that variation in elevation and season exerted notably effects on the rare bacterial diversity. Despite the reactions of abundant and rare communities to the elevational gradient exhibited similarities during both summer and winter, distinct elevational patterns were observed in their respective diversity. Specifically, abundant bacterial diversity exhibited a roughly U-shaped pattern along the elevation gradient, while rare bacterial diversity increased with the elevational gradient. Soil moisture and N:P were the dominant factor leading to the pronounced divergence in elevational distributions in summer. Soil temperature and pH were the key factors in winter. The network analysis revealed the bacteria are better able to adapt to environmental fluctuations during the summer season. Additionally, compared to abundant bacteria, the taxonomy of rare bacteria displayed a higher degree of complexity. Our discovery contributes to advancing our comprehension of intricate dynamic diversity patterns in abundant and rare bacteria in the context of environmental gradients and seasonal fluctuations.

8.
PeerJ ; 11: e16133, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025706

RESUMEN

Background: Loss of biological connectivity increases the vulnerability of ecological dynamics, thereby affecting processes such as pollination. Therefore, it is important to understand the roles of the actors that participate in these interaction networks. Nonetheless, there is a significant oversight regarding the main actors in the pollination networks within the highly biodiverse forests of Colombia. Hence, the present study aims to evaluate the interaction patterns of a network of potential pollinators that inhabit an Andean Forest in Totoró, Cauca, Colombia. Methods: The interactions between plants and potential pollinators were recorded through direct observation in 10 transects during six field trips conducted over the course of one year. Subsequently, an interaction matrix was developed, and network metrics such as connectance, specialization, nestedness, and asymmetry of interaction strength were evaluated by applying null models. An interpolation/extrapolation curve was calculated in order to assess the representativeness of the sample. Finally, the key species of the network were identified by considering degree (k), centrality, and betweenness centrality. Results: A total of 53 plant species and 52 potential pollinator species (including insects and birds) were recorded, with a sample coverage of 88.5%. Connectance (C = 0.19) and specialization (H2' = 0.19) were low, indicating a generalist network. Freziera canescens, Gaiadendron punctatum, Persea mutisii, Bombus rubicundus, Heliangelus exortis, Chironomus sp., and Metallura tyrianthina were identified as the key species that contribute to a more cohesive network structure. Discussion: The present study characterized the structure of the plant-pollinator network in a highly diverse Andean forest in Colombia. It is evident that insects are the largest group of pollinators; however, it is interesting to note that birds form a different module that specializes in pollinating a specific group of plants. On the other hand, the diversity and generality of the species found suggest that the network may be robust against chains of extinction. Nevertheless, the presence of certain introduced species, such as Apis mellifera, and the rapid changes in vegetation cover may affect the dynamics of this mutualistic network. So, it is imperative to apply restoration and conservation strategies to these ecosystems in order to enhance plant-animal interactions and prevent the loss of taxonomical and functional diversity.


Asunto(s)
Ecosistema , Bosques , Animales , Colombia , Polinización , Insectos , Plantas , Aves
9.
Glob Chang Biol ; 29(24): 7001-7011, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37477066

RESUMEN

Mountain treelines are thought to be sensitive to climate change. However, how climate impacts mountain treelines is not yet fully understood as treelines may also be affected by other human activities. Here, we focus on "closed-loop" mountain treelines (CLMT) that completely encircle a mountain and are less likely to have been influenced by human land-use change. We detect a total length of ~916,425 km of CLMT across 243 mountain ranges globally and reveal a bimodal latitudinal distribution of treeline elevations with higher treeline elevations occurring at greater distances from the coast. Spatially, we find that temperature is the main climatic driver of treeline elevation in boreal and tropical regions, whereas precipitation drives CLMT position in temperate zones. Temporally, we show that 70% of CLMT have moved upward, with a mean shift rate of 1.2 m/year over the first decade of the 21st century. CLMT are shifting fastest in the tropics (mean of 3.1 m/year), but with greater variability. Our work provides a new mountain treeline database that isolates climate impacts from other anthropogenic pressures, and has important implications for biodiversity, natural resources, and ecosystem adaptation in a changing climate.


Asunto(s)
Ecosistema , Árboles , Humanos , Temperatura , Cambio Climático , Biodiversidad
10.
PeerJ ; 11: e15198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37016678

RESUMEN

Changes in altitude have a long-term and profound impact on mountain forest ecosystems. However, there have been few reports on changes in soil carbon, nitrogen, and phosphorus contents (SCNPC) along altitudinal gradients in subtropical karst mountain forests, as well as on the factors influencing such changes. We selected five Pinus massoniana forests with an altitudinal gradient in the karst mountain area of Southwest China as research objects and analyzed the changes in SCNPC along the altitudinal gradient, as well as the influencing factors behind these changes. Soil organic carbon, total nitrogen, and available nitrogen contents first increased and then decreased with increasing altitude, whereas the contents of total phosphorus and available phosphorus showed no obvious trend. In the karst mountain P. massoniana forest, SCNPC in the topsoil is most significantly affected by total glomalin-related soil protein (TG) and soil moisture content (SMC) (cumulative explanatory rate was 45.28-77.33%), indicating that TG and SMC are important factors that affect SCNPC in the karst mountain P. massoniana forest. In addition, the main environmental factors that affect SCNPC in the subsoil showed significant differences. These results may provide a better scientific reference for the sustainable management of the subtropical mountain P. massoniana forest.


Asunto(s)
Ecosistema , Pinus , Carbono , Suelo , Nitrógeno/análisis , Fósforo , Bosques
11.
Biology (Basel) ; 12(2)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36829592

RESUMEN

Climate warming has been observed as the main cause of changes in diversity, community composition, and spatial distribution of different plant and invertebrate species. Due to even stronger warming compared to the global mean, bumblebees in alpine ecosystems are particularly exposed to these changes. To investigate the effects of climate warming, we sampled bumblebees along an elevational gradient, compared the records with data from 1935 and 1936, and related our results to climate models. We found that bumblebee community composition differed significantly between sampling periods and that increasing temperatures in spring were the most plausible factor explaining these range shifts. In addition, species diversity estimates were significantly lower compared to historical records. The number of socio-parasitic species was significantly higher in the historical communities, while recent communities showed increases in climate generalists and forest species at lower elevations. Nevertheless, no significant changes in community-weighted means of a species temperature index (STI) or the number of cold-adapted species were detected, likely due to the historical data resolution. We conclude that the composition and functionality of bumblebee communities in the study area have been significantly affected by climate warming, with changes in land use and vegetation cover likely playing an additional important role.

12.
J Environ Manage ; 330: 117147, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36610192

RESUMEN

Soil carbon (SC) heterogeneity in mountain ecosystems is ascertained by a complex interdependency of topography, climate, edaphic features, and biotic elements, which may incite uncertainties in regional SC estimation. However, quantitative evaluations of the interplay between SC and these determinants as well as underlying possible link networks, are uncommon. Using the data set of SC along with soil properties at 0-10 and 10-20 cm depths from 135 plots under three coniferous forests, we aimed to ascertain SC heterogeneity and to elucidate how these interactions affect the SC storage, operating data-driven models (Least Absolute Shrinkage and Selection Operator [LASSO] regression and structural equation modeling [SEM]) to identify the dominant explanatory factors affecting the distribution of SC in Kashmir Himalayan forests. Average SC stocks at 0-10 cm and 10-20 cm depth intervals range from 32.41 Mg ha-1 in sub-alpine (SA) forest to 48.50 Mg ha-1 in mixed conifer (MC) forest. The findings show that SC declines significantly from 0 - 10 cm to 10-20 cm strata, consistent with other soil physico-chemical determinants other than bulk density. SEM renders better model fit (0-10 cm: R2 = 0.61; 10-20cm: R2 = 0.46) with lesser uncertainties compared to LASSO (0-10 cm: R2 = 0.55; 10-20cm: R2 = 0.37). Soil properties and topography play a key role in modulating SC stocks, with total nitrogen (TN), soil moisture (SM), and elevation being principal drivers with contrasting effects on SC storage, while climate and vegetation parameters are of lesser influence. The relative effect of majority of explanatory drivers reduces with depth while that of temperature increases. Our analyses indicate that shifts in floristic composition could have long-lasting implications on soil structure and C storage, providing valuable data for C sink management.


Asunto(s)
Ecosistema , Suelo , Análisis de Clases Latentes , Suelo/química , Carbono/análisis , Secuestro de Carbono , Bosques , Aprendizaje Automático , China
13.
Sci Total Environ ; 851(Pt 2): 158301, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36030849

RESUMEN

Microplastic (MP) contamination is ubiquitous and widespread in terrestrial and aquatic ecosystems, including remote areas. However, information on the presence and distribution of MPs in high-mountain ecosystems, including glaciers, is still limited. The present study aimed at investigating presence, spatial distribution, and patterns of contamination of MPs on three glaciers of the Ortles-Cevedale massif (Central Alps, Northern Italy) with different anthropic pressures, i.e., the Forni, Cedec and Ebenferner-Vedretta Piana glaciers. Samples of supraglacial debris were randomly collected from the glaciers and MPs were isolated. The mean amount (±SE) of MPs measured in debris from Forni, Cedec and Ebenferner-Vedretta Piana glaciers was 0.033 ± 0.007, 0.025 ± 0.009, and 0.265 ± 0.027 MPs g-1 dry weight, respectively. The level and pattern of MP contamination from the Ebenferner-Vedretta Piana glacier were significantly different from those of the other glaciers. No significant spatial gradient in MP distribution along the ablation areas of the glaciers was observed, suggesting that MPs do not accumulate toward the glacier snout. Our results confirmed that local contamination can represent a relevant source of MPs in glacier ecosystems experiencing high anthropic pressure, while long-range transport can be the main source on other glaciers.


Asunto(s)
Cubierta de Hielo , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Ecosistema , Italia , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
14.
Insects ; 13(4)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35447835

RESUMEN

In mountain ecosystems, climate change can cause spatiotemporal shifts, impacting the composition of communities and altering fundamental biotic interactions, such as those involving flower-visiting arthropods. On of the main problems in assessing the effects of climate change on arthropods in these environments is the lack of baseline data. In particular, the arthropod communities on early flowering high-altitude plants are poorly investigated, although the early season is a critical moment for possible mismatches. In this study, we characterised the flower-visiting arthropod community on the early flowering high-altitude Alpine plant, Androsace brevis (Primulaceae). In addition, we tested the effect of abiotic factors (temperature and wind speed) and other variables (time, i.e., hour of the day, and number of flowers per plant) on the occurrence, abundance, and diversity of this community. A. brevis is a vulnerable endemic species growing in the Central Alps above 2000 m asl and flowering for a very short period immediately after snowmelt, thus representing a possible focal plant for arthropods in this particular moment of the season. Diptera and Hymenoptera were the main flower visitors, and three major features of the community emerged: an evident predominance of anthomyiid flies among Diptera, a rare presence of bees, and a relevant share of parasitoid wasps. Temperature and time (hour of the day), but not wind speed and number of flowers per plant, affected the flower visitors' activity. Our study contributes to (1) defining the composition of high-altitude Alpine flower-visiting arthropod communities in the early season, (2) establishing how these communities are affected by environmental variables, and (3) setting the stage for future evaluation of climate change effects on flower-visiting arthropods in high-altitude environments in the early season.

15.
Dokl Biol Sci ; 502(1): 31-35, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35298751

RESUMEN

Using the cytochrome b gene (1143 bp), species identification and the phylogenetic analysis of voles of the generic group Microtus from the eastern part of the Greater Caucasus, including the Ismayilli, Khizi, and Balakan Districts of Azerbaijan, have been carried out. Three species, the Major's pine vole (M. majori), the social vole (M. socialis), and the common vole (M. arvalis form obscurus), have been identified, and five new haplotypes have been described for them. Genetic analysis with the inclusion of the new data showed that for each of the species, the physiographic conditions of the Greater Caucasus played a certain role (isolation, migration route or refugium) during the formation of the modern genetic structure. The obtained results indicate that any new data from the Caucasus could be of critical importance for the reconstruction of the evolutionary history of the modern biodiversity both within the region itself and in adjacent territories.


Asunto(s)
Arvicolinae , Animales , Arvicolinae/genética , Citocromos b/genética , Variación Genética/genética , Filogenia
16.
Ecol Evol ; 12(2): e8513, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35228858

RESUMEN

Medium-to-high elevation grasslands provide critical services in agriculture and ecosystem stabilization, through high biodiversity and providing food for wildlife. However, these ecosystems face elevated risks of disruption due to predicted soil and climate changes. Separating the effects of soil and climate, however, is difficult in situ, with previous experiments focusing largely on monocultures instead of natural grassland communities. We experimentally exposed model grassland communities, comprised of three species grown on either local or reference soil, to varied climatic environments along an elevational gradient in the European Alps, measuring the effects on species and community traits. Although species-specific biomass varied across soil and climate, species' proportional contributions to community-level biomass production remained consistent. Where species experienced low survivorship, species-level biomass production was maintained through increased productivity of surviving individuals; however, maximum species-level biomass was obtained under high survivorship. Species responded directionally to climatic variation, spatially separating differentially by plant traits (including height, reproduction, biomass, survival, leaf dry weight, and leaf area) consistently across all climates. Local soil variation drove stochastic trait responses across all species, with high levels of interactions occurring between site and species. This soil variability obscured climate-driven responses: we recorded no directional trait responses for soil-corrected traits like observed for climate-corrected traits. Our species-based approach contributes to our understanding of grassland community stabilization and suggests that these communities show some stability under climatic variation.

17.
Dokl Biol Sci ; 507(1): 281-300, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36781526

RESUMEN

The most important spatial patterns of plant cover of the Northern Transbaikalia, its regional features being represented by the structure of altitudinal zonality of the Northeastern Transbaikal orobiome, have been determined in relationship with the climatic factor. The regional climate assessment of the altitudinal belt structure of the plant cover of the orobiome has been performed for typological subdivisions of the highest hierarchic level (phratries of the classes of plant formations) using the BioClim global climate model. Principal component analysis, discriminant and cluster analysis were used to demonstrate that the summer ombrothermic index, continentality and climate moisture indices and the mean annual rainfall of many years are the most significant bioclimatic parameters determining the spatial structure of plant cover in the mountain taiga, subgoletz, mountain tundra and goletz belts. The background communities of orobiome belts develop under the conditions of continental climate (continentality index from 36 to 50). Heat supply parameters, first of all, in the vegetation period, are crucial for the spatial differentiation of altitudinal subelts, characterizing the change of light forest and dwarf pine communities in the subgoletz belt, larch, larch-pine and dark-coniferous forests in the mountain taiga belt. Moisture supply is related to the regional differences in the typological diversity of the belts, which are manifested in the development of more moisture-demanding fir-spruce forests in the low parts of the Patom Highland (rainfall amount more than 450 mm per year) and pine forests in the intermountain basins of the Stanovoy Highlands, existing under the conditions with the maximum annual temperature amplitude and low rainfall levels (up to 400 mm per year).


Asunto(s)
Cambio Climático , Bosques , Estaciones del Año , Taiga , Temperatura , Plantas , Árboles , Ecosistema
18.
Plants (Basel) ; 10(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34961222

RESUMEN

Ozone (O3) effects on the visual attraction traits (color, perception and area) of petals are described for Erodium paularense, an endangered plant species. Plants were exposed to three O3 treatments: charcoal-filtered air (CFA), ambient (NFA) and ambient + 40 nL L-1 O3 (FU+) in open-top chambers. Changes in color were measured by spectral reflectance, from which the anthocyanin reflectance index (ARI) was calculated. Petal spectral reflectance was mapped onto color spaces of bees, flies and butterflies for studying color changes as perceived by different pollinator guilds. Ozone-induced increases in petal reflectance and a rise in ARI under NFA were observed. Ambient O3 levels also induced a partial change in the color perception of flies, with the number of petals seen as blue increasing to 53% compared to only 24% in CFA. Butterflies also showed the ability to partially perceive petal color changes, differentiating some CFA petals from NFA and FU+ petals through changes in the excitation of the UV photoreceptor. Importantly, O3 reduced petal area by 19.8 and 25% in NFA and FU+ relative to CFA, respectively. In sensitive species O3 may affect visual attraction traits important for pollination, and spectral reflectance is proposed as a novel method for studying O3 effects on flower color.

19.
Glob Chang Biol ; 27(21): 5614-5628, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34478202

RESUMEN

The long-term increase in satellite-based proxies of vegetation cover is a well-documented response of seasonally snow-covered ecosystems to climate warming. However, observed greening trends are far from uniform, and substantial uncertainty remains concerning the underlying causes of this spatial variability. Here, we processed surface reflectance of the moderate resolution imaging spectroradiometer (MODIS) to investigate trends and drivers of changes in the annual peak values of the Normalized Difference Vegetation Index (NDVI). Our study focuses on above-treeline ecosystems in the European Alps. NDVI changes in these ecosystems are highly sensitive to land cover and biomass changes and are marginally affected by anthropogenic disturbances. We observed widespread greening for the 2000-2020 period, a pattern that is consistent with the overall increase in summer temperature. At the local scale, the spatial variability of greening was mainly due to the preferential response of north-facing slopes between 1900 and 2400 m. Using high-resolution imagery, we noticed that the presence of screes and outcrops locally magnified this response. At the regional scale, we identified hotspots of greening where vegetation cover is sparser than expected given the elevation and exposure. Most of these hotspots experienced delayed snow melt and green-up dates in recent years. We conclude that the ongoing greening in the Alps primarily reflects the high responsiveness of sparsely vegetated ecosystems that are able to benefit the most from temperature and water-related habitat amelioration above treeline.


Asunto(s)
Ecosistema , Imágenes Satelitales , Clima , Cambio Climático , Estaciones del Año
20.
Sci Total Environ ; 801: 149684, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34467901

RESUMEN

Old-growth mountain forests represent an ideal setting for studying long-term impacts of climate change. We studied the few remnants of old-growth forests located within the Pollino massif (southern Italy) to evaluate how the growth of conspecific young and old trees responded to climate change. We investigated two conifer species (Abies alba and Pinus leucodermis) and two hardwood species (Fagus sylvatica and Quercus cerris). We sampled one stand per species along an altitudinal gradient, ranging from a drought-limited low-elevation hardwood forest to a cold-limited subalpine pine forest. We used a dendrochronological approach to characterize the long-term growth dynamics of old (age > 120 years) versus young (age < 120 years) trees. Younger trees grew faster than their older conspecifics during their juvenile stage, regardless of species. Linear mixed effect models were used to quantify recent growth trends (1950-2015) and responses to climate for old and young trees. Climate sensitivity, expressed as radial growth responses to climate during the last three decades, partially differed between species because high spring temperatures enhanced conifer growth, whereas F. sylvatica growth was negatively affected by warmer spring conditions. Furthermore, tree growth was negatively impacted by summer drought in all species. Climate sensitivity differed between young and old trees, with younger trees tending to be more sensitive in P. leucodermis and A. alba, whereas older F. sylvatica trees were more sensitive. In low-elevation Q. cerris stands, limitation of growth due to drought was not related to tree age, suggesting symmetric water competition. We found evidence for a fast-growth trend in young individuals compared with that in their older conspecifics. Notably, old trees tended to have relatively stable growth rates, showing remarkable resistance to climate warming. These responses to climate change should be recognized when forecasting the future dynamics of old-growth forests for their sustainable management.


Asunto(s)
Fagus , Bosques , Anciano de 80 o más Años , Cambio Climático , Sequías , Humanos , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA