Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.931
Filtrar
1.
Food Sci Biotechnol ; 33(9): 2243-2254, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39130659

RESUMEN

This study investigated the preventive potential of whey protein fermented with Lacticaseibacillus rhamnosus IM36 (FWP) against muscle atrophy induced by dexamethasone (DEX). FWP exhibited enhanced antioxidant activities compared with those of unfermented whey protein, effectively suppressing DEX-induced reactive oxygen species production. FWP was treated before the administration of 100 µM DEX on C2C12 myotubes and compared to unfermented whey (WP). DEX significantly inhibited myotube viability and muscle protein synthesis and enhanced degradation. FWP exhibited a dose-dependent attenuation of cell viability loss compared with that of WP. Additionally, FWP stimulated the formation of myotubes and muscle protein synthesis by upregulating myogenesis and insulin-like growth factor-1 expression. Furthermore, FWP significantly attenuated forkhead box protein O3a-mediated ubiquitin ligases and autophagy of lysosomes activated by DEX, inhibiting pathways that lead to muscle protein breakdown. These findings suggest that FWP enhances antioxidant activity and prevented DEX-induced muscle atrophy by regulating muscle protein homeostasis. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01640-x.

2.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125886

RESUMEN

The elimination of ground reaction force (support withdrawal) vastly affects slow postural muscles in terms of their regulation and structure. One of the effects of support withdrawal in this study was an immediate postural muscle inactivation, followed by the daily gradual development of spontaneous activity of the slow postural soleus muscle in response to rat hindlimb suspension to mimic space flight. The origin of this activity is somewhat akin to muscle spasticity after spinal cord injuries and is the result of KCC2 content decline in the spinal cord's motor neurons. However, the physiological consequences of unloading-induced spontaneous activity remain unexplored. We have conducted an experiment with the administration of a highly specific KCC2 activator during 7-day unloading. For this experiment, 32 male Wistar rats were divided into 4 groups: C+placebo, C+CLP-290 (100 mg/kg b w), 7HS+placebo, and 7HS+CLP-hindlimb-suspended group with CLP-290 administration (100 mg/kg b w). The soleus muscles of the animals were dissected and analyzed for several proteostasis- and metabolism-related parameters. CLP-290 administration to the unloaded animals led to the upregulation of AMPK downstream (p-ACC) and mTOR targets (p-p70S6k and p-4E-BP) and an enhanced PGC1alpha decrease vs. the 7HS group, but neither prevented nor enhanced atrophy of the soleus muscle or myofiber CSA.


Asunto(s)
Suspensión Trasera , Músculo Esquelético , Ratas Wistar , Transducción de Señal , Animales , Suspensión Trasera/efectos adversos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Masculino , Ratas , Simportadores/metabolismo , Simportadores/genética
3.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39125931

RESUMEN

Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Músculo Esquelético , Atrofia Muscular , Humanos , Atrofia Muscular/genética , Atrofia Muscular/patología , Atrofia Muscular/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Animales , Envejecimiento/genética , Envejecimiento/patología
4.
Front Med (Lausanne) ; 11: 1380026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39118666

RESUMEN

Background: Muscle atrophy affects more than 50% of patients with chronic kidney disease (CKD) and is associated with increased morbidity and mortality. It is crucial to understand the mechanisms involved in the muscle atrophy in CKD and search for specific determinants of skeletal muscle mass loss, especially those which are available in everyday medical practice. This study aimed to evaluate the association between appendicular skeletal muscle mass (ASM) and anthropometric, body composition, nutritional, inflammatory, metabolic, and kidney function variables in non-dialysis-dependent CKD men. Methods: A total of 85 men with CKD and eGFR lower than 60 mL/min/1.73 m2 were included in the cross-sectional study: 24 participants with eGFR 59-45 mL/min/1.73 m2, 32 individuals with eGFR 44-30 mL/min/1.73 m2, and 29 men with eGFR ≤29 mL/min/1.73 m2. ASM was estimated by bioimpedance spectroscopy (BIS) with the use of a Body Composition Monitor (BCM). To evaluate ASM from BCM, Lin's algorithm was used. Among anthropometric parameters, height, weight, and body mass index (BMI) were measured. Serum laboratory measurements were grouped into kidney function, nutritional, inflammatory, and metabolic parameters. Results: ASM was significantly associated with anthropometric and body composition variables. According to the anthropometric parameters, ASM correlated positively with weight, height, and BMI (p < 0.001 and r = 0.913, p < 0.001 and r = 0.560, and p < 0.001 and r = 0.737, respectively). Among body composition variables, ASM correlated significantly and positively with lean tissue mass (LTM) (p < 0.001, r = 0.746), lean tissue index (LTI) (p < 0.001, r = 0.609), fat mass (p < 0.001, r = 0.489), and fat tissue index (FTI) (p < 0.001, r = 0.358). No other statistically significant correlation was found between ASM and kidney, nutritional, metabolic, and inflammatory variables. Conclusion: In male patients with CKD stages G3-G5 not treated with dialysis, ASM correlates significantly and positively with anthropometric and body composition parameters such as weight, height, BMI, LTM, LTI, fat mass, and FTI. We did not observe such relationship between ASM and kidney function, nutritional, metabolic, and inflammatory variables.

5.
FEBS Lett ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118298

RESUMEN

Skeletal muscle atrophy is a known risk factor for immunosuppressive conditions and for a poor prognosis in sepsis. However, its immunopathology has not been experimentally elucidated. This study investigated the effects of skeletal muscle atrophy on the immunopathology of sepsis. Male C57BL/6J mice were subjected to sciatic denervation (DN) and caecal ligation and puncture (CLP) to induce muscle atrophy or sepsis. The macrophages, myeloid-derived suppressor cells (MDSC), and T-cells in peritoneal and spleen were analysed using flow cytometry. DN-induced muscle atrophy did not affect macrophage and MDSC populations. In contrast, the percentage of cytotoxic T-lymphocyte-associated antigen (CTLA)-4+ CD4+ T-cells, programmed death (PD)-1+ CD8+ T-cells, regulatory T-cells, and the CTLA-4+ regulatory T-cells was statistically significantly higher in DN-CLP mice than in sham-CLP mice. Skeletal muscle atrophy before sepsis triggers excessive T cell immunosuppression, which may contribute to the exacerbation of sepsis under skeletal muscle atrophy.

6.
Proc Natl Acad Sci U S A ; 121(34): e2319724121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39141348

RESUMEN

Skeletal muscle atrophy is a morbidity and mortality risk factor that happens with disuse, chronic disease, and aging. The tissue remodeling that happens during recovery from atrophy or injury involves changes in different cell types such as muscle fibers, and satellite and immune cells. Here, we show that the previously uncharacterized gene and protein Zfp697 is a damage-induced regulator of muscle remodeling. Zfp697/ZNF697 expression is transiently elevated during recovery from muscle atrophy or injury in mice and humans. Sustained Zfp697 expression in mouse muscle leads to a gene expression signature of chemokine secretion, immune cell recruitment, and extracellular matrix remodeling. Notably, although Zfp697 is expressed in several cell types in skeletal muscle, myofiber-specific Zfp697 genetic ablation in mice is sufficient to hinder the inflammatory and regenerative response to muscle injury, compromising functional recovery. We show that Zfp697 is an essential mediator of the interferon gamma response in muscle cells and that it functions primarily as an RNA-interacting protein, with a very high number of miRNA targets. This work identifies Zfp697 as an integrator of cell-cell communication necessary for tissue remodeling and regeneration.


Asunto(s)
Músculo Esquelético , Proteínas de Unión al ARN , Animales , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Humanos , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Ratones Noqueados , Atrofia Muscular/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patología , MicroARNs/genética , MicroARNs/metabolismo , Ratones Endogámicos C57BL , Interferón gamma/metabolismo
7.
J Orthop Res ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39097824

RESUMEN

Immobilization following trauma or surgery induces skeletal muscle atrophy, and improvement in the muscle atrophy is critical for successful clinical outcomes. The purpose of this study is to evaluate the effect of electrical muscle stimulation (EMS) on muscle atrophy. The study design is a controlled laboratory study. Eighty rats (56 to establish the deltoid muscle atrophy [DMA] model and 24 to evaluate the effect of EMS on the model) were used. DMA was induced by completely immobilizing the right shoulder of each rat by placing sutures between the scapula and humeral shaft, with the left shoulder as a control. After establishing the DMA model, rats were randomly assigned into three groups: low-frequency EMS (L-EMS, 10 Hz frequency), medium-frequency EMS (M-EMS, 50 Hz frequency), and control (eight rats per group). After 3 weeks, the deltoid muscles of each rat were harvested, alterations in gene expression and muscle cell size were evaluated, and immunohistochemical analysis was performed. DMA was most prominent 3 weeks after shoulder immobilization. Murf1 and Atrogin were significantly induced at the initial phase and gradually decreased at approximately 3 weeks; however, MyoD expressed an inverse relationship with Murf1 and Atrogin. IL6 expression was prominent at 1 week. The time point for the EMS effect evaluation was selected at 3 weeks, when the DMA was the most prominent with a change in relevant gene expression. The M-EMS group cell size was significantly larger than that of L-EMS and control group in both the immobilized and intact shoulders (all p < 0.05), without significant differences between the L-EMS and control groups. The M-EMS group showed significantly lower mRNA expressions of Murf1 and Atrogin and higher expressions of MyoD and Col1A1 than that of the control group (all p < 0.05). In immunohistochemical analysis, similar results were observed with lower Atrogin staining and higher MyoD and Col1A1 staining in the M-EMS group. DMA model was established by complete shoulder immobilization, with the most prominent muscle atrophy observed at 3 weeks. M-EMS improved DMA with changes in the expression of relevant genes. M-EMS might be a solution for strengthening atrophied skeletal muscles and facilitating rehabilitation after trauma or surgery.

8.
Phytother Res ; 2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39099170

RESUMEN

Sarcopenia is a condition marked by a significant reduction in muscle mass and strength, primarily due to the aging process, which critically impacts muscle protein dynamics, metabolic functions, and overall physical functionality. This condition leads to increased body fat and reduced daily activity, contributing to severe health issues and a lower quality of life among the elderly. Recognized in the ICD-10-CM only in 2016, sarcopenia lacks definitive treatment options despite its growing prevalence and substantial social and economic implications. Given the aging global population, addressing sarcopenia has become increasingly relevant and necessary. The primary causes include aging, cachexia, diabetes, and nutritional deficiencies, leading to imbalances in protein synthesis and degradation, mitochondrial dysfunction, and hormonal changes. Exercise remains the most effective intervention, but it is often impractical for individuals with limited mobility, and pharmacological options such as anabolic steroids and myostatin inhibitors are not FDA-approved and are still under investigation. This review is crucial as it examines the potential of natural products as a novel treatment strategy for sarcopenia, targeting multiple mechanisms involved in its pathogenesis. By exploring natural products' multi-targeted effects, this study aims to provide innovative and practical solutions for sarcopenia management. Therefore, this review indicates significant improvements in muscle mass and function with the use of specific natural compounds, suggesting promising alternatives for those unable to engage in regular physical activity.

9.
FEBS J ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975832

RESUMEN

Cachexia is a wasting syndrome that manifests in more than half of all cancer patients. Cancer-associated cachexia negatively influences the survival of patients and their quality of life. It is characterized by a rapid loss of adipose and skeletal muscle tissues, which is partly mediated by inflammatory cytokines. Here, we explored the crucial roles of interleukin-6 (IL-6) family cytokines, including IL-6, leukemia inhibitory factor, and oncostatin M, in the development of cancer cachexia. These cytokines have been shown to exacerbate cachexia by promoting the wasting of adipose and muscle tissues, activating mechanisms that enhance lipolysis and proteolysis. Overlapping effects of the IL-6 family cytokines depend on janus kinase/signal transducer and activator of transcription 3 signaling. We argue that the blockade of these cytokine pathways individually may fail due to redundancy and future therapeutic approaches should target common downstream elements to yield effective clinical outcomes.

10.
Cell Mol Biol Lett ; 29(1): 99, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978023

RESUMEN

Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.


Asunto(s)
Epigénesis Genética , Músculo Esquelético , Atrofia Muscular , Humanos , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Animales , Histonas/metabolismo , Histonas/genética , Metilación de ADN/genética , Empalme Alternativo/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-39001644

RESUMEN

BACKGROUND: Tumour-induced skeletal muscle wasting in the context of cancer cachexia is a condition with profound implications for patient survival. The loss of muscle mass is a significant clinical obstacle and is linked to reduced tolerance to chemotherapy and increased frailty. Understanding the molecular mechanisms driving muscle atrophy is crucial for the design of new therapeutics. METHODS: Lewis lung carcinoma tumours were utilized to induce cachexia and muscle atrophy in mice. Single-nucleus libraries of the tibialis anterior (TA) muscle from tumour-bearing mice and their non-tumour-bearing controls were constructed using 10X Genomics applications following the manufacturer's guidelines. RNA sequencing results were analysed with Cell Ranger software and the Seurat R package. Oxygen consumption of mitochondria isolated from TA muscle was measured using an Oroboros O2k-FluoRespirometer. Mouse primary myotubes were treated with a recombinant ectodysplasin A2 (EDA-A2) protein to activate EDA-A2 receptor (EDA2R) signalling and study changes in gene expression and oxygen consumption. RESULTS: Tumour-bearing mice were sacrificed while exhibiting moderate cachexia. Average TA muscle weight was reduced by 11% (P = 0.0207) in these mice. A total of 12 335 nuclei, comprising 6422 nuclei from the control group and 5892 nuclei from atrophying muscles, were studied. The analysis of single-nucleus transcriptomes identified distinct myonuclear gene signatures and a shift towards type IIb myonuclei. Muscle atrophy-related genes, including Atrogin1, MuRF1 and Eda2r, were upregulated in these myonuclei, emphasizing their crucial roles in muscle wasting. Gene set enrichment analysis demonstrated that EDA2R activation and tumour inoculation led to similar expression patterns in muscle cells, including the stimulation of nuclear factor-kappa B, Janus kinase-signal transducer and activator of transcription and transforming growth factor-beta pathways and the suppression of myogenesis and oxidative phosphorylation. Muscle oxidative metabolism was suppressed by both tumours and EDA2R activation. CONCLUSIONS: This study identified tumour-induced transcriptional changes in muscle tissue at single-nucleus resolution and highlighted the negative impact of tumours on oxidative metabolism. These findings contribute to a deeper understanding of the molecular mechanisms underlying muscle wasting.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39001701

RESUMEN

BACKGROUND: Overeating and inactivity are associated with type 2 diabetes. This study aimed to investigate its pathological basis using integrated omics and db/db/mice, a model representing this condition. METHODS: The study involved housing 8-week-old db/m and db/db mice for 8 weeks. Various analyses were conducted, including gene expression in skeletal muscle and small intestine using next-generation sequencing; cytokine arrays of serum; assessment of metabolites in skeletal muscle, stool, and serum; and analysis of the gut microbiota. Histone modifications in small intestinal epithelial cells were profiled using CUT&Tag. RESULTS: Compared with db/m mice, db/db mice had 22.4% lower grip strength and approximately five times the visceral fat weight (P < 0.0001). Serum cytokine arrays showed a 2.8-fold relative concentration of VEGF-A in db/db mice (P < 0.0001) and lower concentrations of several other cytokines. mRNA sequencing revealed downregulation of Myh expression in skeletal muscle, upregulation of lipid and glucose transporters, and downregulation of amino acid transporters in the small intestine of db/db/mice. The concentrations of saturated fatty acids in skeletal muscle were significantly higher, and the levels of essential amino acids were lower in db/db mice. Analysis of the gut microbiota, 16S rRNA sequencing, revealed lower levels of the phylum Bacteroidetes (59.7% vs. 44.9%) and higher levels of the phylum Firmicutes (20.9% vs. 31.4%) in db/db mice (P = 0.003). The integrated signal of histone modifications of lipid and glucose transporters was higher, while the integrated signal of histone modifications of amino acid transporters was lower in the db/db mice. CONCLUSIONS: The multi-omics approach provided insights into the epigenomic alterations in the small intestine, suggesting their involvement in the pathogenesis of inactivity-induced muscle atrophy in obese mice.

13.
Artículo en Inglés | MEDLINE | ID: mdl-39032686

RESUMEN

INTRODUCTION: Muscle atrophy, fibrosis and fatty infiltration (FI) are commonly seen in rotator cuff tears (RCT), which are critical factors that directly determine the clinical outcomes for patients with this injury. Therefore, improving muscle quality after RCT is crucial in improving the clinical outcome of tendon repair. In recent years, it has been discovered that adults have functional beige/brown adipose tissue (BAT) which can secrete batokines to promote muscle growth. PRDM16, a PR-domain containing protein, was discovered with the ability to determine the brown fat cell fate and stimulate its development. Thus, the goal of this study is to discover the role of PRDM16 in improving muscle function after massive tendon tears using a transgenic mouse model with an elevated level of PRDM16 expression. METHODS: Transgenic aP2 driven PRDM16 overexpression mice and C57BL/6J mice underwent unilateral supraspinatus (SS) tendon transection and suprascapular nerve transection (TTDN) as described previously (N=8 in each group). DigiGait was performed to evaluate forelimb function at 6 weeks post the TTDN injury. Bilateral SS muscles, interscapular brown fat, epididymal white fat, and inguinal beige fat were harvested for analysis. The expression of PRDM16 in adipose tissue was detected by Western Blot. Masson's trichome staining was conducted to evaluate the muscle fibrosis and Oil Red O staining was used to determine the fat infiltration. Muscle fiber type was determined by MHC expression via immunostaining. All data was presented in the form of mean±SD. T-test and two-way ANOVA analysis was performed to determine a statistically significant difference between groups. Significance was considered when P<0.05. RESULTS: Western blot data showed an increased expression of PRDM16 protein in both white and brown fat in PRDM16-overexpression mice compared to wild-type (WT) mice. Even though PRDM16 overexpression had no effect on increasing muscle weight, it significantly improved the forelimbs function with longer brake, stance and stride time, larger stride length and paw area in mice after RCT. Additionally, PRDM16 overexpression mice showed no difference in amount of fibrosis when compared to WT mice, however, they had significantly reduced area of fatty infiltration. These mice also exhibited abundant MHC-IIx fiber percentage in supraspinatus muscle after TTDN. CONCLUSION: Overexpression of PRDM16 significantly improved muscle function and reduced fatty infiltration after rotator cuff tears. Promoting BAT activity is beneficial in improving rotator cuff muscle quality and shoulder function after RCT.

14.
Physiol Rep ; 12(13): e16145, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001580

RESUMEN

The dystrophin protein has well-characterized roles in force transmission and maintaining membrane integrity during muscle contraction. Studies have reported decreased expression of dystrophin in atrophying muscles during wasting conditions, and that restoration of dystrophin can attenuate atrophy, suggesting a role in maintaining muscle mass. Phosphorylation of S3059 within the cysteine-rich region of dystrophin enhances binding between dystrophin and ß-dystroglycan, and mimicking phosphorylation at this site by site-directed mutagenesis attenuates myotube atrophy in vitro. To determine whether dystrophin phosphorylation can attenuate muscle wasting in vivo, CRISPR-Cas9 was used to generate mice with whole body mutations of S3059 to either alanine (DmdS3059A) or glutamate (DmdS3059E), to mimic a loss of, or constitutive phosphorylation of S3059, on all endogenous dystrophin isoforms, respectively. Sciatic nerve transection was performed on these mice to determine whether phosphorylation of dystrophin S3059 could attenuate denervation atrophy. At 14 days post denervation, atrophy of tibialis anterior (TA) but not gastrocnemius or soleus muscles, was partially attenuated in DmdS3059E mice relative to WT mice. Attenuation of atrophy was associated with increased expression of ß-dystroglycan in TA muscles of DmdS3059E mice. Dystrophin S3059 phosphorylation can partially attenuate denervation-induced atrophy, but may have more significant impact in less severe modes of muscle wasting.


Asunto(s)
Distrofina , Músculo Esquelético , Atrofia Muscular , Animales , Fosforilación , Ratones , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/inervación , Músculo Esquelético/patología , Distrofina/metabolismo , Distrofina/genética , Masculino , Desnervación Muscular/métodos , Ratones Endogámicos C57BL
15.
BMC Musculoskelet Disord ; 25(1): 535, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997654

RESUMEN

BACKGROUND: The study aimed to determine the grade of retraction and atrophy according to the time elapsed in traumatic isolated full-thickness supraspinatus (SS) tears in young patients. METHODS: One thousand twenty-six patients, who underwent arthroscopic shoulder surgery, were retrospectively reviewed. Pre-operative magnetic resonance imaging (MRI) of 69 patients aged 18 to 40 years with isolated traumatic full-thickness SS lesions remaining after exclusion criteria were evaluated for tendon retraction and atrophy grades. SS retraction was determined from a T2-weighted oblique coronal MRI slice, and the atrophy grade was determined from the T1-weighted oblique sagittal MRI slice. The patients were divided into four groups 0-1 month, 1-3 months, 3-6 months, and 6-12 months according to the time between trauma and MRI. The relationship of tendon retraction and muscle atrophy with elapsed time was evaluated, in addition, comparisons between groups were made. RESULTS: Thirty-one (45%) of the patients were female and their mean age was 30 ± 7.3 (18-40) years. The mean age of men was 30.5 ± 6.9 (18-39) years (p = 0.880). The time between rupture and MRI was moderately correlated with retraction and strongly correlated with atrophy grades (r = 0.599, 0.751, respectively). It was observed that there was a statistically significant difference between the 1st (0-1 month) and 2nd (1-3 months) groups (p = 0.003, 0.001, respectively), and between the 2nd and 3rd (3-6 months) groups (p = 0.032, 0.002, respectively), but there was no significant difference between the 3rd and 4th (6-12 months) groups (p = 0.118, 0.057, respectively). In addition, there was a moderate correlation between tendon retraction and atrophy grades (r = 0.668). Power (1- b) in post hoc analysis was calculated as 0.826. CONCLUSIONS: The current study, supported by arthroscopy, showed that there is a moderate and strong positive correlation between the time elapsed after trauma and the level of retraction and degree of atrophy in traumatic full-thickness SS tears, and demonstrated the importance of early surgical intervention in young patients.


Asunto(s)
Imagen por Resonancia Magnética , Atrofia Muscular , Lesiones del Manguito de los Rotadores , Humanos , Femenino , Masculino , Adulto , Adolescente , Adulto Joven , Estudios Retrospectivos , Lesiones del Manguito de los Rotadores/cirugía , Lesiones del Manguito de los Rotadores/diagnóstico por imagen , Lesiones del Manguito de los Rotadores/patología , Atrofia Muscular/patología , Atrofia Muscular/diagnóstico por imagen , Atrofia Muscular/etiología , Factores de Tiempo , Manguito de los Rotadores/patología , Manguito de los Rotadores/diagnóstico por imagen , Manguito de los Rotadores/cirugía , Artroscopía/métodos , Traumatismos de los Tendones/diagnóstico por imagen , Traumatismos de los Tendones/patología , Traumatismos de los Tendones/cirugía
16.
Case Rep Neurol ; 16(1): 148-153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015830

RESUMEN

Introduction: Acute Leriche syndrome is a rare but potentially life-threatening condition. Pain, pallor, and coldness of the lower extremities serve as clues for suspecting Leriche syndrome. However, the absence of these findings may pose a diagnostic challenge. Case Presentation: An 83-year-old man presented at our emergency department with a complaint of sudden-onset paraparesis. Initially, spinal cord infarction was suspected due to clinical course and neurological findings, but thoracolumbar MRI showed normal findings. On admission, symptoms associated with aortoiliac occlusion were not present, except for muscle atrophy in the thigh. CT angiography revealed aortoiliac occlusion, leading to a diagnosis of Leriche syndrome. Conclusion: Leriche syndrome should be considered as a potential differential diagnosis in patients with acute paraparesis. Muscle atrophy of the lower limbs disproportionate to the clinical course may be the clue for suspecting acute Leriche syndrome with symptoms related to atherosclerotic occlusion which are inconspicuous.

17.
Life (Basel) ; 14(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063539

RESUMEN

Type 2 diabetes mellitus (T2DM) is a burgeoning public health challenge worldwide. Individuals with T2DM are at increased risk for skeletal muscle atrophy, a serious complication that significantly compromises quality of life and for which effective prevention measures are currently inadequate. Emerging evidence indicates that systemic and local inflammation stemming from the compromised intestinal barrier is one of the crucial mechanisms contributing to skeletal muscle atrophy in T2DM patients. Notably, natural plant polysaccharides were found to be capable of enhancing intestinal barrier function and mitigating secondary inflammation in some diseases. Herein, we hypothesized that Grifola frondosa polysaccharide (GFP), one of the major plant polysaccharides, could prevent skeletal muscle atrophy in T2DM via regulating intestinal barrier function and inhibiting systemic and local inflammation. Using a well-established T2DM rat model, we demonstrated that GFP was able to not only prevent hyperglycemia and insulin resistance but also repair intestinal mucosal barrier damage and subsequent inflammation, thereby alleviating the skeletal muscle atrophy in the T2DM rat model. Additionally, the binding free energy analysis and molecular docking of monosaccharides constituting GFP were further expanded for related targets to uncover more potential mechanisms. These results provide a novel preventative and therapeutic strategy for T2DM patients.

18.
Sensors (Basel) ; 24(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39066045

RESUMEN

Muscle dysfunction and muscle atrophy are common complications resulting from Chronic Obstructive Pulmonary Disease (COPD). The evaluation of the peripheral muscles can be carried out through the assessment of their structural components from ultrasound images or their functional components through isometric and isotonic strength tests. This evaluation, performed mainly on the quadriceps muscle, is not only of great interest for diagnosis, prognosis and monitoring of COPD, but also for the evaluation of the benefits of therapeutic interventions. In this work, bioimpedance spectroscopy technology is proposed as a low-cost and easy-to-use alternative for the evaluation of peripheral muscles, becoming a feasible alternative to ultrasound images and strength tests for their application in routine clinical practice. For this purpose, a laboratory prototype of a bioimpedance device has been adapted to perform segmental measurements in the quadriceps region. The validation results obtained in a pseudo-randomized study in patients with COPD in a controlled clinical environment which involved 33 volunteers confirm the correlation and correspondence of the bioimpedance parameters with respect to the structural and functional parameters of the quadriceps muscle, making it possible to propose a set of prediction equations. The main contribution of this manuscript is the discovery of a linear relationship between quadriceps muscle properties and the bioimpedance Cole model parameters, reaching a correlation of 0.69 and an average error of less than 0.2 cm regarding the thickness of the quadriceps estimations from ultrasound images, and a correlation of 0.77 and an average error of 3.9 kg regarding the isometric strength of the quadriceps muscle.


Asunto(s)
Impedancia Eléctrica , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico por imagen , Masculino , Músculo Cuádriceps/fisiopatología , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/fisiología , Persona de Mediana Edad , Anciano , Femenino , Espectroscopía Dieléctrica/métodos , Espectroscopía Dieléctrica/instrumentación , Fuerza Muscular/fisiología , Músculo Esquelético/fisiopatología , Músculo Esquelético/diagnóstico por imagen
19.
FASEB J ; 38(13): e23797, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963344

RESUMEN

The role of N-glycosylation in the myogenic process remains poorly understood. Here, we evaluated the impact of N-glycosylation inhibition by Tunicamycin (TUN) or by phosphomannomutase 2 (PMM2) gene knockdown, which encodes an enzyme essential for catalyzing an early step of the N-glycosylation pathway, on C2C12 myoblast differentiation. The effect of chronic treatment with TUN on tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of WT and MLC/mIgf-1 transgenic mice, which overexpress muscle Igf-1Ea mRNA isoform, was also investigated. TUN-treated and PMM2 knockdown C2C12 cells showed reduced ConA, PHA-L, and AAL lectin binding and increased ER-stress-related gene expression (Chop and Hspa5 mRNAs and s/uXbp1 ratio) compared to controls. Myogenic markers (MyoD, myogenin, and Mrf4 mRNAs and MF20 protein) and myotube formation were reduced in both TUN-treated and PMM2 knockdown C2C12 cells. Body and TA weight of WT and MLC/mIgf-1 mice were not modified by TUN treatment, while lectin binding slightly decreased in the TA muscle of WT (ConA and AAL) and MLC/mIgf-1 (ConA) mice. The ER-stress-related gene expression did not change in the TA muscle of WT and MLC/mIgf-1 mice after TUN treatment. TUN treatment decreased myogenin mRNA and increased atrogen-1 mRNA, particularly in the TA muscle of WT mice. Finally, the IGF-1 production and IGF1R signaling pathways activation were reduced due to N-glycosylation inhibition in TA and EDL muscles. Decreased IGF1R expression was found in TUN-treated C2C12 myoblasts which was associated with lower IGF-1-induced IGF1R, AKT, and ERK1/2 phosphorylation compared to CTR cells. Chronic TUN-challenge models can help to elucidate the molecular mechanisms through which diseases associated with aberrant N-glycosylation, such as Congenital Disorders of Glycosylation (CDG), affect muscle and other tissue functions.


Asunto(s)
Diferenciación Celular , Chaperón BiP del Retículo Endoplásmico , Músculo Esquelético , Mioblastos , Receptor IGF Tipo 1 , Transducción de Señal , Tunicamicina , Animales , Ratones , Glicosilación , Mioblastos/metabolismo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Tunicamicina/farmacología , Receptor IGF Tipo 1/metabolismo , Receptor IGF Tipo 1/genética , Músculo Esquelético/metabolismo , Desarrollo de Músculos/fisiología , Línea Celular , Ratones Transgénicos , Estrés del Retículo Endoplásmico , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética
20.
J Funct Morphol Kinesiol ; 9(3)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39051285

RESUMEN

Prolonged exposure to high dosages of dexamethasone, which is a synthetic glucocorticoid and a well-known anti-inflammatory drug, may lead to an increase in reactive oxygen species production, contributing to muscle wasting. The prevention of muscle atrophy by ingestion of functional foods is an attractive issue. In the last decade, natural antioxidant compounds have been increasingly investigated as promising molecules able to counteract oxidative-stress-induced muscle atrophy. Recently, we have demonstrated the antioxidant properties of two main olive oil polyphenols also known for their anticancer and anti-inflammatory activities in different cell models. Here, the preventive effect of tyrosol on dexamethasone-induced muscle atrophy has been investigated by means of morpho-functional approaches in C2C12 myotubes. Dexamethasone-treated cells showed a reduced fiber size when compared to control ones. While long and confluent myotubes could be observed in control samples, those exposed to dexamethasone appeared as immature syncytia. Dysfunctional mitochondria and the accumulation of autophagic vacuoles contributed to myotube degeneration and death. Tyrosol administration before glucocorticoid treatment prevented muscle wasting and rescued mitochondrial and lysosomal functionality. These findings demonstrate that tyrosol attenuates dexamethasone-induced myotube damage, and encourage the use of this natural molecule in preclinical and clinical studies and in synergy with other functional foods or physical activity with the aim to prevent muscle atrophy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA