Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Polymers (Basel) ; 16(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125234

RESUMEN

Nafion membranes are widely used as proton exchange membranes, but their proton conductivity deteriorates in high-temperature environments due to the loss of water molecules. To address this challenge, we propose the utilization of porous aromatic frameworks (PAFs) as a potential solution. PAFs exhibit remarkable characteristics, such as a high specific surface area and porosity, and their porous channels can be post-synthesized. Here, a novel approach was employed to synthesize a PAF material, designated as PAF-45D, which exhibits a specific surface area of 1571.9 m2·g-1 and possesses the added benefits of facile synthesis and a low cost. Subsequently, sulfonation treatment was applied to PAF-45D in order to introduce sulfonic acid groups into its pores, resulting in the formation of PAF-45DS. The successful incorporation of sulfonic groups was confirmed through TG, IR, and EDS analyses. Furthermore, a novel Nafion composite membrane was prepared by incorporating PAF-45DS. The Nyquist plot of the composite membranes demonstrates that the sulfonated PAF-45DS material can enhance the proton conductivity of Nafion membranes at high temperatures. Specifically, under identical film formation conditions, doping with a 4% mass fraction of PAF-45DS, the conductivity of the Nafion composite membrane increased remarkably from 2.25 × 10-3 S·cm-1 to 5.67 × 10-3 S·cm-1, nearly 2.5 times higher. Such promising and cost-effective materials could be envisioned for application in the field of Nafion composite membranes.

2.
Int J Food Microbiol ; 425: 110870, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39151230

RESUMEN

Food contaminated by pathogenic bacteria poses a serious threat to human health. Consequently, we used Salmonella as a model and developed an electrochemical immunosensor based on a polydopamine/CoFe-MOFs@Nafion nanocomposite for the detection of Salmonella in milk. The CoFe-MOFs exhibit good stability, large specific surface area, and high porosity. However, after modification on the electrode surface, they were prone to detachment. This issue was effectively mitigated by incorporating Nafion into the nanocomposite. A polydopamine (PDA) film was deposited onto the surface of CoFe-MOFs@Nafion through cyclic voltammetry (CV), accompanied by an investigation into the polymerization mechanism of the PDA film. PDA contains a substantial number of quinone functional groups, which can covalently bind to amino or sulfhydryl groups via Michael addition reaction or Schiff base reaction, thereby immobilizing anti-Salmonella antibodies onto the modified electrode surface. Under the optimal experimental conditions, the Salmonella concentration exhibited a good linear relationship within the range of 1.38 × 102 to 1.38 × 108 CFU mL-1, with a detection limit of 1.38 × 102 CFU mL-1. Furthermore, the constructed immunosensor demonstrated good specificity, stability, and reproducibility, offering a novel approach for the rapid detection of foodborne pathogens.

3.
Membranes (Basel) ; 14(8)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39195425

RESUMEN

To improve the stability of high-temperature water electrolysis, I prepared membrane electrode assemblies (MEAs) using a decal method and investigated their water electrolysis properties. Nafion 115 and crosslinked sulfonated polyphenylsulfone (CSPPSU) membranes were used. IrO2 was used as the oxygen evolution reaction (OER) catalyst, and Pt/C was used as the hydrogen evolution reaction (HER) catalyst. The conductivity of the CSPPSU membrane at 80 °C and 90% RH (relative humidity) is about four times lower than that of the Nafion 115 membrane. Single-cell water electrolysis was performed while measuring the current density and performing electrochemical impedance spectroscopy (EIS) at cell temperatures from 80 to 150 °C and the stability of the current density over time at 120 °C and 1.7 V. The current density of water electrolysis using Nafion 115 and CSPPSU membranes at 150 °C and 2 V was 1.2 A/cm2 for both. The current density of the water electrolysis using the CSPPSU membrane at 120 °C and 1.7 V was stable for 40 h. The decal method improved the contact between the CSPPSU membrane and the catalyst electrode, and a stable current density was obtained.

4.
Polymers (Basel) ; 16(16)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39204558

RESUMEN

This work looks at the effects of a varying concentration, soak time, pH and temperature on the sorption of tetraammineplatinum(II) chloride (Pt-Ammine) in Nafion-117 films in the context of the electroless plating of ionic polymer-metal composites (IPMCs). Sorption is characterised by atomic absorption spectroscopy. A definitive screening design carried out determined all four factors to be significant for further analysis using response surface modelling. A duplicated central composite design (CCD) was utilised to characterise how the four factors affect the sorption amount and efficiency. Regression models for both responses were of poor fit. Nevertheless, key insights were obtained on the effects of the process parameters on sorption behaviour. The results indicate that above 0.5 g/L Pt-Ammine sorption, the platinisation of 10 × 50 mm IPMC samples through sodium borohydride reduction becomes redundant by the surface resistance metric. IPMCs with surface resistance values of approximately 2.5 Ω/square were obtained through only one round of chemical reduction. Varying surface morphologies and electrode thicknesses were analysed under a scanning electron microscope. The CCD parameter settings were validated. Recommended settings for optimised Pt-Ammine sorption in 10 × 50 mm Nafion-117 films were identified as follows: 1.0 g/L Pt-Ammine concentration, 24 h soak time, pH of 3 and temperature of 20 °C.

5.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39201403

RESUMEN

Xerosydryle belongs to a new category of materials resulting from the interaction of water with various hydrophilic polymers. These materials can exhibit different properties depending on the kind of polymer-water interaction. Previous research confirmed the existence of a solid manifestation of water at room temperature. The thermal properties of dissolved xerosydryle in water are similar to those of biological macromolecules during denaturation but with greater stability. This study investigated the biological effect of xerosydryle on a living system for the first time, using a seed germination model. The interaction was evaluated using physiological assays such as chlorophyll shifts, potassium (re)uptake during the onset of germination and a transcriptome approach. Seeds were treated with samples of xerosydryle and distilled water. Transcriptome analysis of germinating seeds highlighted differences (up- and down-regulated genes) between seeds treated with xerosydryle and those treated with distilled water. Overall, the experiments performed indicate that xerosydryle, even at low concentrations, interferes with seedling growth in a manner similar to an osmotic modulator. This work paves the way for a more comprehensive exploration of the active biological role of xerosydryle and similar compounds on living matter and opens up speculation on the interactions at the boundaries between physics, chemistry, and biology.


Asunto(s)
Germinación , Plantones , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/genética , Regulación de la Expresión Génica de las Plantas , Clorofila/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Semillas/genética , Transcriptoma , Potasio/metabolismo , Perfilación de la Expresión Génica , Agua/metabolismo
6.
Sensors (Basel) ; 24(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39204984

RESUMEN

The effectiveness of copper oxide-modified electrochemical sensors using different polymers is being studied. The commercial powder was sonicated in an isopropyl alcohol solution and distilled water with 5 wt% polymers (chitosan, Nafion, PVP, HPC, α-terpineol). It was observed that the chitosan and Nafion caused degradation of CuO, but Nafion formed a stable mixture when diluted. The modified electrodes were drop-casted and analyzed using cyclic voltammetry in 0.1 M KCl + 3 mM [Fe(CN)6]3-/4- solution to determine the electrochemically active surface area (EASA). The results showed that α-terpineol formed agglomerates, while HPC created uneven distributions, resulting in poor stability. On the other hand, Nafion and PVP formed homogeneous layers, with PVP showing the highest EASA of 0.317 cm2. In phosphate-buffered saline (PBS), HPC and PVP demonstrated stable signals. Nafion remained the most stable in various electrolytes, making it suitable for sensing applications. Testing in 0.1 M NaOH revealed HPC instability, partial dissolution of PVP, and Cu ion reduction. The type of polymer used significantly impacts the performance of CuO sensors. Nafion and PVP show the most promise due to their stability and effective dispersion of CuO. Further optimization of polymer-CuO combinations is necessary for enhanced sensor functionality.

7.
ACS Appl Mater Interfaces ; 16(32): 42164-42175, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39096244

RESUMEN

The nanostructure of Nafion and poly(vinylidene fluoride) (PVDF) blend membranes is successfully aligned through a mechanical uniaxial stretching method. The phase-separated morphology of Nafion molecules distinctly forms hydrophilic proton channels with increased connectivity, resulting in enhanced proton conductivity. Additionally, the crystalline phase of PVDF molecules undergoes a successful transformation from the α- to ß-phase during membrane stretching, demonstrating an alignment of fluorine and hydrogen atoms with a TTTT(trans) structure. The aligned nanostructure of the blend film, combined with the dipole polarization of the ß-phase PVDF, synergistically enhances the proton conduction through the membrane for operating proton-exchange membrane fuel cells (PEMFCs). The controlled structures of the blend membranes are thoroughly investigated using atomic force microscopy and small-angle X-ray scattering. Furthermore, the improved in-plane proton conductivity facilitates increased proton conduction at the interface between the membrane and catalyst layer in the membrane-electrode assembly, ultimately enhancing the power generation of PEMFCs.

8.
Sci Rep ; 14(1): 15461, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965300

RESUMEN

This paper introduces a novel solid-state electrolyte-based enzymatic sensor designed for the detection of acetone, along with an examination of its performance under various surface modifications aimed at optimizing its sensing capabilities. To measure acetone concentrations in both liquid and vapor states, cyclic voltammetry and amperometry techniques were employed, utilizing disposable screen-printed electrodes consisting of a platinum working electrode, a platinum counter electrode, and a silver reference electrode. Four different surface modifications, involving different combinations of Nafion (N) and enzyme (E) layers (N + E; N + E + N; N + N + E; N + N + E + N), were tested to identify the most effective configuration for a sensor that can be used for breath acetone detection. The sensor's essential characteristics, including linearity, sensitivity, reproducibility, and limit of detection, were thoroughly evaluated through a range of experiments spanning concentrations from 1 µM to 25 mM. Changes in acetone concentration were monitored by comparing currents readings at different acetone concentrations. The sensor exhibited high sensitivity, and a linear response to acetone concentration in both liquid and gas phases within the specified concentration range, with correlation coefficients ranging from 0.92 to 0.98. Furthermore, the sensor achieved a rapid response time of 30-50 s and an impressive detection limit as low as 0.03 µM. The results indicated that the sensor exhibited the best linearity, sensitivity, and limit of detection when four layers were employed (N + N + E + N).

9.
Polymers (Basel) ; 16(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39065409

RESUMEN

Here, the optical properties of the Nafion polymer membrane containing colloidal CdSe/CdS/ZnS nanocrystals embedded by diffusion have been studied. The CdSe/CdS/ZnS nanocrystals have a core/shell/shell appearance. All experiments were carried out at room temperature (22 ± 2) °C. A toluene solution was used to provide mobility to the active sulfone groups of the Nafion membrane and to embed the nanocrystals inside the membrane. The diffusion process of colloidal CdSe/CdS/ZnS nanocrystals into Nafion proton exchange membrane has resulted in a new molecular complex "Nafion-colloidal CdSe/CdS/ZnS nanocrystals". The kinetics of the nanocrystals embedding into the membrane matrix was investigated using luminescence analysis and absorption spectroscopy techniques. The embedding rate of CdSe/CdS/ZnS nanocrystals into the Nafion polymer membrane was approximately 4·10-3 min-1. The presence of new luminescence centers in the membrane was proved independently by laser emission spectroscopy. The luminescence spectrum of the resulting molecular complex contains intensity maxima at wavelengths of 538, 588, 643 and 700 nm. The additional luminescence maximum observed at the 643 nm wavelength was not recorded in the original membrane, solvent or in the spectrum of the semiconductor nanoparticles. The luminescence maximum of the colloidal CdSe/CdS/ZnS nanocrystals was registered at a wavelength of 634 nm. The intensity of the luminescence spectrum of the membrane with embedded nanocrystals was found to be higher than the intensity of the secondary emission peak of the initial nanocrystals, which is important for the practical use of the "Nafion-colloidal nanocrystals" complex in optical systems. The lines contained in the luminescence spectrum of the membrane, which has been in solution with colloidal nanocrystals for a long time, registered upon its drying, show the kinetics of the formation of the molecular complex "Nafion membrane-nanocrystals". Colloidal nanocrystals located in the Nafion matrix represent an analog of a luminescent transducer.

10.
Beilstein J Org Chem ; 20: 1623-1634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076286

RESUMEN

A new paradigm for energy is underway demanding decarbonized energy systems. Some of them rely on emerging electrochemical devices, crucial in hydrogen technologies, including fuel cells, CO2 and water electrolysers, whose applications and performances depend on key components such as their separators/ion-exchange membranes. The most studied and already commercialized Nafion membrane shows great chemical stability, but its water content limits its high proton conduction to a limited range of operating temperatures. Here, we report the synthesis of a new series of triazinephosphonate derivatives and their use as dopants in the preparation of new modified Nafion membranes. The triazinephosphonate derivatives were prepared by substitution of chlorine atoms in cyanuric chloride. Diverse conditions were used to obtain the trisubstituted (4-hydroxyphenyl)triazinephosphonate derivatives and the (4-aminophenyl)triazinephosphonate derivatives, but with these amino counterparts, only the disubstituted compounds were obtained. The new modified Nafion membranes were prepared by casting incorporation of the synthesized 1,3,5-triazinephosphonate (TPs) derivatives. The evaluation of the proton conduction properties of the new membranes and relative humidity (RH) conditions and at 60 °C, showed that they present higher proton conductivities than the prepared Nafion membrane and similar or better proton conductivities than commercial Nafion N115, in the same experimental conditions. The Nafion-doped membrane with compound TP2 with a 1.0 wt % loading showed the highest proton conductivity with 84 mS·cm-1.

11.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998995

RESUMEN

Polytetrafluoroethylene (PTFE) and, by extension, fluoropolymers are ubiquitous in science, life, and the environment as perfluoroalkyl pollutants (PFAS). In all cases, it is difficult to transform these materials due to their chemical inertness. Herein, we report a direct amination process of PTFE and some fluoropolymers such as polyvinylidene fluoride (PVDF) and Nafion by lithium alkylamide salts. Synthesizing these reactants extemporaneously between lithium metal and an aliphatic primary di- or triamine that also serves as a solvent leads to the rapid nucleophilic substitution of fluoride by an alkylamide moiety when in contact with the fluoropolymer. Moreover, lithium alkylamides dissolved in suitable solvents other than amines can react with fluoropolymers. This highly efficient one-pot process opens the way for further surface or bulk modification if needed, providing an easy, inexpensive, and fast experiment protocol on large scales.

12.
Macromol Rapid Commun ; : e2400165, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924243

RESUMEN

Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), a conductive polymer, has gained popularity as the channel layer in organic electrochemical transistors (OECTs) due to its high conductivity and straightforward processing. However, difficulties arise in controlling its conductivity through gate voltage, presenting a challenge. To address this issue, aromatic amidine base, diazabicyclo[4.3.0]non-5-ene (DBN), is used to stabilize the doping state of the PEDOT chain through a reliable chemical de-doping process. Furthermore, the addition of the proton-penetrable material Nafion to the PEDOT:PSS channel layer induces phase separation between the substances. By utilizing a solution containing both PEDOT:PSS and Nafion as the channel layer of OECTs, the efficiency of ion movement into the channel from the electrolyte is enhanced, resulting in improved OECT performance. The inclusion of Nafion in the OECTs' channel layer modifies ion movement dynamics, allowing for the adjustment of synaptic properties such as pulse-paired facilitation, memory level, short-term plasticity, and long-term plasticity. This research aims to introduce new possibilities in the field of neuromorphic computing and contribute to biomimetic technology through the enhancement of electronic component performance.

13.
Angew Chem Int Ed Engl ; : e202409006, 2024 Jun 19.
Artículo en Alemán | MEDLINE | ID: mdl-38896505

RESUMEN

Fluoroalkyl-grafted polyoxometalate nanoclusters are used as supramolecular additives to precisely modify the ionic domains of Nafion, which can increase the proton conductivity and selectivity simultaneously. The resulting hybrid membranes show significantly enhanced power density in fuel cells and improved energy efficiency in vanadium flow batteries.

14.
Nanomaterials (Basel) ; 14(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38869547

RESUMEN

Ensuring the stable operation of proton exchange membrane fuel cells is conducive to their real-world application. A promising direction for stabilizing electrodes is the stabilization of the ionomer via the formation of surface compounds with graphene. A comprehensive study of the (electrochemical, chemical, and thermal) stability of composites for fuel cell electrodes containing a modifying additive of few-layer graphene was carried out. Electrochemical stability was studied by cycling the potential on a disk electrode for 5000 cycles. Chemical stability was assessed via the resistance of the composites to H2O2 treatment using ion-selective potentiometry. Thermal stability was studied using differential thermal analysis. Composites were characterized by UV-Vis spectroscopy, Raman spectroscopy, EDX, and SEM. It was shown that graphene inhibits Nafion degradation when exposed to heat. Contrariwise, Nafion is corrosive to graphene. During electrochemical and chemical exposure, the determining change for carbon-rich composites is the carbon loss (oxidation) of the carbon material. In the case of carbon-poor composites, the removal of fluorine and sulfur from the Nafion polymer with their partial replacement by oxygen prevails. In all cases, the F/S ratio is stable. The dispersity of Nafion in a sample affects its chemical stability more than the G/Nafion ratio does.

15.
ACS Nano ; 18(19): 12580-12587, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696339

RESUMEN

Osmotic energy from proton gradients in industrial acidic wastewater can be harvested and converted to electricity through membranes, making it a renewable and sustainable power source. However, the currently designed membranes for harvesting proton gradient energy in acidic wastewater cannot simultaneously achieve excellent chemical/mechanical stability and high power density under a large-scale area and require high cost and complex operations. Here, we demonstrate that commercial Nafion membranes with high chemical/mechanical stability and proton transport selectivity can generate a power density of 5.1 W/m2 for harvesting osmotic energy from proton gradients under a test area of 0.2 mm2, which exceeds the commercial goal of 5.0 W/m2. Even under a test area of 12.5 mm2, a power density of 2.1 W/m2 can be achieved under a strong acid condition. In addition, the heat can greatly promote proton transport, and the power density is increased, i.e., 8.1 W/m2 at 333 K (5.1 W/m2 at 293 K) under a test area of 0.2 mm2. By matching membranes with ion selectivity, our work demonstrates the potential of Nafion membranes for harvesting proton gradient energy in acidic wastewater and provides an approach for large-scale conversion of osmotic energy.

16.
Polymers (Basel) ; 16(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732673

RESUMEN

Nafion, a versatile polymer used in electrochemistry and membrane technologies, exhibits complex behaviors in saline environments. This study explores Nafion membrane's IR spectra during soaking and subsequent drying processes in salt solutions at various concentrations. Utilizing the principles of Fick's second law, diffusion coefficients for these processes are derived via exponential approximation. By harnessing machine learning (ML) techniques, including the optimization of neural network hyperparameters via a genetic algorithm (GA) and leveraging various regressors, we effectively pinpointed the optimal model for predicting diffusion coefficients. Notably, for the prediction of soaking coefficients, our model is composed of layers with 64, 64, 32, and 16 neurons, employing ReLU, ELU, sigmoid, and ELU activation functions, respectively. Conversely, for drying coefficients, our model features two hidden layers with 16 and 12 neurons, utilizing sigmoid and ELU activation functions, respectively.

17.
Proc Natl Acad Sci U S A ; 121(23): e2320012121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38809713

RESUMEN

Rechargeable sodium-oxygen (Na-O2) battery is deemed as a promising high-energy storage device due to the abundant sodium resources and high theoretical energy density (1,108 Wh kg-1). A series of quasisolid electrolytes are constantly being designed to restrain the dendrites growth, the volatile and leaking risks of liquid electrolytes due to the open system of Na-O2 batteries. However, the ticklish problem about low operating current density for quasisolid electrolytes still hasn't been conquered. Herein, we report a rechargeable Na-O2 battery with polyvinylidene fluoride-hexafluoropropylene recombination Nafion (PVDF-HFP@Nafion) based quasisolid polymer electrolyte (QPE) and MXene-based Na anode with gradient sodiophilic structure (M-GSS/Na). QPE displays good flame resistance, locking liquid and hydrophobic properties. The introduction of Nafion can lead to a high Na+ migration number (tNa+ = 0.68) by blocking the motion of anion and promote the formation of NaF-rich solid electrolyte interphase, resulting in excellent cycling stability at relatively high current density under quasisolid environment. In the meantime, the M-GSS/Na anode exhibits excellent dendrite inhibition ability and cycling stability. Therefore, with the synergistic effect of QPE and M-GSS/Na, constructed Na-O2 batteries run more stably and exhibit a low potential gap (0.166 V) after an initial 80 cycles at 1,000 mA g-1 and 1,000 mAh g-1. This work provides the reference basis for building quasisolid state Na-O2 batteries with long-term cycling stability.

18.
Sci Rep ; 14(1): 11928, 2024 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789508

RESUMEN

Cancer stands as one of the most impactful illnesses in the modern world, primarily owing to its lethal consequences. The fundamental concern in this context likely stems from delayed diagnoses in patients. Hence, detecting various forms of cancer is imperative. A formidable challenge in cancer research has been the diagnosis and treatment of this disease. Early cancer diagnosis is crucial, as it significantly influences subsequent therapeutic steps. Despite substantial scientific efforts, accurately and swiftly diagnosing cancer remains a formidable challenge. It is well known that the field of cancer diagnosis has effectively included electrochemical approaches. Combining the remarkable selectivity of biosensing components-such as aptamers, antibodies, or nucleic acids-with electrochemical sensor systems has shown positive outcomes. In this study, we adapt a novel electrochemical biosensor for cancer detection. This biosensor, based on a glassy carbon electrode, incorporates a nanocomposite of reduced graphene oxide/Fe3O4/Nafion/polyaniline. We elucidated the modification process using SEM, TEM, FTIR, RAMAN, VSM, and electrochemical methods. To optimize the experimental conditions and monitor the immobilization processes, electrochemical techniques such as CV, EIS, and SWV were employed. The calibration graph has a linear range of 102-106 cells mL-1, with a detection limit of 5 cells mL-1.


Asunto(s)
Compuestos de Anilina , Biomarcadores de Tumor , Técnicas Biosensibles , Neoplasias de la Mama , Técnicas Electroquímicas , Polímeros de Fluorocarbono , Grafito , Receptor ErbB-2 , Grafito/química , Humanos , Técnicas Biosensibles/métodos , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/patología , Técnicas Electroquímicas/métodos , Compuestos de Anilina/química , Polímeros de Fluorocarbono/química , Línea Celular Tumoral , Receptor ErbB-2/metabolismo , Receptor ErbB-2/análisis , Femenino , Óxido Ferrosoférrico/química , Límite de Detección , Electrodos
19.
Mikrochim Acta ; 191(4): 228, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558104

RESUMEN

A cutting-edge electrochemical method is presented for precise quantification of amitraz (AMZ), a commonly used acaricide in veterinary medicine and agriculture. Leveraging a lab-made screen-printed carbon electrode modified with a synergistic blend of perylene tetracarboxylic acid (PTCA), mesoporous carbon (MC), and Nafion, the sensor's sensitivity was significantly improved. Fine-tuning of PTCA, MC, and Nafion ratios, alongside optimization of the pH of the supporting electrolyte and accumulation time, resulted in remarkable sensitivity enhancements. The sensor exhibited a linear response within the concentration range 0.01 to 0.70 µg mL-1, boasting an exceptionally low limit of detection of 0.002 µg mL-1 and a limit of quantification of 0.10 µg mL-1, surpassing maximum residue levels permitted in honey, tomato, and longan samples. Validation with real samples demonstrated high recoveries ranging from 80.8 to 104.8%, with a relative standard deviation below 10%, affirming the method's robustness and precision. The modified PTCA/MC/Nafion@SPCE-based electrochemical sensor not only offers superior sensitivity but also simplicity and cost-effectiveness, making it a pivotal tool for accurate AMZ detection in food samples. Furthermore, beyond the scope of this study, the sensor presents promising prospects for wider application across various electrochemical analytical fields, thereby significantly contributing to food safety and advancing agricultural practices.


Asunto(s)
Carbono , Polímeros de Fluorocarbono , Perileno , Toluidinas , Carbono/química , Perileno/química , Electrodos
20.
ACS Appl Mater Interfaces ; 16(17): 22736-22746, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38650370

RESUMEN

In monocrystalline Si (c-Si) solar cells, identification and mitigation of bulk defects are crucial to achieving a high photoconversion efficiency. To spectroscopically detect defects in the c-Si bulk, it is desirable to passivate the surface defects. Passivation of the c-Si surface with dielectrics such as Al2O3 and SiNx requires deposition at elevated temperatures, which can influence defects in the bulk. Herein, we report on the passivation of different Czochralski (Cz) Si wafer surfaces by an organic copolymer, Nafion. We test the efficacy of the surface passivation at temperatures ranging from 6 to 473 K to detect bulk defects using electron paramagnetic resonance (EPR) spectroscopy. By comparing with state-of-the-art passivation layers, including Al2O3 and liquid HF/HCl, we found that at room temperature, Nafion can provide comparable passivation of n-type Cz Si with an implied open-circuit voltage (iVoc) of 713 mV and a recombination current prefactor J0 of 5 fA/cm2. For p-type Cz Si, we obtained an iVoc of 682 mV with a J0 of 22.4 fA/cm2. Scanning electron microscopy and photoluminescence reveal that Nafion can also be used to passivate the surface of c-Si solar cell fragments scribed from a solar cell module by using a laser. Consistent with previous studies, analysis of the EPR spectroscopy data confirms that the H-terminated surface is necessary, and fixed negative charge in Nafion is responsible for the field-effect passivation. While the surface passivation quality was maintained for almost 24 h, which is sufficient for spectroscopic measurements, the passivation degraded over longer durations, which can be attributed to surface SiOx growth. These results show that Nafion is a promising room-temperature surface passivation technique to study bulk defects in c-Si.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA