Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39349173

RESUMEN

OBJECTIVE: To assess the usefulness of peritoneal cavity scintigraphy and the contribution of SPECT/CT in patients on peritoneal dialysis with suspected leak. METHODOLOGY: An observational case series study is carried out. It consists of a longitudinal, retrospective and descriptive study. 11 patients on peritoneal dialysis were studied and it was realiced a peritoneal cavity scintigraphy test and SPECT/CT to evaluate a peritoneal leak. RESULTS: In 54,5% of the patients, a positive study of peritoneal leak was obtained. The most frequent localitations were in the abdominal wall at the catheter entry level and the inguinal hernia. In the cases with sintomatology like pain and celullitis of the subcutaneous tract of the cateter the frequent of leak was 100%. There was a change in therapeutic management in patients with a positive study. There was not relevant changes in initial dialysis regimen in patients with a negative study. In this cases, except for one patient who required hemodialysis, all patients experienced clinical improvement. CONCLUSIONS: Peritoneal scintigraphy and SPECT/CT study are non-invasive techniques that allow an adequate diagnosis and subsequent management of peritoneal leak.

2.
Mikrochim Acta ; 191(10): 623, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39322852

RESUMEN

A bimetallic plasmonic nanoparticles-based approach for the untargeted evaluation of phenolic compounds (PC)-pattern and antioxidant capacity (AoC) is proposed. The rationale relies on the PC's ability to drive the formation of bimetallic silver/gold nanocolloidal 'probes' with different conformations. Ag/Au bimetallic nanostructures, according to the PCs' amount and class, return characteristic plasmonic and colorimetric tags. Plasmonic indexes are proposed to assess the dominant PC classes, while the colorimetric response, analyzed simply by a smartphone, is employed to obtain an AoC score, without calibration. The methods were tested with PCs belonging to different chemical classes, and challenged to classify different food samples. The proposed approach allows PC-dominant class identification and AoC-evaluation consistent with HPLC-MS/MS and conventional photometric assays.

3.
Chemosphere ; 364: 143164, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39181466

RESUMEN

Rare earth element (REE) mobility in the environment is expected to be controlled by colloids. Recent research has detailed the structure of iron-organic colloids (Fe-OM colloids), which include both large colloids and smaller nano-colloids. To assess how these nano-colloids affect REE mobility, their interactions with REE and calcium (Ca) were investigated at pH 4 and 6. Using Asymmetric Flow Field Flow Fractionation (A4F) combined with UV and Triple Quadrupole Inductively Coupled Plasma Mass Spectrometry (QQQ-ICP-MS), Fe-OM nano-colloids were separated from bulk Fe-OM colloids and their REE and Ca content were analyzed. Without REE and Ca, nano-colloids had an average diameter of approximately 25 nm. Their structure is pH-dependent, with aggregation increasing as pH decreases. At high REE loadings (REE/Fe ≥ 0.05), REE induced a size increase of nano-colloids, regardless of pH. Heavy REE (HREE), with their high affinity for organic matter, formed strong complexes with Fe-OM colloids, resulting in large aggregates. In contrast, light REE (LREE), which bind less strongly to organic molecules, were associated with the smallest nano-colloids. Low REE loading did not cause noticeable fractionation. Calcium further enhanced the aggregation process at both pH levels by neutralizing the charges on nano-colloids. These findings indicate that REE can act as aggregating agent controlling their own mobility, and regulating colloid transfer.


Asunto(s)
Coloides , Metales de Tierras Raras , Coloides/química , Metales de Tierras Raras/química , Metales de Tierras Raras/análisis , Fraccionamiento de Campo-Flujo/métodos , Espectrometría de Masas , Calcio/química , Calcio/análisis , Concentración de Iones de Hidrógeno , Hierro/química
4.
Environ Res ; 262(Pt 1): 119852, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39197486

RESUMEN

Nanocolloids (Ncs) are ubiquitous in natural systems and play a critical role in the biogeochemical cycling of trace metals and the mobility of organic pollutants. However, the environmental behavior and ecological effects of Ncs in the soil remain largely unknown. The accumulation of Ncs may have detrimental or beneficial effects on different compartments of the soil environment. This review discusses the major transformation processes (e.g., agglomeration/aggregation, absorption, deposition, dissolution, and redox reactions), transport, bioavailability of Ncs, and their roles in element cycles in soil systems. Notably, Ncs can act as effective carriers for other pollutants and contribute to environmental pollution by spreading pathogens, nutrients, heavy metals, and organic contaminants to adjacent water bodies or groundwater. Finally, the key knowledge gaps are highlighted to better predict their potential risks, and important new directions include exploring the geochemical process and mechanism of Ncs's formation; elucidating the transformation, transport, and ultimate fate of Ncs, and their long-term effect on contaminants, organisms, and elemental cycling; and identifying the impact on the growth and quality of important crops, evaluating its dominant effect on agro-ecosystems in the soil environment.

5.
Pharmaceutics ; 16(7)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39065619

RESUMEN

Campylobacter is a virulent Gram-negative bacterial genus mainly found in the intestines of poultry. The indiscriminate use of traditional antibiotics has led to drug resistance in these pathogens, necessitating the development of more efficient and less toxic therapies. Despite their complex biologically active structures, the clinical applications of essential oils (EOs) remain limited. Therefore, this study aimed to increase the bioavailability, stability, and biocompatibility and decrease the photodegradation and toxicity of EO using nanotechnology. The diffusion disk test revealed the potent anti-Campylobacter activity of cinnamon, lemongrass, clove, geranium, and oregano EOs (>50 mm). These were subsequently used to prepare nanostructured lipid carriers (NLCs). Formulations containing these EOs inhibited Campylobacter spp. growth at low concentrations (0.2 mg/mL). The particle size, polydispersity index, and zeta potential of these systems were monitored, confirming its physicochemical stability for 210 days at 25 °C. FTIR-ATR and DSC analyses confirmed excellent miscibility among the excipients, and FE-SEM elucidated a spherical shape with well-delimited contours of nanoparticles. The best NLCs were tested regarding nanotoxicity in a chicken embryo model. These results indicate that the NLC-based geranium EO is the most promising and safe system for the control and treatment of multidrug-resistant strains of Campylobacter spp.

6.
Environ Pollut ; 355: 124231, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38801878

RESUMEN

Nanocolloids (Nc) are widespread in natural water environment, whereas the potential effects of Nc on dissemination of antibiotic resistance remain largely unknown. In this study, Nc collected from the Yellow River in Henan province was tested for its ability to influence the conjugative transfer of resistant plasmid in aqueous environment. The results revealed that the conjugative transfer of RP4 plasmid between Escherichia coli was down-regulated by 52%-91% upon exposure to 1-10 mg/L Nc and the reduction became constant when the dose became higher (20-200 mg/L). Despite the exposure of Nc activated the anti-oxidation and SOS response in bacteria through up-regulating genes involved in glutathione biosynthesis and DNA recombination, the inhibition on the synthesis and secretion of extracellular polysaccharide induced the prevention of cell-cell contact, leading to the reduction of plasmid transfer. This was evidenced by the decreased bacterial adhesion and lowered levels of genes and metabolites relevant to transmembrane transport and D-glucose phosphorylation, as clarified in phenotypic, transcriptomics and metabolomics analysis of E. coli. The significant down-regulation of glycolysis/gluconeogenesis and TCA cycle was associated with the shortage of ATP induced by Nc. The up-regulation of global regulatory genes (korA and trbA) and the reduction of plasmid genes (trfAp, trbBp, and traG) expression also contributed to the suppressed conjugation of RP4 plasmid. The obtained findings remind that the role of ubiquitous colloidal particles is nonnegligible when practically and comprehensively assessing the risk of antibiotic resistance in the environment.


Asunto(s)
Coloides , Escherichia coli , Plásmidos , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Plásmidos/genética , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Conjugación Genética , Farmacorresistencia Bacteriana/genética
7.
Nanomaterials (Basel) ; 14(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38668149

RESUMEN

The report presents static, low-frequency, and dynamic dielectric properties in the isotropic liquid, nematic, and solid phases of MBBA and related nanocolloids with paraelectric BaTiO3 nanoparticles (spherical, d = 50 nm). MBBA (4-methoxybenzylidene-4'-butylaniline) is a liquid crystalline compound with a permanent dipole moment transverse to the long molecular axis. The distortions-sensitive analysis of the dielectric constant revealed its hidden pretransitional anomaly, strongly influenced by the addition of nanoparticles. The evolution of the dielectric constant in the nematic phase shows the split into two regions, with the crossover coinciding with the standard melting temperature. The 'universal' exponential-type behavior of the low-frequency contribution to the real part of the dielectric permittivity is found. The critical-like pretransitional behavior in the solid phase is also evidenced. This is explained by linking the Lipovsky model to the Mossotti catastrophe concept under quasi-negative pressure conditions. The explicit preference for the 'critical-like' evolution of the apparent activation enthalpy is worth stressing for dynamics. Finally, the long-range, 'critical-like' behavior of the dissipation factor (D = tgδ), covering the isotropic liquid and nematic phases, is shown.

8.
ACS Appl Mater Interfaces ; 15(30): 36013-36024, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37478563

RESUMEN

Tumor phototheranostics is usually compromised by the hypoxic tumor microenvironment and poor theranostic efficiency. The interplay between organic polymers and inorganic nanoparticles in novel nanocomposites has proven to be advantageous, overcoming previous limitations and harnessing their full potential through activation via the tumor microenvironment. This study successfully fabricated hypoxia-activated nanocolloids called HOISNDs through a process of self-assembly involving superparamagnetic iron oxide nanoparticles (SPIONs) and an organic polymer ligand called tetrakis(4-carboxyphenyl) porphyrin (TCPP)-engineered organic polymer ligand [methoxy poly(ethyleneglycol)-block-poly(dopamine-ethylenediamine-conjugated-4-nitrobenzyl chloroformate)-l-glutamate, mPEG-b-P(Dopa-EDA-co-NBCF)LG-TCPP)]. The SPIONs act as an oxygen generator to overcome the challenges posed by hypoxic tumors and enable the use of hypoxic-activatable MR/fluorescence dual-modal imaging-guided photodynamic therapy (PDT). The colloid stability of these HOISNDs proved to be exceptional in diverse biomimetic environments. Furthermore, they not only augment T2-weighted contrast capability as an MRI contrast agent but also function as an oxygen-producing device to amplify the generation and release of reactive oxygen species (ROS). The HOISNDs can significantly target to tumor sites through the enhanced permeability and retention (EPR) effect with prolonged blood circulation time and subsequently are effectively endocytosed into a hypoxic intracellular environment that "turn on" the imaging function and photodynamic activity. Moreover, HOISNDs possess the ability to effectively decompose naturally occurring H2O2 into oxygen (O2) within the tumor utilizing the Fenton reaction. This method can mitigate the impact of hypoxia on oxygen-dependent PDT. The outcomes of in vivo diagnostic and therapeutic evaluations indicated that HOISNDs are a highly promising tool for dual-model imaging-guided cancer theranosis by ameliorating hypoxic conditions and augmenting PDT efficiency.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Oxígeno , Fotoquimioterapia/métodos , Peróxido de Hidrógeno , Ligandos , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Polímeros , Imagen por Resonancia Magnética , Hipoxia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral
9.
Nanomaterials (Basel) ; 13(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37177100

RESUMEN

This paper aims to provide some insights into the pH and electrical conductivity of two classes of nanocolloids with PEG 400 as the base fluid. Thus, nanoparticles of two oxides-MgO and TiO2-were added to the base fluid in 5 mass concentrations in the range 0.25-2.5 %wt. The stability was evaluated in terms of pH at ambient temperature, while the electrical conductivity was discussed at both ambient temperature and up to 333.15 K. The electrical conductivity of PEG 400 was previously discussed by this group, while the behavior of the new nanocolloids was debated in terms of the state of the art. More precisely, the influence of MgO increases electrical conductivity, and an enhancement of up to 48% for 0.25% MgO was found, while the influence of TiO2 nanoparticles was found to be in similar ranges. In conclusion, electrical conductivity varies with temperature and the addition of nanoparticles to the base fluid, although the mechanisms that are driving the nanoparticle type and concentration influence are not yet entirely assumed in the available literature.

10.
Nanomaterials (Basel) ; 13(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37049317

RESUMEN

Nanocolloids are receiving considerable attention in regard to their properties and future applications, especially as heat transfer fluids and phase change materials for energy storage. Additionally, studies on ionic liquids and ionic-liquid-based nanocolloids are at the forefront of research preoccupations. This study aims to shed light on applications of nanocolloids based on [C4mim][BF4] ionic liquid, giving insight into the electrical conductivity of [C4mim][BF4] ionic liquid, as well as three types of nanoparticles suspended in this particular ionic liquid, namely Al2O3 (alumina), ZnO (zinc oxide) and MWCNT (multi-walled carbon nanotubes). In this experimental research, three types of suspensions were carefully prepared and the electrical conductivity was measured both at ambient temperature and during heating. The results are discussed in the context of the state of the art. The electrical conductivity variation with temperature was found to be linear, and nanoparticle loading significantly influenced the electrical conductivity of the suspensions. A complex analysis in terms of temperature and nanoparticle type and loading was performed. In conclusion, the electrical properties are relevant for many applications and further experimental work needs to be devoted to their study.

11.
Sci Total Environ ; 879: 162887, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36934947

RESUMEN

Toxic heavy metals are common contaminants and will most likely interact with ubiquitous natural nanocolloids (Ncs) in the soil environment. However, the effect of soil Ncs on the fate and health risk of cadmium (Cd) have not been well addressed. Here, the interaction between Ncs and Cd is investigated using two-dimensional correlation spectroscopy (2DCOS) combined with synchronous fluorescence and Fourier transform infrared spectroscopy. Our results reveal that Cd binding to the soil Ncs surface is mainly driven through strong hydrophilic effects and π - π interactions, which contribute to a high adsorption capacity (366-612 mg/g) and strong affinity (KL = 4.3-9.7 L/mg) of Cd to soil Ncs. Interestingly, soil Ncs and Cd coexposure can significantly mediate the phytotoxicity (e.g., uptake, root growth, and oxidative stress) of Cd to rice (Oryza sativa L.) roots after 7 days of exposure. At the molecular level, metabolomic analysis reveals that the downregulated metabolic pathways (e.g., isoquinoline alkaloid and aminoacyl-tRNA biosynthesis, glycine, serine and threonine metabolism) may contribute to the above adverse phytotoxicity. This study provides new insight into the effect of natural Ncs on the fate and health risks of toxic heavy metals in soil environments.


Asunto(s)
Oryza , Contaminantes del Suelo , Cadmio/análisis , Suelo/química , Contaminantes del Suelo/análisis , Transporte Biológico , Raíces de Plantas/metabolismo
12.
Water Res ; 232: 119678, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36738560

RESUMEN

Hematite (the most abundant iron oxide polymorph) is widely detected in the water environment and has attracted considerable attention. Natural nanocolloids (Ncs) exist ubiquitously in surface waters and play critical roles in biogeochemical processes. However, the influences of Ncs on the fate and phytotoxicity of hematite remain unknown. In this study, the infrared absorption spectra coupled with two-dimensional correlation spectroscopy analysis reveal that the specific binding interactions between Ncs and hematite primarily occur via hydrophilic effects and π-π interactions with an increase in the Ncs contact time. Moreover, binding with Ncs slightly promoted the aggregation rates of hematite particles in the BG-11 medium. Interestingly, Ncs remarkably mitigate the phytotoxicity (e.g., growth inhibition, oxidative stress, and mitochondrial toxicity) of nanosized and submicrosized hematite particles to Chlorella vulgaris after a 96 h exposure. The integrating metabolomic and transcriptomic analysis reveals that the regulated urea cycle, amino acids, and fatty acid-related metabolites (e.g., urea, serine, glutamate, and hexadecenoic acid) and genes (e.g., ACY1, CysC, and GLA) contribute to persistent phytotoxicity. This study provides new insights into the roles and mechanisms of natural Ncs in regulating the environmental risk of iron oxide minerals in aqueous media.


Asunto(s)
Chlorella vulgaris , Agua , Agua/química , Compuestos Férricos/química , Minerales
13.
J Colloid Interface Sci ; 634: 388-401, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36542969

RESUMEN

Proteins have been appreciated to be a superlative modality of therapeutics in view of their direct roles in regulating diverse sets of biological events, nonetheless, the clinical applications of the proteinic therapeutics have been strictly limited to act on the cell surface receptors owing to their inherent cell-impermeable character of the proteins. To this obstacle, we contrived carboxylation reaction upon the proteins (RNase A) into the overall negatively charged pro-RNase, followed by elaboration of intelligent pH-responsive pro-RNase delivery nanocolloids based on co-precipitation of pro-RNase and Arg-Gly-Asp (RGD)-functionalized poly(ethylene glycol) (PEG)-block-polyanion with aids of inorganic calcium phosphate (CaP). The resulting nanocolloids appeared to actively accumulate into glioma due to the specific binding affinities of RGD and glioma-enriched αVß3 and αVß5 integrins. Furthermore, the pH responsiveness to the acidic endolysosomal microenvironment of all compositions of nanocolloids (including: decarboxylation of pro-RNase composition to restore the native RNase A, ionization of CaP composition to elicit osmotic pressure, and charge reversal of PEG-block-polyanion into membrane-disruptive polycation) could stimulate not only efficient endolysosomal escape for translocation into the cytosol but also structural disassembly for ready liberation of the RNase A payloads, eventually exerting non-specific RNA degradation for apoptosis of the affected cells. Systemic dosage of the proposed nanocolloids demonstrated potent anti-tumor efficacies towards xenograft glioma due to massive RNA degradation. Therefore, our proposed RNase A prodrug nanocolloids could represent as a versatile platform for engineering transcellular protein delivery systems, which are expected to spur thriving emergence of a spectrum of proteins in precision intervention of intractable diseases.


Asunto(s)
Glioma , Nanopartículas , Humanos , Línea Celular Tumoral , Ribonucleasa Pancreática , Polietilenglicoles/química , Glioma/tratamiento farmacológico , Oligopéptidos/química , Proteínas , Concentración de Iones de Hidrógeno , Nanopartículas/química , Microambiente Tumoral
14.
Environ Sci Pollut Res Int ; 30(34): 81619-81634, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35834078

RESUMEN

Herein, we report on the preparation of novel colloidal system based on carboxymethyl cellulose (CMC) and Pd nanoparticles (CMC@Pd NPs) via an ecofriendly auto-reduction process under mild conditions. In the first step, the follow-up of reduction and preparation of CMC anchored palladium nanoparticles (Pd NPs) in aqueous solution was carried out using UV-Vis spectroscopy. Thereafter, the monodispersed colloids were fully characterized by advanced analytical, structural, and morphological techniques. Based on Scherrer equation, the as-synthesized CMC@Pd NPs crystallite size was about 10.88 nm. Accordingly, the detailed microscopic study revealed CMC nanocolloids anchored uniform distribution of Pd NPs and the presence of CMC nanofilm as protective monolayer. To the best of our knowledge, the observed nanoscale properties are reported for the first time for CMC-M system. The performance of the as-synthesized CMC@Pd nanocolloids was first investigated in the reduction of 4-nitrophenol, as a model substrate, to 4-aminophenol using NaBH4 as a hydrogen source. Moreover, the catalytic reduction of various nitroarenes bearing electron withdrawing or donating substituents was carried out and monitored by UV-Vis spectroscopy. The chemo- and regioselectivity of the catalytic reduction in presence of CMC@Pd NPs were also studied. Consequently, the prepared CMC@Pd nanocolloids exhibit remarkable activity, good heterogeneity, and higher reusability and stability for the catalytic reduction reaction under mild conditions.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras/química , Nanopartículas del Metal/química , Coloides/química , Hidrogenación , Paladio/química
15.
Front Chem ; 10: 964662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017170

RESUMEN

Chronic wound healing in diabetic patients had been considered a major clinical challenge, so there was an urgent need to establish more effective treatment methods. In this study, we prepared berberine-modified ZnO nano-colloids hydrogel (ZnO-Ber/H) and evaluated its wound healing performance in a diabetic rat. The prepared ZnO-Ber/H had excellent moisturizing, anti-inflammatory and anti-oxidative stress abilities. In vitro, ZnO-Ber/H could effectively up-regulate antioxidant stress factors (Nrf2, HO-1, NQO1) by 4.65-fold, 2.49-fold, 2.56-fold, respectively. In vivo experiments have shown that ZnO-Ber/H could effectively improve the wound healing rate (92.9%) after 15 days of treatment. Meanwhile, the ability of anti-oxidative stress had also been verified in vivo. ZnO-Ber/H down-regulated inflammatory factor (TNF-α, IL-1ß, and IL-6) by 72.8%, 55% and 71% respectively, up-regulated vascular related factors VEGF and CD31 by 3.9-fold and 3.2-fold by Western blot. At the same time, ZnO-Ber/H could promote the expression of EGFR and FGFR, thereby affecting the generation of new epithelial tissue. Based on extensive characterization and biological evaluation, ZnO-Ber/H was expected to be a potential candidate for promoting diabetic wound healing.

16.
J Colloid Interface Sci ; 628(Pt A): 205-214, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-35926303

RESUMEN

A statistical thermodynamics variational criterion is propounded to study thermal hysteresis in reversible clustering of gold (Au) nanoparticles. Experimentally, a transient equilibrium mapping analysis is employed to characterize it thermodynamically, further measurements being performed at the nanostructural and electrochemical levels (UV-Vis-NIR spectra, SLS/SAXS, zeta potential). Theoretically, it is successfully interpreted as a thermodynamic cycle, prompting that nanoclusters has potential to produce useful work from heat and paving the way to nanoclustering heat engines. By taking into account the virial expansion of hysteretic pressure, an entropy measure is deduced for a dilute system with given virial coefficients. This allows us to figure out the role of relevant interparticle potential parameters (i.e. surface potential, nanoparticle size, Debye's length, Hamaker energy) in both isothermal and isochoric variations at the onset of hysteresis. Application to spherical Au nanoparticles in watery salt solution (NaCl) is developed when an ad-hoc (DLVO) pairwise potential governs the second virial coefficient at the nanoscale. In particular, the variational criterion predicts a pressure drop between heating and cooling paths which is likely at the base of some energy redistribution (e.g. ordering/restructuring of electric double layers). We found an integrating factor that is able to numerically predict the existence of a critical value for the initial salt concentration maximizing the hysteretic area, and the effect of nanoparticle size on the cycle extent.


Asunto(s)
Oro , Nanopartículas del Metal , Análisis por Conglomerados , Oro/química , Calor , Nanopartículas del Metal/química , Dispersión del Ángulo Pequeño , Cloruro de Sodio , Termodinámica , Difracción de Rayos X
17.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35886869

RESUMEN

Oral candidiasis has a high rate of development, especially in immunocompromised patients. Immunosuppressive and cytotoxic therapies in hospitalized HIV and cancer patients are known to induce the poor management of adverse reactions, where local and systemic candidiasis become highly resistant to conventional antifungal therapy. The development of oral candidiasis is triggered by several mechanisms that determine oral epithelium imbalances, resulting in poor local defense and a delayed immune system response. As a result, pathogenic fungi colonies disseminate and form resistant biofilms, promoting serious challenges in initiating a proper therapeutic protocol. Hence, this study of the literature aimed to discuss possibilities and new trends through antifungal therapy for buccal drug administration. A large number of studies explored the antifungal activity of new agents or synergic components that may enhance the effect of classic drugs. It was of significant interest to find connections between smart biomaterials and their activity, to find molecular responses and mechanisms that can conquer the multidrug resistance of fungi strains, and to transpose them into a molecular map. Overall, attention is focused on the nanocolloids domain, nanoparticles, nanocomposite synthesis, and the design of polymeric platforms to satisfy sustained antifungal activity and high biocompatibility with the oral mucosa.


Asunto(s)
Candidiasis Bucal , Candidiasis , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Biopelículas , Candidiasis/tratamiento farmacológico , Candidiasis Bucal/tratamiento farmacológico , Candidiasis Bucal/microbiología , Hongos , Humanos
18.
Nanomaterials (Basel) ; 12(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35889649

RESUMEN

Nitrogen- and oxygen-containing carbon nanoparticles (O, N-CDs) were prepared by a facile one-step solvothermal method using urea and citric acid precursors. This method is cost-effective and easily scalable, and the resulting O, N-CDs can be used without additional functionalization and sample pretreatment. The structure of O, N-CDs was characterized by TEM, AFM, Raman, UV-vis, and FTIR spectroscopies. The obtained O, N-CDs with a mean diameter of 4.4 nm can be easily dispersed in aqueous solutions. The colloidal aqueous solutions of O, N-CDs show significant photothermal responses under red-IR and radiofrequency (RF) irradiations. The as-prepared O, N-CDs have a bright temperature-dependent photoluminescence (PL). PL/PLE spectral maps were shown to be used for temperature evaluation purposes in the range of 30-50 °C. In such a way, the O, N-CDs could be used for biomedicine-related applications such as hyperthermia with simultaneous temperature estimation with PL imaging.

19.
Acta Biomater ; 147: 299-313, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35640802

RESUMEN

Despite the diversified therapeutic approaches for malignant tumors, chemotherapy remains the backbone of current cancer treatment. However, conventional chemotherapeutics was found to be associated with deficient recognition of tumor, low uptake efficiency, insolubility, short circulation, poor biocompatibility and low therapeutic outcomes. Herein, the active targeting redox-responsive mannosylated prodrug nanocolloids (HM NCs) were constructed for enhanced chemotherapy of colon cancer. HM NCs were prepared by the covalent cross-linking of 10-hydroxycamptothecin (HCPT) and mannose (MAN) via a redox-responsive cross-linker containing disulfide bonds, and modified with a moderate amount of polyethylene glycol (PEG). The large amount of mannose contained in HM NCs could actively target overexpressed mannose receptors on the surface of cancer cells and enhance cancer cell internalization through mannose receptor-mediated endocytosis. Owing to the combination of active targeting and the enhanced permeability and retention (EPR) passive targeting, HM NCs could effectively accumulate in tumors and high glutathione (GSH) in tumor microenvironment triggered cleavage of redox-responsive bonds and precise drug release. HM NCs exhibited superior antitumor activity both in vitro and in vivo and appreciably extended the mouse survival rate with good biocompatibility. The innovative HM NCs are expected to be conducive to overcoming the limitations of conventional chemotherapy for colon cancer and providing more choices for future clinical translation. STATEMENT OF SIGNIFICANCE: Despite the enhanced permeability and retention effect, the passive targeting can be interfered with by the complex biologic barriers in the body. In this study, an active targeting system (HM NCs) was constructed by covalent cross-linking of mannose and anticancer drug 10-hydroxycamptothecin via redox-responsive disulfide bonds for enhanced colon cancer chemotherapy. Mannosylation could promote hydrophilia and stability for prolonged blood circulation. Mannose could promote tumor recognition and cell internalization via mannose receptor-mediated endocytosis. High glutathione level could trigger the redox-responsive release of anticancer drugs and further induce cell apoptosis via DNA damage. The HM NCs exhibited superior antitumor activity both in vitro and in vivo and appreciably extended the mouse survival rate with good biocompatibility.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Nanopartículas , Profármacos , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Disulfuros , Glutatión , Humanos , Manosa , Ratones , Nanopartículas/química , Oxidación-Reducción , Profármacos/química , Profármacos/farmacología , Microambiente Tumoral
20.
Sci Total Environ ; 829: 154601, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35307449

RESUMEN

The chemistry of silicon (Si), the second most abundant element in soil after oxygen, is not yet fully understood in the soil-water-plant continuum. Although Si is widely accepted as an element that has little or no interaction with natural organic matter, some data seems to show the opposite. To identify a potential interaction between natural organic matter and Si, batch experiments were achieved at various pH and Si concentrations, involving also Al3+ as a common ion in soil and using humic acid (HA) as a typical model for natural organic matter. Several complementary techniques were used to characterize the possible complexes formed in the dissolved or solid phases: molecular fluorescence spectroscopy, 29Si solid-state NMR, Fourier transform infrared spectroscopy, quantification of Si, Al and organic carbon, and nanoparticle size distribution. These tools revealed that humic acid indeed interacts, but weakly, with Si alone. In the presence of Al, however, a ternary complex HA-Al-Si forms, likely with Al as the bridging atom. The presence of Si promotes the maintenance of both Al and dissolved organic matter (DOM) in solution, which is likely to modify the result or the kinetics of pedogenesis. Such complexes can also play a role in the control of Al toxicity towards plants and probably also exists with other metals, such as Fe or Mn, and other metalloids such as As.


Asunto(s)
Sustancias Húmicas , Contaminantes del Suelo , Aluminio/química , Sustancias Húmicas/análisis , Plantas , Silicio , Suelo/química , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA