Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 343
Filtrar
1.
Nanomedicine (Lond) ; : 1-17, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920352

RESUMEN

Aim: To investigate the effect of surfactant type on curcumin-loaded (CUR) PLGA nanoparticles (NPs) to modulate monocyte functions. Materials & methods: The nanoprecipitation method was used, and PLGA NPs were designed using Pluronic F127 (F127) and/or lecithin (LEC) as surfactants. Results: The Z-average of the NPs was <200 nm, they had a spherical shape, Derjaguin-Muller-Toporov modulus >0.128 MPa, they were stable during storage at 4°C, ζ-potential ∼-40 mV, polydispersity index <0.26 and % EE of CUR >94%. PLGA-LEC/F127 NPs showed favorable physicochemical and nanomechanical properties. These NPs were bound and internalized mainly by monocytes, suppressed monocyte-induced reactive oxygen species production, and decreased the ability of monocytes to modulate T-cell proliferation. Conclusion: These results demonstrate the potential of these NPs for targeted therapy.


This study explores how different surfactants affect curcumin-loaded PLGA nanoparticles, a biodegradable polymer. The nanoparticles were designed using Pluronic F127 and/or lecithin as surfactants. They are less than 200 nm and spherical. They are stable when stored at 4 °C, with a surface charge of about -40 mV, and can encapsulate more than 94% of curcumin.The results of this study are promising, showing that PLGA nanoparticles using a mixture of lecithin and Pluronic F127 as surfactants have favorable properties toward monocyte adhesion. They are primarily taken up by monocytes, a type of white blood cell, and demonstrate a remarkable ability to reduce the production of reactive oxygen species, which can cause cell damage, as well as the ability of monocytes to stimulate the proliferation of T cells. This underscores the potential of these nanoparticles in targeted therapy, particularly in diseases where monocytes play a pivotal role, such as chronic inflammatory conditions.

2.
Int J Biol Macromol ; 273(Pt 2): 132972, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876241

RESUMEN

The use of essential oils as natural antioxidant, antimicrobial and insect repellent agent was limited by the loss of bioactive components especially volatile compounds. This study aimed to improve biological properties of curry leaf essential oil (CLEO) by producing nanometer sized particles through two different synthesis techniques; nanoencapsulation and nanoprecipitation. The methods produced different nanostructures; nanocapsules and nanospheres distinguished by the morphological structure (TEM analysis). Successful loading of CLEO into chitosan nanocarrier was proven by FTIR spectra. Zeta potential values for both nanostructures were more than +30 mV implying their stability against aggregation. CLEO loaded nanocapsules exhibited highest antibacterial properties against Gram-positive bacteria compared to nanospheres. Meanwhile, CLEO loaded nanospheres recorded up until 90.44 % DPPH radical scavenging properties, higher compared to nanocapsules. Both nanostructures demonstrated further improvement in antioxidant and antibacterial activities with the incorporation of higher chitosan concentration. In vitro release analysis indicated that CLEO undergo two-stage discharge mechanism where fast discharge occurred up until 12 h followed by sustained released afterwards. The two synthesis methods applied synergistically with greater chitosan concentration successfully produced nanostructures with >60 % encapsulation efficiency (EE). This concluded that both techniques were reliable to protect the bioactive constituents of CLEO for further used.


Asunto(s)
Antibacterianos , Antioxidantes , Quitosano , Liberación de Fármacos , Nanopartículas , Aceites Volátiles , Hojas de la Planta , Quitosano/química , Quitosano/farmacología , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Hojas de la Planta/química , Antioxidantes/química , Antioxidantes/farmacología , Nanopartículas/química , Fenómenos Químicos , Pruebas de Sensibilidad Microbiana , Portadores de Fármacos/química , Tamaño de la Partícula , Nanocápsulas/química
3.
Materials (Basel) ; 17(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38730887

RESUMEN

The effects of solution treatment and annealing temperature on the microstructure and mechanical properties of a new TWIP steel that was alloyed from aluminum (Al), silicon (Si), vanadium (V), and molybdenum (Mo) elements were investigated by a variety of techniques such as microstructural characterization and room tensile testing. The austenite grain size grew slowly with the increase in annealing temperature. The relatively weak effect of the solution treatment and annealing temperature on the austenite grain size was attributed to the precipitation of MC and M2C, which hindered the growth of the austenite grain. The plasticity of the TWIP steel in cold rolling and annealing after solution treatment was obviously higher than that in cold rolling and annealing without solution treatment. This was because the large-size precipitates redissolved in the matrix after solution treatment, which were not retained in the subsequently annealed structure. Through cold rolling and annealing at 800 °C after solution treatment, the prepared steel exhibited excellent strength and plasticity simultaneously, with a yield strength of 877 MPa, a tensile strength of 1457 MPa, and an elongation of 46.1%. The strength improvement of the designed TWIP steel was mainly attributed to the grain refinement and precipitation strengthening.

4.
Pharm Dev Technol ; 29(5): 477-481, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38656248

RESUMEN

This study was the first attempt to visualize pulmonary retention of nanocarriers (NCs) with the use of the P2 probe, a new water-initiated aggregation-caused fluorescent-quenching (ACQ) dye, for the development of NCs with long-lasting retention in the respiratory system (RS). Flash nanoprecipitation was used to fabricate mucopenetrating NCs (MP/NCs) and mucoadhesive NCs (MA/NCs). Both NCs were labeled with the P2 probe, and their distribution and retention in RS were visualized after intratracheal administration to rats. MP/NCs and MA/NCs had a mean diameter below 200 nm and ζ-potential of 0 and 48 mV, respectively. MA/NCs showed three times stronger interactions with mucin than MP/NCs, resulting in significantly lower diffusiveness in mucus. The P2 probe exhibited an ACQ effect with negligible rekindling in simulated lung fluid, and the spectroscopic data suggested applicability to reliable imaging of insufflated NCs. In confocal laser scanning microscopic and in vivo imaging system images of the rat RS, MA/NCs were locally deposited in the respiratory tract and transported toward the pharynx by mucocilliary clearance (MCC). In contrast, MP/NCs diffused in the respiratory mucus were less subject to the influence of MCC. Based on the results from the bioimaging study using the P2 probe, MP/NCs could offer enhanced pulmonary retention of drugs compared with MA/NCs.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Animales , Ratas , Nanopartículas/química , Portadores de Fármacos/química , Masculino , Ratas Sprague-Dawley , Sistema Respiratorio/metabolismo , Sistema Respiratorio/efectos de los fármacos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/administración & dosificación
5.
Biopharm Drug Dispos ; 45(3): 117-126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38646776

RESUMEN

This study aimed to control the oral absorption of cyclosporine A (CsA) with the use of a mucosal drug delivery system (mDDS). Mucopenetrating nanocarriers (MP/NCs) and mucoadhesive nanocarriers (MA/NCs) were prepared by flash nanoprecipitation employing polystyrene-block-poly(ethylene glycol) and polystyrene-block-poly(N,N-dimethyl aminoethyl methacrylate), respectively. Their particle distribution in the rat gastrointestinal tract were visualized by fluorescent imaging. Plasma concentrations were monitored after oral administration of CsA-loaded MP/NCs (MP/CsA) and MA/NCs (MA/CsA) to rats. MP/NCs and MA/NCs had a particle size below 200 nm and ζ-potentials of 4 and 40 mV, respectively. The results from in vitro experiments demonstrated mucopenetration of MP/NCs and mucoadhesion of MA/NCs. Confocal laser scanning microscopic images showed diffusion of MP/NCs in the gastrointestinal mucus towards epithelial cells and localization of MA/NCs on the surface of the gastrointestinal mucus layer. In a pH 6.8 solution, rapid and sustained release of CsA were observed for MP/CsA and MA/CsA, respectively. After oral dosing (10 mg-CsA/kg) to rats, amorphous CsA powder exhibited a time to maximum plasma concentration (Tmax) of 3.4 h, maximum plasma concentration (Cmax) of 0.12 µg/mL, and bioavailability of 0.7%. Compared with amorphous CsA powder, MP/CsA shortened Tmax by 1.1 to 2.3 h and increased the bioavailability by 43-fold to 30.1%, while MA/CsA prolonged Tmax by 3.4 to 6.8 h with Cmax and bioavailability of 0.65 µg/mL and 11.7%, respectively. These pharmacokinetic behaviors would be explained by their diffusion and release properties modulated by polymeric surface modification. The mDDS approach is a promising strategy for the pharmacokinetic control of orally administered CsA.


Asunto(s)
Ciclosporina , Sistemas de Liberación de Medicamentos , Ratas Sprague-Dawley , Animales , Ciclosporina/farmacocinética , Ciclosporina/administración & dosificación , Masculino , Administración Oral , Ratas , Inmunosupresores/farmacocinética , Inmunosupresores/administración & dosificación , Inmunosupresores/sangre , Portadores de Fármacos/química , Mucosa Intestinal/metabolismo , Nanopartículas/química , Disponibilidad Biológica , Tamaño de la Partícula
6.
Artículo en Inglés | MEDLINE | ID: mdl-38610082

RESUMEN

Starch is a renewable biopolymer that can be sourced from agricultural waste and used to produce nanoparticles (SNPs). In particular, amorphous SNPs have potential application in numerous fields, including the consolidation of weakened paintings in the cultural heritage preservation. Starch dissolution followed by nanoprecipitation in nonsolvents is an advantageous synthetic route, but new methodologies are needed to feasibly control the physicochemical properties of the SNPs. Here, we explored nanoprecipitation by nonsolvency using a set of "green" solvents to obtain amorphous SNPs, rather than starch nanocrystals already reported in the literature. The effect of the nonsolvent on the ordering of polymer chains in the obtained SNPs was studied. The recovery of local order (e.g., isolated V-type helices) after dissolution was shown to depend on the type of solvents used in the dissolution and precipitation steps, while long-range order (extended arrays of helices) is lost. Aqueous dispersions of the SNPs provided effective consolidation of powdery painted layers, showing that the selection of particle synthetic routes can be dictated by sustainability and scalability criteria. These "green" formulations are candidates as new consolidants in art preservation, and the possibility of tuning local order in amorphous starch assemblies might also impact fields like food chemistry, pharmaceutics, and nanocomposites, where SNPs with tunable amorphousness are more advantageous than nanocrystals.

7.
Saudi Pharm J ; 32(5): 102048, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38585197

RESUMEN

Memory loss or dementia is a progressive disorder, and one of its common forms is Alzheimer's disease (AD), effecting mostly middle aged and older adults. In the present study, we developed Rivastigmine (RIV) nanoparticles using poly(lactic-co-glycolic acid) (RIV-loaded PLGA NPs) and polyvinyl alcohol (PVA). The prepared RIV-PLGA nanoparticles was evaluated for the management of Alzheimer's disease (AD). The nanoparticles were prepared by the slightly modified nano-precipitation technique. The developed formulations were evaluated for particle size, zeta potential (ZP), polydispersibility index (PDI) and surface morphology and drug content. The experimental result revealed that prepared RIV-loaded PLGA NPs (F1) was optimized having particle size (61.2 ± 4.6 nm), PDI (0.292), ZP (-11.2 ± 1.2). SEM study confirms the prepared nanoparticles depicted non-aggregated as well smooth surface particles without any fracture. This formulation (F1) was further assessed for in vivo studies on animal model. A pharmacological screening on an animal model of Alzheimer's disease revealed that RIV-loaded PLGA NPs formulations treat CNS disorders like Alzheimer's effectively. In addition to that, an in-vivo brain cholinesterase estimation study found that, animals treated with optimized formulation significantly (p < 0.01) reduced brain cholinesterase activity when compared to scopolamine-treated animals. According to the above results, it can be concluded that RIV-loaded PLGA NPs are ideal carriers for delivering the drug at a specific target site in the brain, thus may treat Alzheimer's disease efficiently and improve patient compliance.

8.
Micromachines (Basel) ; 15(4)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38675343

RESUMEN

Non-steroidal anti-inflammatory piroxicam (PRX) is a poorly water-soluble drug that provides relief in different arthritides. Reducing the particle size of PRX increases its bioavailability. For pediatric, geriatric, and dysphagic patients, oral dispersible systems ease administration. Moreover, fast disintegration followed by drug release and absorption through the oral mucosa can induce rapid systemic effects. We aimed to produce an orodispersible lyophilizate (OL) consisting of nanosized PRX. PRX was solved in ethyl acetate and then sonicated into a poloxamer-188 solution to perform spray-ultrasound-assisted solvent diffusion-based nanoprecipitation. The solid form was formulated via freeze drying in blister sockets. Mannitol and sodium alginate were applied as excipients. Dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were used to determine the particle size. The morphology was characterized by scanning electron microscopy (SEM). To establish the crystallinity, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used. A disintegration and in vitro dissolution test were performed. DLS and NTA presented a nanosized PRX diameter. The SEM pictures showed a porous structure. PRX became amorphous according to the XRPD and DSC curves. The disintegration time was less than 1 min and the dissolution profile improved. The final product was an innovative anti-inflammatory drug delivery system.

9.
Eur J Pharm Biopharm ; 199: 114299, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643953

RESUMEN

Lipid-polymer nanoparticles offer a promising strategy for improving gene nanomedicines by combining the benefits of biocompatibility and stability associated with the individual systems. However, research to date has focused on poly-lactic-co-glycolic acid (PLGA) and resulted in inefficient transfection. In this study, biocompatible Eudragit constructs E100 and RS100 were formulated as lipid-polymer nanoparticles loaded with pDNA expressing red fluorescent protein (RFP) as a model therapeutic. Using a facile nanoprecipitation technique, a core-shell structure stabilised by lipid-polyethylene glycol (PEG) surfactant was produced and displayed resistance to ultracentrifugation. Both cationic polymers E100 (pH-sensitive dissolution at 5) and RS100 (pH-insensitive dissolution) produced 150-200 nm sized particles with a small positive surface charge (+3-5 mV) and high pDNA encapsulation efficiencies (EE) of 75-90%. The dissolution properties of the Eudragit polymers significantly impacted the biological performance in human embryonic kidney cells (HEK293T). Nanoparticles composed of polymer RS100 resulted in consistently high cell viability (80-100%), whereas polymer E100 demonstrated dose-dependent behaviour (20-90% cell viability). The low dissolution of polymer RS100 over the full pH range and the resulting nanoparticles failed to induce RFP expression in HEK293T cells. In contrast, polymer E100-constructed nanoparticles resulted in reproducible and gradually increasing RFP expression of 26-42% at 48-72 h. Intraperitoneal (IP) injection of the polymer E100-based nanoparticles in C57BL/6 mice resulted in targeted RFP expression in mouse testes with favourable biocompatibility one-week post-administration. These findings predicate Eudragit based lipid-polymer nanoparticles as a novel and effective carrier for nucleic acids, which could facilitate pre-clinical evaluation and translation of gene nanomedicines.


Asunto(s)
ADN , Nanopartículas , Plásmidos , Transfección , Humanos , Animales , Nanopartículas/química , Concentración de Iones de Hidrógeno , Plásmidos/administración & dosificación , Transfección/métodos , Células HEK293 , Ratones , ADN/administración & dosificación , ADN/química , Lípidos/química , Polímeros/química , Solubilidad , Tamaño de la Partícula , Polietilenglicoles/química , Proteína Fluorescente Roja , Ácidos Polimetacrílicos/química , Masculino , Acrilatos
10.
Int J Biol Macromol ; 265(Pt 1): 130935, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493815

RESUMEN

Nanoparticles (NPs) preparation is limited to an exclusive use in batch processes and small-scale formulations. The use of membranes as high-performance micromixers is expected to open new scenarios to overcome limitations of conventional nanoprecipitation system such as stirred tank (ST) nanoprecipitation. The ability of the porous membrane to add uniformly one phase to another and govern their mixing at the membrane interface seems to be an important parameter for obtaining uniform NPs. Inorganic membranes (pore size of 1 µm) were used to carry out membrane nanoprecipitation (MN) to form Zein nanoparticles (ZNPs) at pores level by non-solvent induced phase separation. A systematic study of the preparation of ZNPs in the ST and MN systems was carried out to establish the Ouzo diagram. The influence of zein concentration and solvent to non-solvent ratio on the size and size distribution of ZNPs was also investigated. A wider stable Ouzo zone was obtained with MN than with the ST process. ZNPs size increased from 100 nm up to 700 nm, while maintaining low polydispersity index (PDI < 0.2). The results demonstrate the suitability of MN for the continuous production of ZNPs and open the possibility of scaling up the nanoprecipitation process.


Asunto(s)
Nanopartículas , Zeína , Composición de Medicamentos , Tamaño de la Partícula
11.
J Control Release ; 369: 376-393, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554772

RESUMEN

Despite their great versatility and ease of functionalization, most polymer-based nanocarriers intended for use in drug delivery often face serious limitations that can prevent their clinical translation, such as uncontrolled drug release and off-target toxicity, which mainly originate from the burst release phenomenon. In addition, residual solvents from the formulation process can induce toxicity, alter the physico-chemical and biological properties and can strongly impair further pharmaceutical development. To address these issues, we report polymer prodrug nanoparticles, which are prepared without organic solvents via an all-aqueous formulation process, and provide sustained drug release. This was achieved by the "drug-initiated" synthesis of well-defined copolymer prodrugs exhibiting a lower critical solution temperature (LCST) and based on the anticancer drug gemcitabine (Gem). After screening for different structural parameters, prodrugs based on amphiphilic diblock copolymers were formulated into stable nanoparticles by all-aqueous nanoprecipitation, with rather narrow particle size distribution and average diameters in the 50-80 nm range. They exhibited sustained Gem release in human serum and acetate buffer, rapid cellular uptake and significant cytotoxicity on A549 and Mia PaCa-2 cancer cells. We also demonstrated the versatility of this approach by formulating Gem-based polymer prodrug nanoparticles loaded with doxorubicin (Dox) for combination therapy. The dual-drug nanoparticles exhibited sustained release of Gem in human serum and acidic release of Dox under accelerated pathophysiological conditions. Importantly, they also induced a synergistic effect on triple-negative breast cancer line MDA-MB-231, which is a relevant cell line to this combination.


Asunto(s)
Desoxicitidina , Liberación de Fármacos , Gemcitabina , Nanopartículas , Polímeros , Profármacos , Temperatura , Profármacos/administración & dosificación , Profármacos/química , Humanos , Nanopartículas/química , Desoxicitidina/análogos & derivados , Desoxicitidina/administración & dosificación , Desoxicitidina/química , Desoxicitidina/farmacocinética , Polímeros/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada , Portadores de Fármacos/química , Precipitación Química , Antimetabolitos Antineoplásicos/administración & dosificación , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/farmacocinética
12.
Heliyon ; 10(4): e25869, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38404769

RESUMEN

Hypothesis: Nanocapsules, consisting of a solid shell and a liquid core, are an interesting class of materials with numerous applications and various methods of synthesis. One common method for synthesis of nanoparticles is flash nanoprecipitation. For a multicomponent system consisting of a liquid (n-hexadecane) and solid (polystyrene), we hypothesize that nanocapsules will form from droplets created by the turbulent mixing in the nanoprecipitation process. We anticipate n-hexadecane molecules should phase-separate more rapidly from the non-solvent, thus becoming the core, while the more slowly diffusing polystyrene forms the shell. Additionally, we predict that the amount of both n-hexadecane and polystyrene used in creating these nanocapsules will influence capsule size. Experiments: Using flash nanoprecipitation, we synthesized nanocapsules of a polystyrene shell and liquid core of n-hexadecane. We varied the concentrations of both polystyrene and n-hexadecane and characterized the resulting dispersions using dynamic light scattering and scanning electron microscopy. Findings: Our experiments demonstrate that flash nanoprecipitation can be employed to create nanocapsules with radii ranging from 50 to 200 nm, with radii of the n-hexadecane cores between 35 and 175 nm and polystyrene shells with thickness ranging from 7 to 62 nm. We used various methods of analysis to confirm this core/shell morphology and applied a droplet model to explain the dependence of particle size on initial concentrations of n-hexadecane and polystyrene.

13.
J Colloid Interface Sci ; 661: 861-869, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38330658

RESUMEN

Hypothesis Conventional solvent exchange formulation methods face limitations when trying to control the final non-equilibrium size properties of block copolymer micelles containing a strongly hydrophobicity and a rigid block because the solvent conditions are not well controlled during micelle formation. Therefore, using an alternative formulation method, named Equilibration-Nanoprecipitation (ENP), in which micelles are formed under uniform solvent conditions, will significantly reduce the final dispersity compared a conventional solvent exchange method. EXPERIMENTAL: Size properties of the final aqueous micelle dispersions formed from the ENP method and a conventional solvent exchange are measured using DLS. Also, a parallel modelling study is completed to predict the final size distributions using both methods. Findings The experimental results demonstrate the ENP method is effective producing non-equilibrium micelles with low dispersity below the monodisperse polydispersity index (PDI) cutoff for DLS while the conventional solvent exchange method leads to significantly greater dispersity. Also the experimental results highlight ENP can be used to tune the final size properties which cannot be done using methods which do not properly control the micelle formation conditions. Additionally, the modelling study supports the utility of the ENP approach for producing monodisperse dispersions of nonequilibrium polymer micelles.

14.
Nanomedicine (Lond) ; 19(5): 367-382, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38305304

RESUMEN

Aim: The present research focused on development and optimization of ligand decorated theranostic nanocarrier encapsulating paclitaxel and carbon quantum dots (CQDs). Methods: CQDs were prepared by microwave-assisted pyrolysis and were characterized for particle size and fluorescence behavior. Ligand decorated zein nanoparticles, coloaded with paclitaxel and CQDs, were formulated using a one-step nanoprecipitation method and optimized for various process parameters. Results: Particle size for coated and uncoated nanoparticles was 90.16 ± 1.65 and 179.26 ± 3.61 nm, respectively, and entrapment efficiency was >80%. The circular dichroism spectroscopy showed zein retained its secondary structure and release study showed biphasic release behavior. Conclusion: The prepared theranostic nanocarrier showed optimal fluorescence and desired release behavior without altering the secondary structure of zein.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Zeína , Puntos Cuánticos/química , Paclitaxel/química , Zeína/química , Medicina de Precisión , Carbono/química , Ligandos , Nanopartículas/química
15.
Yakugaku Zasshi ; 144(2): 165-170, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-38296493

RESUMEN

Nanoplastics (NPs) are plastic fragments that are small enough to be absorbed by organisms through ingestion or inhalation. Recent studies indicate that nanoplastics can be ubiquitous in the environment, and there are growing concerns regarding the impacts of nanoplastics on the health of humans and other organisms. However, quantitative information on nanoplastics in the environment is still very limited, and most previous toxicity studies have used only polystyrene (PS) particles because of a lack of appropriate model particles of other plastics. We developed a nanoprecipitation-based method for the preparation of nanoplastic particles of five major polymers: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), polyvinyl chloride (PVC), and polystyrene. A major advantage of our method is that the nanoplastic particles are prepared without using reagents that can remain in the particles as impurities. Analysis of the prepared particles' molecular weight (Mw) distributions, crystallinities, and thermal properties revealed that their compositions and constitutions were within the general ranges for commercial products. The mechanisms underlying the formation of low-density polyethylene particles via our method were investigated by means of a simple population balance model, and particle diameter was found to be linearly correlated with the suspension density of the nanoplastic dispersion up to 0.4 mg·mL-1. Future studies should focus on improving our method to allow for precise, scale-independent production of nanoplastic particles. Methods for the preparation of labeled particles are also needed so that such particles can be used in nanoplastic risk assessments.


Asunto(s)
Plásticos , Poliestirenos , Humanos , Microplásticos/análisis , Polietileno , Polímeros
16.
Discov Nano ; 19(1): 4, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38175336

RESUMEN

Acetalated dextran (Ac-Dex) nanoparticles are currently of immense interest due to their sharp pH-responsive nature and high biodegradability. Ac-Dex nanoparticles are often formulated through single- or double-emulsion methods utilizing polyvinyl alcohol as the stabilizer. The emulsion methods utilize toxic organic solvents such as dichloromethane or chloroform and require multi-step processing to form stable Ac-Dex nanoparticles. Here, we introduce a simple flash nanoprecipitation (FNP) approach that utilizes a confined impinging jet mixer and a non-toxic solvent, ethanol, to form Ac-Dex nanoparticles rapidly. Ac-Dex nanoparticles were stabilized using nonionic PEGylated surfactants, D-α-Tocopherol polyethylene glycol succinate (TPGS), or Pluronic (F-127). Ac-Dex nanoparticles formed using FNP were highly monodisperse and stably encapsulated a wide range of payloads, including hydrophobic, hydrophilic, and macromolecules. When lyophilized, Ac-Dex TPGS nanoparticles remained stable for at least one year with greater than 80% payload retention. Ac-Dex nanoparticles were non-toxic to cells and achieved intracellular release of payloads into the cytoplasm. In vivo studies demonstrated a predominant biodistribution of Ac-Dex TPGS nanoparticles in the liver, lungs, and spleen after intravenous administration. Taken together, the FNP technique allows easy fabrication and loading of Ac-Dex nanoparticles that can precisely release payloads into intracellular environments for diverse therapeutic applications. pH-responsive Acetalateddextran can be formulated using nonionic surfactants, such as TPGS or F-127, for intracellular release of payloads. Highly monodisperse and stable nanoparticles can be created through the simple, scalable flash nanoprecipitation technique, which utilizes a confined impingement jet mixer.

17.
Small ; 20(13): e2304150, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37964398

RESUMEN

Rheumatoid arthritis (RA), a systemic autoimmune disease, poses a significant human health threat. Iguratimod (IGUR), a novel disease-modifying antirheumatic drug (DMARD), has attracted great attention for RA treatment. Due to IGUR's hydrophobic nature, there's a pressing need for effective pharmaceutical formulations to enhance bioavailability and therapeutic efficacy. The high-gravity nanoprecipitation technique (HGNPT) emerges as a promising approach for formulating poorly water-soluble drugs. In this study, IGUR nanodrugs (NanoIGUR) are synthesized using HGNPT, with a focus on optimizing various operational parameters. The outcomes revealed that HGNPT enabled the continuous production of NanoIGUR with smaller sizes (ranging from 300 to 1000 nm), more uniform shapes, and reduced crystallinity. In vitro drug release tests demonstrated improved dissolution rates with decreasing particle size and crystallinity. Notably, in vitro and in vivo investigations showcased NanoIGUR's efficacy in inhibiting synovial fibroblast proliferation, migration, and invasion, as well as reducing inflammation in collagen-induced arthritis. This study introduces a promising strategy to enhance and broaden the application of poorly water-soluble drugs.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Cromonas , Nanopartículas , Sulfonamidas , Humanos , Alcohol Polivinílico , Artritis Reumatoide/tratamiento farmacológico , Antirreumáticos/química , Antirreumáticos/farmacología , Antirreumáticos/uso terapéutico , Agua
18.
Int J Pharm ; 649: 123645, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38040393

RESUMEN

Drug nanocapsules coated with iron oxide nanoparticles (SPION) were elaborated by the simultaneous nanoprecipitation of the drug and the nanoparticles, through solvent shifting. We examined four drugs: sorafenib, sorafenib tosylate, α-tocopherol and paclitaxel, to cover the cases of molecular solids, ionic solids, and molecular liquids. We first investigated the formation of the drug core in the final mixture of solvents at different concentrations. A Surfactant-Free Micro-Emulsion domain (SFME, thermodynamically stable) was observed at low drug concentration and an Ouzo domain (metastable) at high drug concentration, except for the case of paclitaxel which crystallizes at high concentration without forming an Ouzo domain. When co-nanoprecipitated with the molecular drugs in the Ouzo domain (sorafenib or α-tocopherol), the SPION limited the coalescence of the drug particles to less than 100 nm, forming capsules with a drug encapsulation efficiency of ca 80 %. In contrast, larger capsules were formed from the SFME or when using the ionic form (sorafenib tosylate). Finally, the sorafenib-SPION capsules exhibit a similar chemotherapeutic effect as the free drug on the hepatocellular carcinoma in vitro.


Asunto(s)
Neoplasias Hepáticas , Nanocápsulas , Humanos , Nanocápsulas/química , Solventes , Sorafenib , alfa-Tocoferol , Estructura Molecular , Paclitaxel , Nanopartículas Magnéticas de Óxido de Hierro
19.
Food Res Int ; 175: 113738, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129048

RESUMEN

The demand for sustainable, healthy, and pesticide-free food has grown in recent years. Agroecological seeds cannot receive chemical treatment, as pesticides present toxicological and environmental risks, requiring the development of alternative methods for disease control, such as the use of essential oils. In this study, orange essential oil was extracted and encapsulated in zein nanoparticles by the nanoprecipitation method. The nanoparticles were tested for the antifungal activity on agroecological maize seeds and for the mycelial sensitivity of Stenocarpella macrospora. The synthesized nanoparticles presented good encapsulation efficiency (99 %) of orange essential oil rich in D-limonene, conferring high antioxidant activity to the loaded nanoparticles. The release profile indicated a pseudo-Fickian mechanism governed by diffusion, explained according to the Korsmeyer-Peppas model. The dynamic light scattering, and transmission electron microscopy showed spherical nanoparticles with particle size lower than 200 nm. The nanoparticles containing orange essential oil inhibited the incidence of Fusarium during the storage of agroecological maize seeds. The mycelial sensitivity against Stenocarpella macrospora showed that the encapsulated essential oil was more effective in inhibiting the fungus when compared to the non-encapsulated oil. Therefore, the nanoparticles containing encapsulated orange essential oil can be effectively applied as an antifungal material for the conservation of agroecological maize seeds, contributing to the development of sustainable agricultural biotechnology with pesticide-free products.


Asunto(s)
Nanopartículas , Aceites Volátiles , Plaguicidas , Aceites Volátiles/farmacología , Zea mays , Antifúngicos/farmacología , Incidencia , Hongos , Semillas
20.
Methods Mol Biol ; 2748: 85-98, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38070109

RESUMEN

Immunotherapy is considered a powerful clinical strategy aiming to boost the immune system to fight cancer. In this context, nanomaterials (NMs) are uniquely suited to improve the development and the broad implementation of cancer immunotherapies by overcoming several challenges. In fact, NMs can be rationally designed to navigate complex physical barriers, respond to tumor microenvironments, and enhance/modulate immune system activation. Here, we present a method to prepare stimuli-responsive biocompatible nanoparticles (NPs) able to target the tumor microenvironment. Moreover, we describe protocols to characterize the physical-chemical properties of NPs as well as to evaluate their biocompatibility and therapeutic potential in vitro on three-dimensional (3D) tumor spheroids.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Microambiente Tumoral , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Neoplasias/patología , Portadores de Fármacos/química , Inmunoterapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA