Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411255, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980971

RESUMEN

Conversion-type electrode materials have gained massive research attention in sodium-ion batteries (SIBs), but their limited reversibility hampers practical use. Herein, we report a bifunctional nanoreactor to boost highly reversible sodium-ion storage, wherein a record-high reversible degree of 85.65% is achieved for MoS2 anodes. Composed of nitrogen-doped carbon-supported single atom Mn (NC-SAMn), this bifunctional nanoreactor concurrently confines active materials spatially and catalyzes reaction kinetics. In-situ/ex-situ characterizations including spectroscopy, microscopy, and electrochemistry, combined with theoretical simulations containing density functional theory and molecular dynamics, confirm that the NC-SAMn nanoreactors facilitate the electron/ion transfer, promote the distribution and interconnection of discharging products (Na2S/Mo), and reduce the Na2S decomposition barrier.As a result, the nanoreactor-promoted MoS2 anodes exhibit ultra-stable cycling with a capacity retention of 99.86% after 200 cycles in the full cell. This work demonstrates the superiority of bifunctional nanoreactors with two-dimensional confined and catalytic effects, providing a feasible approach to improve the reversibility for a wide range of conversion-type electrode materials, thereby enhancing the application potential for long-cycled SIBs.

2.
ACS Nano ; 18(24): 15638-15650, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38848453

RESUMEN

For practical application of lithium-sulfur batteries (LSBs), designing devices with an overall optimal structure instead of modifying electrode materials is significant. Herein, we report a chip-inspired design of a vertically integrated structure as an LSB cathode by implanting Mo2C nanoparticles and nanosulfur into the reduced graphene oxide (rGO) matrix. This configuration enabled the synthesis of isolated sulfur nanoreactors (S-NRs) integrated in a tandem array on the rGO, generating chip-like integrated LSBs. The spatial confinement/protection and concentration gradient of the S-NRs effectively avoided the dissolution, diffusion, and loss of polysulfides, thereby enhancing the sulfur utilization and redox reaction kinetics. Additionally, the adaptive storage energy can be improved by utilizing the tandem, isolation, and synergistic multiplicative effect among the nanoreactor units. As a result, the integrated LSB cathode obtained excellent electrochemical performances with an initial capacity of 1392 mAh g-1 at 0.1C, a low capacity decay rate of 0.017% per cycle during 1500 cycles of operation at 0.5C, and a superior rate performance. This work provides a rational design idea and method of further advancing the precise preparation of high-performance energy storage devices.

3.
Adv Mater ; : e2403865, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857624

RESUMEN

High-entropy alloy (HEA) nanostructures arranged into well-defined configurations hold great potential for accelerating the development of electronics, photonics, catalysis, and device integration. However, the random nucleation induced by the disparity in physicochemical properties of multiple elements makes it challenging to achieve single-particle synthesis at the patterned preset sites in the high-entropy scenario. Herein, the liquid metal nanoreactor strategy is proposed to realize the construction of HEA arrays. The coalescence of the liquid metal driven by the tendency to decrease surface energy provides a restricted environment for the nucleation and growth to form single HEA particles at the preset locations, which can be regarded as a self-confinement reaction. Liquid metal endowing a low diffusion energy barrier on the substrate and a high diffusivity of the alloy system can dynamically promote the aggregation process. As a result, the HEA array is prepared with elements up to eleven and possesses uniform periodicity, which exhibits excellent holography response in a broad spectrum. This work injects new vitality into the construction of HEA nanopatterns and provides an excellent platform for propelling their fundamental research and applications.

4.
Chemistry ; : e202402197, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923156

RESUMEN

Since their discovery, clathrate hydrates (CHs) have received great attention both from theoretical and experimental aspects due to their great potential for gas storage and prospective applications as icy crystal materials. However, there has been limited research on the decomposition, reduction or other reactions of gases enclosed in CHs. Thanks to their unique hydrogen bonding network and cavity structures, CHs can serve as the promising nanoreactors to achieve chemical conversions, e.g. reducing greenhouse gases. In this review-type article, we characterize the potential performance of such CHs nanoreactors by discussing their multiple functions including important roles of hydrogen bonds in CHs, e.g. the confinement effect and proton source, and then discuss the enhanced electron-binding ability of guest molecules and the structures and properties of trapped electrons in the stacked nanocages, which contribute to our understanding of chemical reactions occurring in CHs. Finally, we provide detailed analyses of representative reaction mechanisms underwent in CH nanoreactors and effective investigation methods. This review-type article aims to provide a detailed summary about the functional characteristics of CHs and reactivity in CHs, which make CHs a kind of promising icy nanoreactors.

5.
ACS Appl Bio Mater ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38920441

RESUMEN

Glucose oxidase (GOx) selectively oxidizes ß-d-glucose into gluconic acid and hydrogen peroxide; thus, it has emerged as a promising anticancer agent by tumor starvation and oxidative therapy. Here, we developed a nanoscale platform or "nanoreactor" that incorporates GOx and the bioactive natural product curcumin (CUR) to achieve a multimodal anticancer nanocomposite. The composite nanoreactor was formed by loading CUR in biodegradable polymeric nanoparticles (NPs) of poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL). Prime-coating of the NPs with an iron(III)-tannic acid complex enabled facile immobilization of GOx on the NP surface. The NPs were monodisperse with a hydrodynamic diameter of 122 nm and a partially negative surface charge. The NPs were also associated with an excellent CUR loading efficiency and sustained release up to 96 h, which was accelerated by surface-immobilized GOx and followed supercase II transport. Viability assays were conducted on two model cancer cell lines, MCF-7 and MDA-MB-231 cells, as well as human dermal fibroblasts as a representative normal cell line. The assays revealed significantly improved potency of CUR in the composite nanoreactor, with up to 6000- and 1280-fold increase in MCF-7 and MDA-MB-231 cells, respectively, and lower toxicity toward normal cells. The NPs were also able to promote intracellular reactive oxygen species (ROS) generation and dissipation of the mitochondrial membrane potential, providing important clues on the mechanism of action of the nanoreactor. Further investigation of caspase-3 activity revealed that the nanoreactor had no effect or inhibited caspase-3 levels, signifying a caspase-independent mechanism of inducing apoptosis. Our findings present a promising nanocarrier platform that combines therapeutic agents with distinct mechanisms of action acting in synergy for more effective cancer therapy.

6.
Acta Biomater ; 181: 402-414, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38734282

RESUMEN

Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. STATEMENT OF SIGNIFICANCE: A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.


Asunto(s)
Inmunoterapia , Microambiente Tumoral , Animales , Inmunoterapia/métodos , Ratones , Microambiente Tumoral/efectos de los fármacos , Línea Celular Tumoral , Hipoxia Tumoral/efectos de los fármacos , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Oxaliplatino/farmacología , Oxaliplatino/química , Óxidos/química , Óxidos/farmacología , Manganeso/química , Manganeso/farmacología , Humanos , Femenino , Neoplasias/terapia , Neoplasias/patología , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Células Dendríticas/inmunología , Ratones Endogámicos C57BL
7.
Angew Chem Int Ed Engl ; : e202406693, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781083

RESUMEN

Apart from electrode material modification, architecture design and optimization are important approaches for improving lithium-sulfur battery performance. Herein, an integrated structure with tandem connection is constructed by confining nanosulfur (NS) in conductive poly(3,4-ethylenedioxythiophene) (PEDOT) reaction chambers, forming an interface of discrete independent nanoreactor units bonded onto carbon nanotubes (noted as CNT/NS@PEDOT). The unique spatial confinement and concentration gradients of sulfur@PEDOT nanoreactors (SP-NRs) can promote reaction kinetics while facilitating rapid polysulfide transformation and minimizing dissolution and diffusion losses. Meanwhile, overall ultrahigh energy input and output are achieved through tandem connection with carbon nanotubes, isolation with PEDOT coating, and synergistic multiplicative effects among SP-NRs. As a result, it delivers a high initial discharge capacity of 1246 mAh g-1 at 0.1 C and 918 mAh g-1 at 1 C, the low capacity decay rate per lap of 0.011 % is achieved at a current density of 1 C after 1000 cycles. This research emphasizes the innovative structural design to provide a fresh trajectory for the further advancement of high-performance energy storage devices.

8.
Adv Sci (Weinh) ; : e2404143, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38785180

RESUMEN

Commencing with the breakdown of the diabetic osteoimmune microenvironment, multiple pathogenic factors, including hyperglycemia, inflammation, hypoxia, and deleterious cytokines, are conjointly involved in the progression of diabetic periodontal bone regeneration. Based on the challenge of periodontal bone regeneration treatment and the absence of real-time feedback of blood oxygen fluctuation in diabetes mellitus, a novel self-adaptive hyperthermia supramolecular cascade nano-reactor ACFDG is constructed via one-step supramolecular self-assembly strategy to address multiple factors in diabetic periodontal bone regeneration. Hyperthermia supramolecular ACFDG possesses high photothermal conversion efficiency (32.1%), and it can effectively inhibit the vicious cycle of ROS-inflammatory cascade through catalytic cascade reactions, up-regulate the expression of heat shock proteins (HSPs) under near-infrared (NIR) irradiation, which promotes periodontal bone regeneration. Remarkably, ACFDG can provide real-time non-invasive diagnosis of blood oxygen changes during periodontal bone regeneration through photoacoustic (PA) imaging, thus can timely monitor periodontal hypoxia status. In conclusion, this multifunctional supramolecular nano-reactor combined with PA imaging for real-time efficacy monitoring provides important insights into the biological mechanisms of diabetic periodontal bone regeneration and potential clinical theranostics.

9.
Chembiochem ; : e202400346, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775416

RESUMEN

Multi-enzyme cascade catalysis has become an important technique for chemical reactions used in manufacturing and scientific study. In this research, we designed a four-enzyme integrated catalyst and used it to catalyse the racemization reaction of cyclic chiral amines, where monoamine oxidase (MAO) catalyses the selective oxidation of 1-methyl-1,2,3,4-tetrahydroisoquinoline (MTQ), imine reductase (IRED) catalyses the selective reduction of 1-methyl-3,4-dihydroisoquinoline (MDQ), formate dehydrogenase (FDH) is used for the cyclic regeneration of cofactors, and catalase (CAT) is used for decomposition of oxidative reactions. The four enzymes were immobilized via polydopamine (PDA)-encapsulated dendritic organosilica nanoparticles (DONs) as carriers, resulting in the amphiphilic core-shell catalysts. The hydrophilic PDA shell ensures the dispersion of the catalyst in water, and the hydrophobic DON core creates a microenvironment with the spatial confinement effect of the organic substrate and the preconcentration effect to enhance the stability of the enzymes and the catalytic efficiency. The core-shell structure improves the stability and reusability of the catalyst and rationally arranges the position of different enzymes according to the reaction sequence to improve the cascade catalytic performance and cofactor recovery efficiency.

10.
J Colloid Interface Sci ; 670: 297-310, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763026

RESUMEN

Fenton/Fenton-like reaction induced chemical dynamic therapy (CDT) has been widely recognized in tumor therapy. Due to the low efficiency of conversion from high-valent metal ions (M(n+1)+) to low-valent ions (Mn+) in the Fenton/Fenton-like catalytic process, enhancing the conversion efficiency safely and effectively would create a great opportunity for the clinical application of CDT. In the study, a universal nanoreactor (NR) consisting of liposome (Lip), tumor cell membrane (CM), and bis(2,4,5-trichloro-6-carboxyphenyl) oxalate (CPPO) is developed to tackle this challenge. The CPPO was first discovered to decompose under weak acidity and H2O2 conditions to generate carboxylic acids (R'COOH) and alcohols (R'OH) with reducibility, which will reduce M(n+1)+ to Mn+ and magnify the effect of CDT. Furthermore, glucose oxidase (GOx) was introduced to decompose glucose in tumor and generate H2O2 and glucose acid, which promote the degradation of CPPO, further strengthening the efficiency of CDT, leading to a butterfly effect. This demonstrated that the butterfly effect triggered by NR and GOx encourages Fenton/Fenton-like reactions of Fe3O4 and MoS2, thereby enhancing the tumor inhibition effect. The strategy of combining GOx and CPPO to strengthen the Fenton/Fenton-like reaction is a universal strategy, which provides a new and interesting perspective for CPPO in the application of CDT, reflecting the exquisite integration of Fenton chemistry and catalytic medicine.


Asunto(s)
Peróxido de Hidrógeno , Peróxido de Hidrógeno/química , Humanos , Hierro/química , Liposomas/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Animales , Propiedades de Superficie , Antineoplásicos/química , Antineoplásicos/farmacología , Oxalatos/química , Ratones , Tamaño de la Partícula , Supervivencia Celular/efectos de los fármacos
11.
Small ; : e2401335, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693088

RESUMEN

Exploration of multifunctional integrated catalysts is of great significance for photocatalysis toward practical application. Herein, a 1D confined nanoreactor with a heterogeneous core-shell structure is designed for synergies of efficient catalysis and temperature monitoring by custom encapsulation of Z-scheme heterojunction CuS quantum dots/BiVO4 (CuS QDs/BiVO4) and Y2O2S-Er, Yb. The dispersed active sites created by the QDs with high surface energy improve the mass transfer efficiency, and the efficient electron transport channels at the heterogeneous interface extend the carrier lifetime, which endows the nanoreactor with excellent catalytic performance. Meanwhile, real-time temperature monitoring is realized based on the thermally coupled levels 2H11/2/4S3/2→4I15/2 of Er3+ using fluorescence intensity ratio, which enables the monitorable photocatalysis. Furthermore, the nanoreactor with a multidimensional structure increases effective intermolecular collisions to facilitate the catalytic process by restricting the reaction within distinct enclosed spaces and circumvents potential unknown interaction effects. The design of multi-space nanoconfined reactors opens up a new avenue to modulate catalyst function, providing a unique perspective for photocatalytic applications in the mineralization of organic pollutants, hydrogen production, and nitrogen fixation.

12.
Angew Chem Int Ed Engl ; : e202406065, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802982

RESUMEN

The catalytic process of Li2S formation is considered a key pathway to enhance the kinetics of lithium-sulfur batteries. Due to the system's complexity, the catalytic behavior is uncertain, posing significant challenges for predicting activity. Herein, we report a novel cascaded dual-cavity nanoreactor (NiCo-B) by controlling reaction kinetics, providing an opportunity for achieving hierarchical catalytic behavior. Through experimental and theoretical analysis, the multilevel structure can effectively suppress polysulfides dissolution and accelerate sulfur conversion. Furthermore, we differentiate the adsorption (B-S) and catalytic effect (Co-S) in NiCo-B, avoiding catalyst deactivation caused by excessive adsorption. As a result, the as-prepared battery displays high reversible capacity, even with sulfur loading of 13.2 mg cm-2 (E/S=4 µl mg-1), the areal capacity can reach 18.7 mAh cm-2.

13.
J Colloid Interface Sci ; 669: 657-666, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733877

RESUMEN

Creating a microenvironment for enhanced peroxymonosulfate (PMS) activation is vital in advanced oxidation processes. The objective of this study was to fabricate nanoshells composed of titanium dioxide embedded with cobalt titanate nanoparticles of perovskite to act as nanoreactors for effectively initiating PMS and degrading contaminants. The unique porous structure and confined space of the nanoreactor facilitated reactant absorption and mass transfer to the active sites, resulting in exceptional catalytic performance for pollutant elimination. Experimental findings revealed close to 100% decomposition efficiency of 4-chlorophenol (4-CP) within an hour utilizing the nanoreactors over a wide pH range. The TiO2/CoTiO3 hollow nanoshells catalysts also displayed adaptability in disintegrating organic dyes and antibiotics. The radicals SO4•-, •OH, and non-radicals 1O2 were determined to be accountable for eliminating pollutants, as supported by trapping experiments and electron paramagnetic resonance spectra. The catalyst was confirmed as an electron donor and PMS as an electron acceptor through electrochemical tests and density functional theory calculations. This study underscores the potential of incorporating stable perovskite catalysts in hollow nanoreactors to enhance wastewater treatment.

14.
J Colloid Interface Sci ; 669: 679-687, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38733879

RESUMEN

Nanoscale graphene-semiconductor composite photocatalysts with fascinating properties in the photocatalytic hydrogen evolution have inspired numerous interests in broad research fields. The architectures with efficient light response and promoting charge separation at the interface between reduced graphene oxide (RGO) and semiconductor are critical, yet synthesizing them remains a formidable challenge. Herein, the photodiode array-like LaNiO3/N,P-RGO (LNO/N,P-RGO) nanoreactor was constructed using an innovative strategy of acid etching-induced nanocutting self-assembly. Ammonium dihydrogen phosphate working as both a nitrogen phosphorus co-dopant and an acid etching reagent, cuts perovskite LaNiO3 (LNO) nanoparticles into nanorods, which are bonded evenly on the nitrogen phosphorus co-doped reduced graphene oxide (N,P-RGO) to form an n-n semiconductor heterojunction LNO/N,P-RGO as a photodiode array-like nanoreactor via hydrothermal treatment. The photodiode array-like nanostructure exposes more active sites that are conducive to light absorption. The robust Ni-C and P-O bonds promote the narrowing of space-charge region at the interface by UV irradiation, thereby improving the transport of photogenerated carriers by visible light irradiation. The LNO/N,P-RGO nanoreactor exhibits excellent photocatalytic hydrogen evolution performance with a yield of up to 354 µmol g-1 h-1 under UV-visible light, which is 50 times higher than that of pure perovskite LNO, and it also displays favorable recycling stability.

15.
Small ; : e2309490, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38651888

RESUMEN

The confinement effect of catalytic nanoreactors containing metal catalysts within nanometer-sized volumes has attracted significant attention for their potential to enhance reaction rate and selectivity. Nevertheless, unregulated catalyst loading, aggregation, leaching, and limited reusability remain obstacles to achieving an efficient nanoreactor. A robust and durable catalytic membrane nanoreactor prepared by incorporating palladium nanocatalysts within a 3D-continuous nanoporous covalent framework membrane is presented. The reduction of palladium precursor occurs on the pore surface within 3D nanochannels, producing ultrafine palladium nanoparticles (Pd NPs) with their number density adjustable by varying metal precursor concentrations. The precise catalyst loading enables controlling the catalytic activity of the reactor while preventing excess metal usage. The facile preparation of Pd NP-loaded free-standing membrane materials allows hydrodechlorination in both batch and continuous flow modes. In batch mode, the catalytic activity is proportional to the loaded Pd amount and membrane area, while the membrane retains its activity upon repeated use. In continuous mode, the conversion remains above 95% for over 100 h, with the reactant solution passing through a single 50 µm-thick Pd-loaded membrane. The efficient nanoporous film-type catalytic nanoreactor may find applications in catalytic reactions for small chemical devices as well as in conventional chemistry and processes.

16.
ACS Appl Mater Interfaces ; 16(17): 21610-21622, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647446

RESUMEN

The treatment of acute myeloid leukemia (AML) remains unsatisfactory, owing to the absence of efficacious therapy regimens over decades. However, advances in molecular biology, including inhibiting the CXCR4/CXCL12 biological axis, have introduced novel therapeutic options for AML. Additionally, self-stimulated phototherapy can solve the poor light penetration from external sources, and it will overcome the limitation that traditional phototherapy cannot be applied to the treatment of AML. Herein, we designed and manufactured a self-stimulated photodynamic nanoreactor to enhance antileukemia efficacy and suppress leukemia recurrence and metastasis in AML mouse models. To fulfill our design, we utilized the CXCR4/CXCL12 biological axis and biomimetic cell membranes in conjunction with self-stimulated phototherapy. This nanoreactor possesses the capability to migrate into the bone marrow cavity, inhibit AML cells from infiltrating into the visceral organ, significantly enhance the antileukemia effect, and prolong the survival time of leukemic mice. Therefore, this nanoreactor has significant potential for achieving high success rates and low recurrence rates in leukemia treatment.


Asunto(s)
Leucemia Mieloide Aguda , Fotoquimioterapia , Receptores CXCR4 , Animales , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inhibidores , Ratones , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Línea Celular Tumoral , Quimiocina CXCL12/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología
17.
ChemSusChem ; 17(10): e202400406, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38568166

RESUMEN

Growing attention has been paid to the rational treatment of antibiotics-bearing medical wastewater. However, the complexity of polluted wastewater makes the later comprehensive treatment difficult only by the Advanced Oxidation Process technique. Therefore, the coupled water treatment techniques including contaminant mineralization and regeneration of cleanwater become very attractive. A bimetallic functional hollow nanoreactor defined as (Co@SiO2/Cu-X) was successfully constructed by coating a Cu-doped silica layer on the metal-organic framework (ZIF-67) followed by programmed calcination in nitrogen. The nanoreactor was endowed with a hollow configuration composed of mesoporous N-doping C-Silica hybrid shell encapsulated ultrafine Cu and Co metallic species. Such a configuration allows for the efficient diffusion and open reaction space of big contaminant molecules. The catalytic synergy of exposed Co-Cu bimetals and the easy accessibility of electron-rich contaminants by polar N doping sites triggered surface affinity make the optimal Co@SiO2/Cu-6 afford an excellent catalytic norfloxacin mineralization activity (7 min, kabs=0.744 min-1) compared to Cu-free Co@SiO2-6 (kabs=0.493 min-1) and Co-6 (kabs=0.378 min-1) Benefiting from the above unique advantages, Co@SiO2/Cu-6 show excellent removal performance in degrading different pollutants (carbamazepine, oxytetracycline, tetracycline, and bisphenol A) and persistent recycled stability in removing NFX. In addition, by virtue of the excellent photothermal properties, interfacial solar water evaporation application by Co@SiO2/Cu-6 was further explored to reach the regeneration of cleanwater (1.595 kg m-2 h-1, 97.51 %). The integration of pollutant mineralization and solar water evaporation by creating the monolith evaporation by anchoring the Co@SiO2/Cu-6 onto the tailored melamine sponge allows the regeneration of cleanwater (1.6 kg⋅m-2⋅h-1) and synchronous pollutant removal (NFX, 95 %, 60 min), which provides potential possibility the treatment of complicated wastewater.

18.
Talanta ; 274: 126010, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569372

RESUMEN

Intracellular glucose detection is crucial due to its pivotal role in metabolism and various physiological processes. Precise glucose monitoring holds significance in diabetes management, metabolic studies, and biotechnological applications. In this study, we developed an innovative and expedient cell-permeable nanoreactor for intracellular glucose based on surface-enhanced Raman scattering (SERS). The nanoreactor was designed with gold nanoparticles (AuNPs), which were engineered with glucose oxide (GOx) and a H2O2-responsive Raman reporter 2-mercaptohydroquinone (2-MHQ). The interaction between 2-MHQ and H2O2 generated by glucose and GOx could simultaneously induce the appearance in the peak at 985 cm-1. Our results showed excellent performance in detecting glucose within the concentration range from 0.1 µM to 10 mM, with a low detection limitation of 14.72 nM. In addition, the glucose distribution in single HeLa cells was evaluated by real time SERS mapping. By combining noble metal particles and natural oxidases, the nanoreactor possesses both Raman activity and enzymatic functionality, thus enables sensitive glucose detection and facilitates imaging at a single cell level, which offers an insightful monitoring of cellular processes.


Asunto(s)
Glucosa , Oro , Nanopartículas del Metal , Espectrometría Raman , Espectrometría Raman/métodos , Humanos , Células HeLa , Oro/química , Nanopartículas del Metal/química , Glucosa/análisis , Glucosa/metabolismo , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo
19.
Int J Pharm X ; 7: 100238, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38511068

RESUMEN

The clinical advancement of protein-based nanomedicine has revolutionized medical professionals' perspectives on cancer therapy. Protein-based nanoparticles have been exploited as attractive vehicles for cancer nanomedicine due to their unique properties derived from naturally biomacromolecules with superior biocompatibility and pharmaceutical features. Furthermore, the successful translation of Abraxane™ (paclitaxel-based albumin nanoparticles) into clinical application opened a new avenue for protein-based cancer nanomedicine. In this mini-review article, we demonstrate the rational design and recent progress of protein-based nanoparticles along with their applications in cancer diagnosis and therapy from recent literature. The current challenges and hurdles that hinder clinical application of protein-based nanoparticles are highlighted. Finally, future perspectives for translating protein-based nanoparticles into clinic are identified.

20.
Front Chem ; 12: 1385825, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510814

RESUMEN

[This corrects the article DOI: 10.3389/fchem.2023.1211503.].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA