Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
J Environ Sci (China) ; 148: 38-45, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095173

RESUMEN

Nitrate (NO3-) is a widespread pollutant in high-salt wastewater and causes serious harm to human health. Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method, the development of low-cost electro-catalysts is still challenging. In this work, a phosphate modified iron (P-Fe) cathode was prepared for electrochemical removal of nitrate in high-salt wastewater. The phosphate modification greatly improved the activity of iron, and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode. Further experiments and density functional theory (DFT) calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO3- removal. The nitrate was firstly electrochemically reduced to ammonium, and then reacted with the anodic generated hypochlorite to N2. In this study, a strategy was developed to improve the activity and stability of metal electrode for NO3- removal, which opened up a new field for the efficient reduction of NO3- removal by metal electrode materials.


Asunto(s)
Electrodos , Hierro , Nitratos , Fosfatos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Nitratos/química , Hierro/química , Fosfatos/química , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Técnicas Electroquímicas/métodos
2.
Artículo en Inglés | MEDLINE | ID: mdl-39231029

RESUMEN

Today's extensive use of inorganic fertilizers in agricultural techniques has increased the concentration of nitrate in drinking water beyond safety limits, causing serious health problems in humans such as thyroidism and methemoglobinemia. Therefore, the present work describes the synthesis of a benzimidazolium salt-based fluorescent chemosensor (KG3) via a multistep synthesis which detects nitrate ions in aqueous medium. This was validated using various analytical techniques such as fluorescence spectroscopy, UV-visible spectroscopy, and electrochemical studies with a detection limit of 0.032 µM without any interference from other active water pollutants. Subsequently, KG3 is further modified with the help of iron oxide nanoparticles (Fe3O4 NPs) and silica to obtain the SiO2@Fe3O4-KG3 nanocomposite, which was immobilized over a polyether sulfone membrane and evaluated for removal of nitrate ions from groundwater with a removal efficiency of 96%. Moreover, the engineered composite membrane can serve as a solid-state fluorescence sensor to detect NO3- ions, which was demonstrated through a portable mobile-based prototype employing a hue, saturation, and value parameter model.

3.
Water Res ; 266: 122384, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39243459

RESUMEN

Nitrogen compounds in current seawater treatment processes typically are converted to nitrate, threatening seawater quality and marine ecology. Electrochemical denitrification is a promising technique, but its efficiency is severely limited by the presence of excess chloride ions. In this work, a flow-through cell went through an on-demand chlorine-mediated electrochemical-chemical tandem reaction process was designed for efficient seawater denitrification. Equipped with ultrathin cobalt-based nanosheets as the cathode catalyst and commercial IrO2-RuO2/Ti as the anode, the newly designed flow-through cell achieved nitrate removal efficiency that was about 50 times greater than the batch cell and nearly 100 % N2 selectivity. Moreover, nitrite and ammonia can also be removed with over 93 % efficiency in total nitrogen (TN) removal. Furthermore, the concentration of active chlorine in the effluent could be adjusted within two orders of magnitude, enabling on-demand release of active chlorine. Finally, this flow-through cell reduced the TN of actual mariculture tailwater (40.1 mg N L-1 nitrate) to only 5.7 mg N L-1, meeting the discharge standard for aquaculture tailwater of Fujian, China. This work demonstrates the paradigm of deep denitrification from ultra-concentrated chlorine ion wastewater using an on-demand active chlorine-mediated electrochemical-chemical tandem reaction process.

4.
Environ Sci Pollut Res Int ; 31(38): 50670-50685, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39102139

RESUMEN

Nitrate pollution of water emerging from various anthropogenic activities has become a major environmental concern because of its deleterious effects on natural water resources. The present work deals with the synthesis of the ternary nanocomposite based on chitosan, iron oxide (Fe3O4), and titanium dioxide (TiO2) and its application for the removal of nitrates from model-contaminated water. Fe3O4 derived through a coprecipitation method was incorporated into the chitosan matrix which was fabricated in the form of beads. The wet gel beads were then successfully coated with sol-gel-derived silver-doped titanium dioxide sol followed by drying under suitable conditions to get the functional nanocomposite beads. The synthesized functional materials were further characterized for their structural, morphological, and textural features using X-ray diffraction analysis, physical property measurement (PPMS), Fourier transform infrared (FTIR) analysis, UV visible spectroscopy analysis (UV-vis), BET surface area analysis (BET), field emission scanning electron microscopic (FESEM), and transmission electron microscopy (TEM) analysis. The ternary nanocomposites were further used for the removal of nitrates via adsorption cum photocatalytic reduction technique from the model contaminated water when subjected to an adsorption study under dark conditions and photocatalytic study under UV/visible/sunlight for a definite time. Fe3O4 in the nanocomposite provides enhanced adsorption features whereas the functional coating of titanium dioxide aids in the removal of nitrates through the photocatalytic reduction technique. The functional beads containing 3% Fe3O4 in the wet gel form (CTA-F3) have excellent nitrate removal efficiency of ~ 97% via adsorption cum solar photocatalysis towards the removal of nitrate ions from 50 ppm nitrate solution, whereas the dried nanocomposite beads have got a nitrate removal efficiency of ~ 68% in 1 h from 100 ppm nitrate solution. Continuous flow adsorption cum photocatalytic study was performed further using the oven-dried functional beads in which flow rate and bed height were varied while maintaining the concentration of feed solution as constant. A nitrate removal efficiency of 65% and an adsorption capacity of 4.1 mgg-1 were obtained for the CTA-F3 beads in the continuous flow adsorption cum photocatalysis experiment for up to 5 h when using an inlet concentration of 100 ppm, bed height 12 cm, and flow rate 5.0 ml min-1. A representative fixed-bed column adsorption experiment conducted using CTA-F3 beads for the treatment of a real groundwater sample shows reasonable results for nitrate removal (71.7% efficiency) along with a significant removal rate for the other anions as well. Thus, the novel adsorbent/photocatalyst developed is suitable for the removal of nitrates from water due to the synergistic effect between Fe3O4, chitosan, and titanium dioxide.


Asunto(s)
Quitosano , Nanocompuestos , Nitratos , Titanio , Contaminantes Químicos del Agua , Nanocompuestos/química , Titanio/química , Nitratos/química , Adsorción , Quitosano/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Catálisis , Compuestos Férricos/química
5.
Water Res ; 264: 122130, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146847

RESUMEN

Nutrient pollution has become an important issue to solve in stormwater runoff due to the fast population growth and urbanization that impacts water quality and triggers harmful algal blooms. There is an acute need to link the dissolved organic nitrogen (DON) decomposition with the coupled nitrification and denitrification pathways to realize the pattern shifts in the nitrogen cycle. This paper presented a lab-scale cascade upflow biofiltration system for comparison of nitrate and phosphate removal from stormwater matrices through two specialty adsorbents at three influent conditions. The two specialty adsorbents are denoted as biochar iron and perlite integrated green environmental media (BIPGEM) and zero-valent iron and perlite-based green environmental media (ZIPGEM). An initial condition with stormwater runoff, a second condition with spiked nitrate, and a third condition with spiked nitrate and phosphate were used in this study. To differentiate nitrifier and denitrifier population dynamics associated with the decomposition of DON, integrative analysis of quantitative polymerase chain reaction (qPCR) and 21 tesla Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were performed in association with nitrate removal efficiencies for both media with or without the presence of phosphate. While the qPCR may detect one gene for a single microbe or pathogen and realize the microbial population dynamics in the bioreactors, the 21 T FT-ICR MS can separate and assign elemental compositions to identify organic compounds of DON. Results indicated that ZIPGEM obtained a higher potential for nutrient removal than BIPGEM when the influent was spiked with nitrate and phosphate simultaneously. The sustainable, scalable, and adaptable upflow bioreactors operated in sequence (in a cascade mode) can be expanded flexibly on an as-needed basis to meet the local water quality standards showing process reliability, resilience, and sustainability simultaneously.


Asunto(s)
Filtración , Nitrógeno , Nitratos , Purificación del Agua/métodos , Desnitrificación , Contaminantes Químicos del Agua , Fosfatos
6.
Bioresour Technol ; 410: 131237, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127355

RESUMEN

Zero-valent iron acts as an indirect electron donor, supplying ferrous iron for the nitrate-dependent ferrous oxidation (NDFO) process. The addition of activated carbon (AC) increased the specific NDFO activity in situ and ex situ by 0.4 mg-N/(d·g VSS) and 2.2 mg-N/(d·g VSS), respectively, due to the enrichment of NDFO bacteria. Furthermore, AC reduced the nitrous oxide emission potential of the sludge, a mechanism that metagenomic analysis suggests may act as a cellular energy storage strategy. During a 196-day experiment, a total nitrogen removal efficiency of 53.7 % was achieved, which may be attributed to the upregulation of key genes involved in iron oxidation and denitrification. Based on these findings, a model involving pilin, 'nanowires,' and a cyc2/?→/(FoxE→FoxY)/?→cymA/Complex III/?-mediated pathway for extracellular electron uptake was proposed. Overall, this work provides a feasible strategy for enhancing the nitrogen removal performance of the ZVI-NDFO process.


Asunto(s)
Procesos Autotróficos , Desnitrificación , Electrones , Hierro , Nitrógeno , Hierro/metabolismo , Nitrógeno/metabolismo , Carbón Orgánico/química , Oxidación-Reducción , Aguas del Alcantarillado/microbiología , Bacterias/metabolismo , Reactores Biológicos , Nitratos/metabolismo
7.
Front Bioeng Biotechnol ; 12: 1397294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040496

RESUMEN

Bioelectrochemical systems are sustainable and potential technology systems in wastewater treatment for nitrogen removal. The present study fabricated an air-cathode denitrifying microbial fuel cell (DNMFC) with a revisable modular design and investigated metabolic processes using nutrients together with the spatiotemporal distribution characteristics of dominated microorganisms. Based on the detection of organics and solvable nitrogen concentrations as well as electron generations in DNMFCs under different conditions, the distribution pattern of nutrients could be quantified. By calculation, it was found that heterotrophic denitrification performed in DNMFCs using 56.6% COD decreased the Coulombic efficiency from 38.0% to 16.5% at a COD/NO3 --N ratio of 7. Furthermore, biological denitrification removed 92.3% of the nitrate, while the residual was reduced via electrochemical denitrification in the cathode. Correspondingly, nitrate as the electron acceptor consumed 16.7% of all the generated electrons, and the residual electrons were accepted by oxygen. Microbial community analysis revealed that bifunctional bacteria of electroactive denitrifying bacteria distributed all over the reactor determined the DNMFC performance; meanwhile, electroactive bacteria were mainly distributed in the anode biofilm, anaerobic denitrifying bacteria adhered to the wall, and facultative anaerobic denitrifying bacteria were distributed in the wall and cathode. Characterizing the contribution of specific microorganisms in DNMFCs comprehensively revealed the significant role of electroactive denitrifying bacteria and their cooperative relationship with other functional bacteria.

8.
Sci Total Environ ; 948: 174761, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39004356

RESUMEN

Constructed wetlands (CWs) have emerged as effective wastewater treatment systems, mimicked natural wetland processes but engineered for enhanced pollutant removal efficiency. Ammonium (NH4+) and nitrate (NO3-) are among common pollutants in wastewater, posing significant environmental and health risks. The primary objective of this study is to compares the performance of CWs using gravel and three sizes of natural pumice, along with phragmites australis, in horizontal and horizontal-vertical CWs for nitrate and ammonium removal in the complementary treatment of domestic wastewater. Additionally, the study aims to develop and validate a numerical model using MATLAB software to predict the removal efficiency of these pollutants, thereby contributing to the optimization of CW design and operation. The model operates as a zero-dimensional model based on the law of mass conservation, treating the wetland as a completely mixed reactor, thus avoiding complexities associated with solute movement in porous media. It accurately could predict removal efficiency of chemical, biochemical, and biological indicators while considering active and passive absorption mechanisms by plant uptake. Notably, the determination of coefficients in the model equation does not rely on potentially error-prone laboratory measurements due to sampling issues. Instead, optimization techniques alongside field data robustly estimate these coefficients, ensuring reliability and practicality. Results indicate that higher pollutant concentrations increase reaction rates, particularly enhancing CW efficiency in ammonium removal. Pumice, especially in larger sizes, exhibits superior absorption due to increased porosity and surface area. Overall, the model accurately predicts nitrates concentrations, demonstrating its potential for CW performance optimization and confirming the significance of effective pollutant removal strategies in wastewater treatment.

9.
Bioresour Technol ; 406: 131015, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906196

RESUMEN

Combining iron-carbon micro-electrolysis and autotrophic denitrification is promising for nitrate removal from wastewater. In this study, four continuous reactors were constructed using CO2 and weak magnetic field (WMF) to address challenges like iron passivation and pH stability. In the reactors with CO2 + WMF (10 and 35 mT), the increase in total nitrogen removal efficiency was significantly higher (96.2 ± 1.6 % and 94.1 ± 2.7 %, respectively) than that of the control (51.6 ± 2.7 %), and Fe3O4 converted to low-density FeO(OH) and FeCO3, preventing passivation film formation. The WMF application decreased the N2O emissions flux by 8.7 % and 20.5 %, respectively. With CO2 + WMF, the relative enzyme activity and abundance of denitrifying bacteria, especially unclassified_Rhodocyclaceae and Denitratisoma, increased. Thus, this study demonstrates that CO2 and WMF optimize the nitrate removal process, significantly enhancing removal efficiency, reducing greenhouse gas emissions, and improving process stability.


Asunto(s)
Procesos Autotróficos , Dióxido de Carbono , Carbono , Desnitrificación , Hierro , Campos Magnéticos , Nitratos , Dióxido de Carbono/metabolismo , Hierro/química , Nitratos/metabolismo , Electrólisis , Nitrógeno , Reactores Biológicos , Bacterias/metabolismo , Purificación del Agua/métodos , Aguas Residuales/química
10.
Chemosphere ; 358: 142136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692363

RESUMEN

The soil-water interface is replete with photic biofilm and iron minerals; however, the potential of how iron minerals promote biotic nitrate removal is still unknown. This study investigates the physiological and ecological responses of photic biofilm to hematite (Fe2O3), in order to explore a practically feasible approach for in-situ nitrate removal. The nitrate removal by photic biofilm was significantly higher in the presence of Fe2O3 (92.5%) compared to the control (82.8%). Results show that the presence of Fe2O3 changed the microbial community composition of the photic biofilm, facilitates the thriving of Magnetospirillum and Pseudomonas, and promotes the growth of photic biofilm represented by the extracellular polymeric substance (EPS) and the content of chlorophyll. The presence of Fe2O3 also induces oxidative stress (•O2-) in the photic biofilm, which was demonstrated by electron spin resonance spectrometry. However, the photic biofilm could improve the EPS productivity to prevent the entrance of Fe2O3 to cells in the biofilm matrix and mitigate oxidative stress. The Fe2O3 then promoted the relative abundance of Magnetospirillum and Pseudomonas and the activity of nitrate reductase, which accelerates nitrate reduction by the photic biofilm. This study provides an insight into the interaction between iron minerals and photic biofilm and demonstrates the possibility of combining biotic and abiotic methods to improve the in-situ nitrate removal rate.


Asunto(s)
Biopelículas , Compuestos Férricos , Nitratos , Compuestos Férricos/metabolismo , Compuestos Férricos/química , Nitratos/metabolismo , Estrés Oxidativo , Pseudomonas/fisiología , Pseudomonas/metabolismo
11.
Chemosphere ; 361: 142470, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810802

RESUMEN

Effective nitrate removal is a key challenge when treating low carbon-to-nitrogen ratio wastewater. How to select an effective inorganic electron donor to improve the autotrophic denitrification of nitrate nitrogen has become an area of intense research. In this study, the nitrate removal mechanism of three iron-based materials in the presence and absence of microorganisms was investigated with Fe2+/Fe0 as an electron donor and nitrate as an electron acceptor, and the relationship between the iron materials and denitrifying microorganisms was explored. The results indicated that the nitrogen removal efficiency of each iron-based material coupled sludge systems was higher than that of iron-based material. Furthermore, compared with the sponge iron coupled sludge system (60.6%-70.4%) and magnetite coupled sludge (56.1%-65.3%), the pyrite coupled sludge system had the highest removal efficiency of TN, and the removal efficiency increased from 62.5% to 82.1% with time. The test results of scanning electron microscope, X-ray photoelectron spectroscopy and X-ray diffraction indicated that iron-based materials promoted the attachment of microorganisms and the chemical reduction of nitrate in three iron-based material coupled sludge systems. Furthermore, the pyrite coupled sludge system had the highest nitrite reductase activity and can induce microorganisms to secrete more extracellular polymer substances. Combined with high-throughput sequencing and PICRUSt2 functional predictive analysis software, the total relative abundance of the dominant bacterial in pyrite coupled sludge system was the highest (72.06%) compared with the other iron-based material systems, and the abundance of Blastocatellaceae was relatively high. Overall, these results suggest that the pyrite coupled sludge system was more conducive to long-term stable nitrate removal.


Asunto(s)
Procesos Autotróficos , Carbono , Desnitrificación , Hierro , Nitratos , Nitrógeno , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Nitratos/metabolismo , Hierro/química , Hierro/metabolismo , Nitrógeno/metabolismo , Carbono/metabolismo , Carbono/química , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado/microbiología , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/metabolismo , Oxidación-Reducción , Sulfuros/química , Sulfuros/metabolismo
12.
Water Res ; 254: 121384, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38479174

RESUMEN

Contamination of groundwater by nitrate from intensive agriculture is a serious problem globally. Excessive fertilization has led to nitrate contamination of the Coastal Aquifer in Israel. Here we report the efficient removal of nitrate from contaminated groundwater by micellar-enhanced ultrafiltration (MEUF) using a specially tailored membrane. Graft polymerization with hydrophilic poly(methacrylate) and incorporation of porous zeolitic imidazole framework ZIF-L nanoparticles imparted antifouling properties to the membrane. The resulting modified membrane showed high water permeance (82.2 ± 1.7 L·m-2·h-1·bar-1). The efficiency of nitrate removal by MEUF was tested using cetylpyridinium chloride as a surfactant in nitrate-contaminated groundwater collected from the Coastal Aquifer of Israel. The membrane reduced nitrate levels from 40-70 to levels of 6.8-29.5 mg·L-1, depending on the groundwater composition; further reduction to 6.1-24.1 mg·L-1 with complete surfactant rejection was achieved via two-stage membrane filtration, which showed high permeate flux (between 32.1 ± 0.9 and 45.9 ± 0.6 L·m-2·h-1) at 2 bar. The membrane maintained stable separation performance during multiple cycles, and the flux recovery ratio was >93 %. Nitrate concentrations fell well below the acceptable limit for drinking water, allowing the treated water to be used without restriction. Overall, the membrane has the potential to allow efficient removal by MEUF of nitrate from contaminated groundwater.


Asunto(s)
Resinas Acrílicas , Agua Subterránea , Contaminantes Químicos del Agua , Ultrafiltración/métodos , Nitratos/análisis , Micelas , Hidrogeles , Contaminantes Químicos del Agua/análisis , Tensoactivos , Agua
13.
Bioresour Technol ; 398: 130522, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437965

RESUMEN

The enhancement of nitrate reduction in microbial fuel cells (MFCs) by acclimating biocathode potential was studied. An MFC system was started up, and measured by cyclic voltammetry to determine a suitable potential region for acclimating biocathode. The experimental results revealed that potential acclimation could efficiently improve denitrification performance by relieving the phenomenon of nitrite accumulation, and optimum performance was obtained at -0.4 V with a total nitrogen removal efficiency of 87.4 %. Subsequently, the characteristics of electron transfer behaviors were measured, suggesting that a positive correlation between nitrate reduction and the contribution of direct electron transfer emerged. Furthermore, a denitrification mechanism was proposed. The results indicated that potential acclimation was conducive to enhancing denitrifying enzyme activity and that the electron transport system activity could be increased by 5.8 times. This study provides insight into the electron transfer characteristics and denitrification mechanisms in MFCs for nitrate reduction at specific acclimatization potentials.


Asunto(s)
Fuentes de Energía Bioeléctrica , Microbiota , Nitratos , Nitritos , Aclimatación , Nitrógeno , Desnitrificación , Electrodos , Reactores Biológicos
14.
Sci Total Environ ; 926: 171929, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38522528

RESUMEN

The emerging nitrogen removal process known as CANDAN (Complete Ammonium and Nitrate removal via Denitratation-Anammox over Nitrite) has been developed in Sequencing Batch Reactors (SBRs). Yet, starting up and maintaining stability in continuous-flow reactors remain challenging. This study explores the feasibility of transitioning the CANDAN process from an anammox-dominated process by introducing appropriate external organics to facilitate indigenous nitrite-producing denitrification community in an Upflow Anaerobic Sludge Blanket (UASB) reactor. 150-day operation results indicate that under feeding rates of domestic wastewater at 0.54 L/h and nitrate-containing wastewater at 1.08 L/h, excellent N removal was achieved, with effluent TN below 10.0 mg N/L. Adding external sodium acetate at a COD/NO3--N = 2.0 triggered denitratation, ex-situ denitrification activity tests showed increased nitrite production rates, maintaining the nitrate-to-nitrite transformation ratio (NTR) above 90 %. Consequently, anammox activity was consistently maintained, dominating Total Nitrogen (TN) removal with a contribution as high as 78.3 ± 8.0 %. Anammox functional bacteria, Brocadia and Kuenenia were identified and showed no decrease throughout the operation, indicating the robustness of the anammox process. Notably, the troublesome of sludge flotation, did not occur, also contributing to sustained outstanding performance. In conclusion, this study advances our understanding of the synergistic interplay between anammox and denitrifying bacteria in the Anammox-UASB system, offering technical insights for establishing a stable continuous-flow CANDAN process for simultaneous ammonium and nitrate removal.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Nitritos , Aguas Residuales , Nitratos , Desnitrificación , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos/microbiología , Oxidación-Reducción , Anaerobiosis , Nitrógeno/análisis , Bacterias
15.
Water Res ; 253: 121285, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354664

RESUMEN

Considering the unsatisfied denitrification performance of carbon-limited wastewater in iron-based constructed wetlands (ICWs) caused by low electron transfer efficiency of iron substrates, utilization of plant-based conductive materials in-situ for improving the long-term reactivity of iron substrates was proposed to boost the Fe (III)/Fe (II) redox cycle thus enhance the nitrogen elimination. Here, we investigated the effects of withered Iris Pseudacorus biomass and its derived biochar on nitrogen removal for 165 days in ICWs. Results revealed that accumulate TN removal capacity in biochar-added ICW (BC-ICW) increased by 14.7 % compared to biomass-added ICW (BM-ICW), which was mainly attributed to the synergistic strengthening of iron scraps and biochar. The denitrification efficiency of BM-ICW improved by 11.6 % compared to ICWs, while its removal capacity declined with biomass consumption. Autotrophic and heterotrophic denitrifiers were enriched in BM-ICW and BC-ICW, especially biochar increased the abundance of electroactive species (Geobacter and Shewanella, etc.). An active iron cycle exhibited in BC-ICW, which can be confirmed by the presence of more liable iron minerals on iron scraps surface, the lowest Fe (III)/Fe (II) ratio (0.51), and the improved proportions of iron cycling genes (feoABC, korB, fhuF, TC.FEV.OM, etc.). The nitrate removal efficiency was positively correlated with the nitrogen, iron metabolism functional genes and the electron transfer capacity (ETC) of carbon materials (P < 0.05), indicating that redox-active carbon materials addition improved the iron scraps bioavailability by promoting electron transfer, thus enhancing the autotrophic nitrogen removal. Our findings provided a green perspective to better understand the redox properties of plant-based carbon materials in ICWs for deep bioremediation in-situ.


Asunto(s)
Carbón Orgánico , Desnitrificación , Hierro , Hierro/química , Humedales , Biomasa , Carbono , Oxidación-Reducción , Nitrógeno
16.
Environ Technol ; : 1-17, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38362607

RESUMEN

The hydrogen-based membrane biofilm reactor (H2-MBfR) is an emerging biological nitrogen removal technology characterized by high efficiency, energy-saving capability, and environmental friendliness. The technology achieves denitrification and denitrogenation of microorganisms by passing hydrogen as an electron donor from inside to outside through the hollow fibre membrane module, and eventually the hydrogen reachs the biofilm attached to the surface of the fibre membrane. H2-MBfR has obtained favourable outcomes in the treatment of secondary biochemical effluent and low concentration nitrogen polluted water source. The experiment was optimized by s single-factor testing and response surface methodology-based optimization (RSM), and the optimal operational conditions were obtained as follows: an influent flow rate of 2 mL/min, hydrogen pressure of 0.04 MPa, and influent nitrate concentration of 24.29 mg/L. Under these conditions, a high nitrate removal rate of 98.25% was achieved. In addition, Proteobacteria and Bacteroidetes were the dominant bacteria in all stages, and the genus Hydrogenophaga was sufficiently enriched, occurring at 13.0%-49.0% throughout the reactor operation. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for nitrate reduction and inorganic carbon utilization by microorganisms in the H2-MBfR was explored through comparison with the KEGG database. The results provided a mechanistic explanation for the denitrification and carbon sequestration capacity of the H2-MBfR.

17.
Environ Sci Ecotechnol ; 20: 100383, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38304117

RESUMEN

Global water bodies are increasingly imperiled by nitrate pollution, primarily originating from industrial waste, agricultural runoffs, and urban sewage. This escalating environmental crisis challenges traditional water treatment paradigms and necessitates innovative solutions. Electro-catalysis, especially utilizing copper-based catalysts, known for their efficiency, cost-effectiveness, and eco-friendliness, offer a promising avenue for the electro-catalytic reduction of nitrate to ammonia. In this review, we systematically consolidate current research on diverse copper-based catalysts, including pure Cu, Cu alloys, oxides, single-atom entities, and composites. Furthermore, we assess their catalytic performance, operational mechanisms, and future research directions to find effective, long-term solutions to water purification and ammonia synthesis. Electro-catalysis technology shows the potential in mitigating nitrate pollution and has strategic importance in sustainable environmental management. As to the application, challenges regarding complexity of the real water, the scale-up of the commerical catalysts, and the efficient collection of produced NH3 are still exist. Following reseraches of catalyst specially on long term stability and in situ mechanisms are proposed.

18.
Environ Sci Pollut Res Int ; 31(9): 12933-12947, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38236564

RESUMEN

At present, eutrophication is increasingly serious, so it is necessary to effectively reduce nitrogen and phosphorus in water bodies. In this study, a pyrite/polycaprolactone-based mixotrophic denitrification (PPMD) system using pyrite and polycaprolactone (PCL) as electron donors was developed and compared with pyrite-based autotrophic denitrification (PAD) system and PCL-based heterotrophic denitrification (PHD) system through continuous flow experiment. The removal efficiency of NO3--N (NRE) and PO43--P (PRE) and the contribution proportion of PAD in the PPMD system were significantly increased by prolonging hydraulic retention time (HRT, from 1 to 48 h). When HRT was equal to 24 h, the PPMD system conformed to the zero-order kinetic model, so NRE and PRE were mainly limited by the PAD process. When HRT was equal to 48 h, the PPMD system met the first-order kinetic model with NRE and PRE reaching 98.9 ± 1.1% and 91.8 ± 4.5%, respectively. When HRT = 48 h, the NRE and PRE by PAD system were 82.7 ± 9.1% and 88.5 ± 4.7%, respectively, but the effluent SO42- concentration was as high as 152.1 ± 13.7 mg/L (the influent SO42- concentration was 49.2 ± 3.3 mg/L); the NRE by PHD system was 98.5 ± 1.7%, but the PO43--P could not be removed ideally. The concentrations of NO3--N, total nitrogen, PO43--P, and SO42- in the PPMD system also showed distinct changes along the reactor column. In addition, the microbial diversity analysis showed that prolonging HRT (from 24 to 48 h) increased the abundance of autotrophic denitrifying microorganisms in the PPMD system, ultimately increasing the contribution proportion of PAD.


Asunto(s)
Reactores Biológicos , Desnitrificación , Hierro , Sulfuros , Nitratos/análisis , Procesos Autotróficos , Nitrógeno
19.
Sci Total Environ ; 916: 170313, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38278230

RESUMEN

Increasing dissolved organic carbon (DOC) in groundwater as a carbon source for microorganisms that stimulate nitrate attenuation is considered a sustainable strategy to mitigate nitrate pollution in groundwater. However, little is known on the stoichiometric ratio of DOC and nitrate required in groundwater nitrate reduction processes, which has become an obstacle for evaluating the current status of DOC limitations on nitrate reduction. Here, the NO3--N and DOC concentrations in groundwater around 8 plateau lakes were investigated, and a microcosm experiment was performed to elucidate the effects of different DOC:NO3--N levels in groundwater on NO3--N reduction, and the current status of DOC limitations on groundwater NO3--N reduction around 8 lakes was further evaluated. The results indicated that nearly 41 % of the groundwater NO3--N concentrations exceeded the WHO threshold for drinking water (11.3 mg L-1) and 79 % of the groundwater DOC concentrations exceeded 5 mg L-1. The differences in groundwater NO3--N and DOC concentrations among the 8 lakes were controlled by the intensity of agricultural and human activities and hydrogeological background. The stoichiometric ratio of DOC:NO3--N regulated the NO3--N reduction process, and groundwater NO3--N accumulation rate appeared to become limited and sharply decreased when the DOC concentration was approximately 10 mg L-1 or when the DOC:NO3--N ratio was close to 1:1, and the DOC:NO3--N ratio threshold for limiting the NO3--N reduction process was approximately 2.25. Based on this threshold, >33 %-86 % of the groundwater samples around the 8 plateau lakes were strongly limited in the reduction of groundwater NO3--N due to a lack of sufficient DOC provides energy for heterotrophic microorganisms. Additionally, we highlight that the sustainable strategy of increasing DOC to stimulate groundwater NO3- attenuation should be combined with short-term strategies to jointly coordinate and control groundwater NO3- pollution.

20.
Environ Sci Pollut Res Int ; 31(3): 4052-4066, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38095796

RESUMEN

In this study, a new hybrid bench-scale electrocoagulation-sand filtration (FECF) reactor was developed for purifying nitrate-contaminated samples. Before and after electrochemical treatment, two sand filters were included in this continuous system to facilitate the purification procedure, and the contaminated water flows horizontally through the entire system according to a specific hydraulic gradient within the reactor, resulting in water purification. Significant improvement in treatment performance was observed due to the presence of metal hydroxides in the second filter media that were not fully involved in the electrocoagulation treatment. Energy dispersive X-ray (EDX) analysis was performed to detect metal hydroxide species in the sand media, and the need for filter regeneration was evaluated by monitoring changes in the system flow rate. Moreover, an evaluation of the effects of different factors including operating time, current intensity, initial pH, type of anode and cathode, initial nitrate concentration, hydraulic head level inside the reactor, number of electrodes, and NaCl electrolyte concentration on the performance of nitrate removal was conducted through the Taguchi design. Further, ANOVA analysis verified the accuracy of the predicted model, and the variables were classified based on their relative importance in the FECF process. According to the regression model, 97% of nitrates were removed with Al electrodes as anode and Fe as cathode, 70 min purification time, current intensity of 3 A, 100 mg/l initial nitrate concentration, pH 8, electrolyte concentration of 1 g/l, electrode number of 6, and 1.5 cm head level.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Nitratos , Electrocoagulación , Purificación del Agua/métodos , Aluminio , Filtración , Electrodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA