Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Ecol ; 33(15): e17444, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38984705

RESUMEN

Speciation generates biodiversity and the mechanisms involved are thought to vary across the tree of life and across environments. For example, well-studied adaptive radiations are thought to be fuelled by divergent ecological selection, but additionally are influenced heavily by biogeographic, genomic and demographic factors. Mechanisms of non-adaptive radiations, producing ecologically cryptic taxa, have been less well-studied but should likewise be influenced by these latter factors. Comparing among contexts can help pinpoint universal mechanisms and outcomes, especially if we integrate biogeographic, ecological and evolutionary processes. We investigate population divergence in the swordtail cricket Laupala cerasina, a wide-spread endemic on Hawai'i Island and one of 38 ecologically cryptic Laupala species. The nine sampled populations show striking population genetic structure at small spatio-temporal scales. The rapid differentiation among populations and species of Laupala shows that neither a specific geographical context nor ecological opportunity are pre-requisites for rapid divergence. Spatio-temporal patterns in population divergence, population size change, and gene flow are aligned with the chronosequence of the four volcanoes on which L. cerasina occurs and reveal the composite effects of geological dynamics and Quaternary climate change on population dynamics. Spatio-temporal patterns in genetic variation along the genome reveal the interplay of genetic and genomic architecture in shaping population divergence. In early phases of divergence, we find elevated differentiation in genomic regions harbouring mating song loci. In later stages of divergence, we find a signature of linked selection that interacts with recombination rate variation. Comparing our findings with recent work on complementary systems supports the conclusion that mostly universal factors influence the speciation process.


Asunto(s)
Flujo Génico , Genética de Población , Gryllidae , Animales , Gryllidae/genética , Gryllidae/clasificación , Hawaii , Especiación Genética , Variación Genética , Densidad de Población , Filogeografía , Evolución Biológica
2.
Genes (Basel) ; 15(4)2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674454

RESUMEN

DNA damage causes the mutations that are the principal source of genetic variation. DNA damage detection and repair mechanisms therefore play a determining role in generating the genetic diversity on which natural selection acts. Speciation, it is commonly assumed, occurs at a rate set by the level of standing allelic diversity in a population. The process of speciation is driven by a combination of two evolutionary forces: genetic drift and ecological selection. Genetic drift takes place under the conditions of relaxed selection, and results in a balance between the rates of mutation and the rates of genetic substitution. These two processes, drift and selection, are necessarily mediated by a variety of mechanisms guaranteeing genome stability in any given species. One of the outstanding questions in evolutionary biology concerns the origin of the widely varying phylogenetic distribution of biodiversity across the Tree of Life and how the forces of drift and selection contribute to shaping that distribution. The following examines some of the molecular mechanisms underlying genome stability and the adaptive radiations that are associated with biodiversity and the widely varying species richness and evenness in the different eukaryotic lineages.


Asunto(s)
Daño del ADN , Flujo Genético , Inestabilidad Genómica , Selección Genética , Inestabilidad Genómica/genética , Daño del ADN/genética , Animales , Humanos , Adaptación Fisiológica/genética , Evolución Molecular , Reparación del ADN/genética , Filogenia , Variación Genética , Biodiversidad
3.
Biology (Basel) ; 12(8)2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37627024

RESUMEN

Karyotype diversity reflects genome integrity and stability. A strong correlation between karyotype diversity and species richness, meaning the number of species in a phylogenetic clade, was first reported in mammals over forty years ago: in mammalian phylogenetic clades, the standard deviation of karyotype diversity (KD) closely corresponded to species richness (SR) at the order level. These initial studies, however, did not control for phylogenetic signal, raising the possibility that the correlation was due to phylogenetic relatedness among species in a clade. Accordingly, karyotype diversity trivially reflects species richness simply as a passive consequence of adaptive radiation. A more recent study in mammals controlled for phylogenetic signals and established the correlation as phylogenetically independent, suggesting that species richness cannot, in itself, explain the observed corresponding karyotype diversity. The correlation is, therefore, remarkable because the molecular mechanisms contributing to karyotype diversity are evolutionarily independent of the ecological mechanisms contributing to species richness. Recently, it was shown in salamanders that the two processes generating genome size diversity and species richness were indeed independent and operate in parallel, suggesting a potential non-adaptive, non-causal but biologically meaningful relationship. KD depends on mutational input generating genetic diversity and reflects genome stability, whereas species richness depends on ecological factors and reflects natural selection acting on phenotypic diversity. As mutation and selection operate independently and involve separate and unrelated evolutionary mechanisms-there is no reason a priori to expect such a strong, let alone any, correlation between KD and SR. That such a correlation exists is more consistent with Kimura's theory of non-adaptive radiation than with ecologically based adaptive theories of macro-evolution, which are not excluded in Kimura's non-adaptive theory. The following reviews recent evidence in support of Kimura's proposal, and other findings that contribute to a wider understanding of the molecular mechanisms underlying the process of non-adaptive radiation.

4.
BMC Evol Biol ; 19(1): 10, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626330

RESUMEN

BACKGROUND: Adaptive radiations are triggered by ecological opportunity - the access to novel niche domains with abundant available resources that facilitate the formation of new ecologically divergent species. Therefore, as new species saturate niche space, clades experience a diversity-dependent slowdown of diversification over time. At the other extreme of the radiation continuum, non-adaptively radiating lineages undergo diversification with minimal niche differentiation when 'spatial opportunity' (i.e. areas with suitable 'ancestral' ecological conditions) is available. Traditionally, most research has focused on adaptive radiations, while empirical studies on non-adaptive radiations remain lagging behind. A prolific clade of African fish with extremely short lifespan (Nothobranchius killifish), show the key evolutionary features of a candidate non-adaptive radiation - primarily allopatric species with minimal niche and phenotypic divergence. Here, we test the hypothesis that Nothobranchius killifish have non-adaptively diversified. We employ phylogenetic modelling to investigate the tempo and mode of macroevolutionary diversification of these organisms. RESULTS: Nothobranchius diversification has proceeded with minor niche differentiation and minimal morphological disparity among allopatric species. Additionally, we failed to identify evidence for a role of body size or biogeography in influencing diversification rates. Diversification has been homogeneous within this genus, with the only hotspot of species-richness not resulting from rapid diversification. However, species in sympatry show higher disparity, which may have been caused by character displacement among coexisting species. CONCLUSIONS: Nothobranchius killifish have proliferated following the tempo and mode of a non-adaptive radiation. Our study confirms that this exceptionally short-lived group have diversified with minimal divergent niche adaptation, while one group of coexisting species seems to have facilitated spatial overlap among these taxa via the evolution of ecological character displacement.


Asunto(s)
Adaptación Fisiológica , Biodiversidad , Evolución Biológica , Fundulidae/fisiología , Animales , Tamaño Corporal , Especiación Genética , Funciones de Verosimilitud , Filogenia , Filogeografía , Especificidad de la Especie
5.
Mol Phylogenet Evol ; 130: 156-168, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30273756

RESUMEN

Untangling the relationship between morphological evolution and lineage diversification is key to explain global patterns of phenotypic disparity across the Tree of Life. Few studies have examined the relationship between high morphological disparity and extinction. In this study, we infer phylogenetic relationships and lineage divergence times within Eupomphini (Meloidae), a tribe of blister beetles endemic to the arid zone of North America, which exhibits a puzzling pattern of very low species richness but wild variation in morphological diversity across extant taxa. Using Bayesian and maximum likelihood inference, we estimate diversification and phenotypic evolutionary rates and infer the time and magnitude of extinction rate shifts and mass extinction events. Our results suggest that Eupomphini underwent an event of ancient radiation coupled with rapid morphological change, possibly linked to the loss of the evolutionary constraint in the elytral shape. A high extinction background associated to the Miocene-Pliocene transition decimated the diversity within each major clade, resulting in the species-poor genera observed today. Our study supports a connection between high extinction rates and patterns of decoupled phenotypic evolution and lineage diversification, and the possibility of a radiation in the absence of ecological release.


Asunto(s)
Biodiversidad , Escarabajos/clasificación , Extinción Biológica , Filogenia , Animales , Teorema de Bayes , Evolución Biológica , Escarabajos/anatomía & histología , Escarabajos/genética , América del Norte , Estados Unidos
6.
BMC Evol Biol ; 18(1): 16, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29409440

RESUMEN

BACKGROUND: Life diversifies via adaptive radiation when natural selection drives the evolution of ecologically distinct species mediated by their access to novel niche space, or via non-adaptive radiation when new species diversify while retaining ancestral niches. However, while cases of adaptive radiation are widely documented, examples of non-adaptively radiating lineages remain rarely observed. A prolific cold-climate lizard radiation from South America (Phymaturus), sister to a hyper-diverse adaptive radiation (Liolaemus), has extensively diversified phylogenetically and geographically, but with exceptionally minimal ecological and life-history diversification. This lineage, therefore, may offer unique opportunities to investigate the non-adaptive basis of diversification, and in combination with Liolaemus, to cover the whole spectrum of modes of diversification predicted by theory, from adaptive to non-adaptive. Using phylogenetic macroevolutionary modelling performed on a newly created 58-species molecular tree, we establish the tempo and mode of diversification in the Phymaturus radiation. RESULTS: Lineage accumulation in Phymaturus opposes a density-dependent (or 'niche-filling') process of diversification. Concurrently, we found that body size diversification is better described by an Ornstein-Uhlenbeck evolutionary model, suggesting stabilizing selection as the mechanism underlying niche conservatism (i.e., maintaining two fundamental size peaks), and which has predominantly evolved around two major adaptive peaks on a 'Simpsonian' adaptive landscape. CONCLUSIONS: Lineage diversification of the Phymaturus genus does not conform to an adaptive radiation, as it is characterised by a constant rate of species accumulation during the clade's history. Their strict habitat requirements (rocky outcrops), predominantly invariant herbivory, and especially the constant viviparous reproduction across species have likely limited their opportunities for adaptive diversifications throughout novel environments. This mode of diversification contrasts dramatically with its sister lineage Liolaemus, which geographically overlaps with Phymaturus, but exploits all possible microhabitats in these and other bioclimatic areas. Our study contributes importantly to consolidate these lizards (liolaemids) as promising model systems to investigate the entire spectrum of modes of species formations, from the adaptive to the non-adaptive extremes of the continuum.


Asunto(s)
Clima , Ecosistema , Lagartos/clasificación , Filogenia , Animales , Tamaño Corporal , Lagartos/anatomía & histología , Modelos Biológicos , América del Sur , Especificidad de la Especie
7.
Proc Biol Sci ; 285(1893): 20182181, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30963909

RESUMEN

Why diversification rates vary so extensively across the tree of life remains an important yet unresolved issue in biology. Two prominent and potentially independent factors proposed to explain these trends reflect the capacity of lineages to expand into new areas of (i) geographical or (ii) ecological space. Here, we present the first global assessment of how diversification rates vary as a consequence of geographical and ecological expansion, studying these trends among 15 speciose passerine families (together approximately 750 species) using phylogenetic path analysis. We find that relative slowdowns in diversification rates characterize families that have accumulated large numbers of co-occurring species (at the 1° scale) within restricted geographical areas. Conversely, more constant diversification through time is prevalent among families in which species show limited range overlap. Relative co-occurrence is itself also a strong predictor of ecological divergence (here approximated by morphological divergence among species); however, once the relationship between co-occurrence and diversification rates have been accounted for, increased ecological divergence is an additional explanatory factor accounting for why some lineages continue to diversify towards the present. We conclude that opportunities for prolonged diversification are predominantly determined by continued geographical range expansion and to a lesser degree by ecological divergence among lineages.


Asunto(s)
Distribución Animal , Especiación Genética , Pájaros Cantores/anatomía & histología , Pájaros Cantores/fisiología , Animales , Filogenia
8.
Bot Stud ; 55(1): 1, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28510906

RESUMEN

BACKGROUND: The picturesque limestone karsts across the Sino-Vietnamese border are renowned biodiversity hotspot, distinguished for extremely high endemism of calciphilous plants restricted to caves and cave-like microhabitats that have functioned as biological refugia on the otherwise harsh habitats. To understand evolutionary mechanisms underlying the splendid limestone flora, dated phylogeny is reconstructed for Asian Begonia, a species-rich genus on limestone substrates represented by no less than 60 species in southern China, using DNA sequences of nrITS and chloroplast rpL16 intron. The sampling includes 94 Begonia species encompassing most major Asian clades with a special emphasized on Chinese species. RESULTS: Except for two tuberous deciduous species and a species with upright stems, a majority of Sino-Vietnamese limestone Begonia (SVLB), including sect. Coelocentrum (19 species sampled) and five species of sect. Diploclinium, Leprosae, and Petermannia, are rhizomatous and grouped in a strongly supported and yet internally poorly resolved clade (Clade SVLB), suggesting a single evolutionary origin of the adaptation to limestone substrates by rhizomatous species, subsequent species radiation, and a strong tendency to retain their ancestral niche. Divergence-time estimates indicate a late Miocene diversification of Clade SVLB, coinciding with the onset of the East Asian monsoon and the period of extensive karstification in the area. CONCLUSIONS: Based on our phylogenetic study, Begonia sect. Coelocentrum is recircumscribed and expanded to include other members of the Clade SVLB (sect. Diploclinium: B. cavaleriei, B. pulvinifera, and B. wangii; sect. Leprosae: B. cylindrica and B. leprosa; sect. Petermannia: B. sinofloribunda). Because species of Clade SVLB have strong niche conservatism to retain in their ancestral habitats in cave-like microhabitats and Begonia are generally poor dispersers prone to diversify allopatrically, we propose that extensive and continuous karstification of the Sino-Vietnamese limestone region facilitated by the onset of East Asian monsoon since the late Miocene has been the major driving force for species accumulation via geographic isolation in Clade SVLB. Morphologically species of Clade SVLB differ mainly in vegetative traits without apparent adaptive value, suggesting that limestone Begonia radiation is better characterized as non-adaptive, an underappreciated speciation mode crucial for rapid species accumulations in organisms of low vagility and strong niche conservatism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA