Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
BMC Biol ; 20(1): 43, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35172816

RESUMEN

BACKGROUND: Mosquito control is a crucial global issue for protecting the human community from mosquito-borne diseases. There is an urgent need for the development of selective and safe reagents for mosquito control. Flavonoids, a group of chemical substances with variable phenolic structures, such as daidzein, have been suggested as potential mosquito larvicides with less risk to the environment. However, the mode of mosquito larvicidal action of flavonoids has not been elucidated. RESULTS: Here, we report that several flavonoids, including daidzein, inhibit the activity of glutathione S-transferase Noppera-bo (Nobo), an enzyme used for the biosynthesis of the insect steroid hormone ecdysone, in the yellow fever mosquito Aedes aegypti. The crystal structure of the Nobo protein of Ae. aegypti (AeNobo) complexed with the flavonoids and its molecular dynamics simulation revealed that Glu113 forms a hydrogen bond with the flavonoid inhibitors. Consistent with this observation, substitution of Glu113 with Ala drastically reduced the inhibitory activity of the flavonoids against AeNobo. Among the identified flavonoid-type inhibitors, desmethylglycitein (4',6,7-trihydroxyisoflavone) exhibited the highest inhibitory activity in vitro. Moreover, the inhibitory activities of the flavonoids correlated with the larvicidal activity, as desmethylglycitein suppressed Ae. aegypti larval development more efficiently than daidzein. CONCLUSION: Our study demonstrates the mode of action of flavonoids on the Ae. aegypti Nobo protein at the atomic, enzymatic, and organismal levels.


Asunto(s)
Aedes , Animales , Flavonoides , Glutatión Transferasa/metabolismo , Humanos , Larva , Control de Mosquitos
2.
FEBS Lett ; 594(7): 1187-1195, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31845319

RESUMEN

Ecdysteroids are critically important for the formation of the insect exoskeleton. Cholesterol is a precursor of ecdysone and its active form 20-hydroxyecdysone, but some steps in the ecdysteroid biosynthesis pathway remain unknown. An essential requirement of glutathione (GSH) transferase GSTE14 in ecdysteroid biosynthesis has been established in Drosophila melanogaster, but its function is entirely unknown. Here, we have determined the crystal structure of GSTE14 in complex with GSH and investigated the kinetic properties of GSTE14 with alternative substrates. GSTE14 has high-ranking steroid double-bond isomerase activity, albeit 50-fold lower than the most efficient mammalian GSTs. Corresponding steroid isomerizations are unknown in insects, and their exact physiological role remains to be shown. Nonetheless, the essential enzyme GSTE14 is here demonstrated to be catalytically competent and have a steroid-binding site.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Ecdisteroides/biosíntesis , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Esteroide Isomerasas/química , Esteroide Isomerasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Biocatálisis , Cristalografía por Rayos X , Glutatión/química , Glutatión/metabolismo , Cinética , Modelos Moleculares , Multimerización de Proteína , Especificidad por Sustrato
3.
Yakugaku Zasshi ; 138(8): 1043-1048, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-30068845

RESUMEN

Insect growth regulators (IGRs) are chemicals that adversely affect the physiological processes associated with insect development and cause abnormalities that impair insect survival. Ecdysone, an insect steroid hormone originally identified as a molting hormone, plays an essential role in developmental transition, such as during molting and metamorphosis. Recently, a member of the epsilon class of glutathione S-transferases (GST), GSTe14, also called Noppera-bo (Nobo), has been identified as essential for regulating the biosynthesis of ecdysone. Knockout or knockdown of the nobo gene causes ecdysone deficiency, leading to either death or arrested phenotype development at the larval stage. It is therefore considered that Nobo is potentially well suited as a target for novel IGRs. In this review, we focus on the development of a high-throughput screening strategy for Nobo inhibitors using a GST fluorogenic substrate.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Descubrimiento de Drogas , Ecdisteroides/biosíntesis , Glutatión Transferasa/genética , Glutatión Transferasa/fisiología , Insectos/crecimiento & desarrollo , Insectos/genética , Hormonas Juveniles/genética , Hormonas Juveniles/fisiología , Animales , Proteínas de Drosophila/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Ecdisteroides/deficiencia , Ecdisteroides/fisiología , Técnicas de Silenciamiento del Gen , Glutatión Transferasa/antagonistas & inhibidores , Ensayos Analíticos de Alto Rendimiento , Larva/genética , Larva/crecimiento & desarrollo , Metamorfosis Biológica/genética , Muda/genética
4.
Insect Biochem Mol Biol ; 61: 1-7, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25881968

RESUMEN

Insect molting and metamorphosis are tightly controlled by ecdysteroids, which are important steroid hormones that are synthesized from dietary sterols in the prothoracic gland. One of the ecdysteroidogenic genes in the fruit fly Drosophila melanogaster is noppera-bo (nobo), also known as GSTe14, which encodes a member of the epsilon class of glutathione S-transferases. In D. melanogaster, nobo plays a crucial role in utilizing cholesterol via regulating its transport and/or metabolism in the prothoracic gland. However, it is still not known whether the orthologs of nobo from other insects are also involved in ecdysteroid biosynthesis via cholesterol transport and/or metabolism in the prothoracic gland. Here we report genetic evidence showing that the silkworm Bombyx mori ortholog of nobo (nobo-Bm; GSTe7) is essential for silkworm development. nobo-Bm is predominantly expressed in the prothoracic gland. To assess the functional importance of nobo-Bm, we generated a B. mori genetic mutant of nobo-Bm using TALEN-mediated genome editing. We show that loss of nobo-Bm function causes larval arrest and a glossy cuticle phenotype, which are rescued by the application of 20-hydroxyecdysone. Moreover, the prothoracic gland cells isolated from the nobo-Bm mutant exhibit an abnormal accumulation of 7-dehydrocholesterol, a cholesterol metabolite. These results suggest that the nobo family of glutathione S-transferases is essential for development and for the regulation of sterol utilization in the prothoracic gland in not only the Diptera but also the Lepidoptera. On the other hand, loss of nobo function mutants of D. melanogaster and B. mori abnormally accumulates different sterols, implying that the sterol utilization in the PG is somewhat different between these two insect species.


Asunto(s)
Bombyx/crecimiento & desarrollo , Bombyx/metabolismo , Ecdisteroides/biosíntesis , Glutatión Transferasa/metabolismo , Proteínas de Insectos/metabolismo , Animales , Bombyx/genética , Deshidrocolesteroles/metabolismo , Ecdisterona/metabolismo , Genes de Insecto , Glutatión Transferasa/genética , Proteínas de Insectos/genética , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA