Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosurg Pediatr ; : 1-8, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32032950

RESUMEN

OBJECTIVE: The authors sought to determine if hydrocephalus caused a proinflammatory state within white matter as is seen in many other forms of neonatal brain injury. Common causes of hydrocephalus (such as trauma, infection, and hemorrhage) are inflammatory insults themselves and therefore confound understanding of how hydrocephalus itself affects neuroinflammation. Recently, a novel animal model of hydrocephalus due to a genetic mutation in the Ccdc39 gene has been developed in mice. In this model, ciliary dysfunction leads to early-onset ventriculomegaly, astrogliosis, and reduced myelination. Because this model of hydrocephalus is not caused by an antecedent proinflammatory insult, it was utilized to study the effect of hydrocephalus on inflammation within the white matter of the corpus callosum. METHODS: A Meso Scale Discovery assay was used to measure levels of proinflammatory cytokines in whole brain from animals with and without hydrocephalus. Immunohistochemistry was used to measure macrophage activation and NG2 expression within the white matter of the corpus callosum in animals with and without hydrocephalus. RESULTS: In this model of hydrocephalus, levels of cytokines throughout the brain revealed a more robust increase in classic proinflammatory cytokines (interleukin [IL]-1ß, CXCL1) than in immunomodulatory cytokines (IL-10). Increased numbers of macrophages were found within the corpus callosum. These macrophages were polarized toward a proinflammatory phenotype as assessed by higher levels of CD86, a marker of proinflammatory macrophages, compared to CD206, a marker for antiinflammatory macrophages. There was extensive structural damage to the corpus callosum of animals with hydrocephalus, and an increase in NG2-positive cells. CONCLUSIONS: Hydrocephalus without an antecedent proinflammatory insult induces inflammation and tissue injury in white matter. Future studies with this model will be useful to better understand the effects of hydrocephalus on neuroinflammation and progenitor cell development. Antiinflammatory therapy for diseases that cause hydrocephalus may be a powerful strategy to reduce tissue damage.

2.
Neurosurg Focus ; 46(3): E9, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30835678

RESUMEN

Spinal cord injury (SCI) has been associated with a dismal prognosis-recovery is not expected, and the most standard interventions have been temporizing measures that do little to mitigate the extent of damage. While advances in surgical and medical techniques have certainly improved this outlook, limitations in functional recovery continue to impede clinically significant improvements. These limitations are dependent on evolving immunological mechanisms that shape the cellular environment at the site of SCI. In this review, we examine these mechanisms, identify relevant cellular components, and discuss emerging treatments in stem cell grafts and adjuvant immunosuppressants that target these pathways. As the field advances, we expect that stem cell grafts and these adjuvant treatments will significantly shift therapeutic approaches to acute SCI with the potential for more promising outcomes.


Asunto(s)
Rechazo de Injerto/prevención & control , Enfermedad Injerto contra Huésped/prevención & control , Inmunosupresores/uso terapéutico , Células Madre Pluripotentes Inducidas/trasplante , Células Precursoras de Oligodendrocitos/trasplante , Traumatismos de la Médula Espinal/terapia , Adyuvantes Inmunológicos , Aloinjertos , Animales , Basiliximab/uso terapéutico , Células Cultivadas , Ensayos Clínicos como Asunto , Ciclosporina/uso terapéutico , Femenino , Supervivencia de Injerto/inmunología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/inmunología , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Masculino , Ratones , Ácido Micofenólico/uso terapéutico , Células Precursoras de Oligodendrocitos/inmunología , Ratas , Tacrolimus/uso terapéutico , Trasplante Autólogo
3.
Neurosurg Focus ; 46(3): E10, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30835679

RESUMEN

Recent advances in stem cell biology present significant opportunities to advance clinical applications of stem cell-based therapies for spinal cord injury (SCI). In this review, the authors critically analyze the basic science and translational evidence that supports the use of various stem cell sources, including induced pluripotent stem cells, oligodendrocyte precursor cells, and mesenchymal stem cells. They subsequently explore recent advances in stem cell biology and discuss ongoing clinical translation efforts, including combinatorial strategies utilizing scaffolds, biogels, and growth factors to augment stem cell survival, function, and engraftment. Finally, the authors discuss the evolution of stem cell therapies for SCI by providing an overview of completed (n = 18) and ongoing (n = 9) clinical trials.


Asunto(s)
Células Madre Pluripotentes Inducidas/trasplante , Trasplante de Células Madre Mesenquimatosas , Células Precursoras de Oligodendrocitos/trasplante , Traumatismos de la Médula Espinal/terapia , Tejido Adiposo/citología , Células de la Médula Ósea , Ensayos Clínicos como Asunto , Células Madre Embrionarias/trasplante , Predicción , Supervivencia de Injerto/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Andamios del Tejido , Cordón Umbilical/citología
4.
J Neurosurg ; 131(1): 290-300, 2018 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-30028267

RESUMEN

OBJECTIVE: Previous studies have demonstrated that transplanted multipotent mesenchymal stromal cells (MSCs) improve functional recovery in rats after experimental intracerebral hemorrhage (ICH). In this study the authors tested the hypothesis that administration of multipotent MSC-derived exosomes promotes functional recovery, neurovascular remodeling, and neurogenesis in a rat model of ICH. METHODS: Sixteen adult male Wistar rats were subjected to ICH via blood injection into the striatum, followed 24 hours later by tail vein injection of 100 µg protein of MSC-derived exosomes (treatment group, 8 rats) or an equal volume of vehicle (control group, 8 rats); an additional 8 rats that had identical surgery without blood infusion were used as a sham group. The modified Morris water maze (mMWM), modified Neurological Severity Score (mNSS), and social odor-based novelty recognition tests were performed to evaluate cognitive and sensorimotor functional recovery after ICH. All 24 animals were killed 28 days after ICH or sham procedure. Histopathological and immunohistochemical analyses were performed for measurements of lesion volume and neurovascular and white matter remodeling. RESULTS: Compared with the saline-treated controls, exosome-treated ICH rats showed significant improvement in the neurological function of spatial learning and motor recovery measured at 26-28 days by mMWM and starting at day 14 by mNSS (p < 0.05). Senorimotor functional improvement was measured by a social odor-based novelty recognition test (p < 0.05). Exosome treatment significantly increased newly generated endothelial cells in the hemorrhagic boundary zone, neuroblasts and mature neurons in the subventricular zone, and myelin in the striatum without altering the lesion volume. CONCLUSIONS: MSC-derived exosomes effectively improve functional recovery after ICH, possibly by promoting endogenous angiogenesis and neurogenesis in rats after ICH. Thus, cell-free, MSC-derived exosomes may be a novel therapy for ICH.

5.
J Neurosurg Spine ; 30(1): 1-18, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30611186

RESUMEN

Acute traumatic spinal cord injury (SCI) is a devastating event with far-reaching physical, emotional, and economic consequences for patients, families, and society at large. Timely delivery of specialized care has reduced mortality; however, long-term neurological recovery continues to be limited. In recent years, a number of exciting neuroprotective and regenerative strategies have emerged and have come under active investigation in clinical trials, and several more are coming down the translational pipeline. Among ongoing trials are RISCIS (riluzole), INSPIRE (Neuro-Spinal Scaffold), MASC (minocycline), and SPRING (VX-210). Microstructural MRI techniques have improved our ability to image the injured spinal cord at high resolution. This innovation, combined with serum and cerebrospinal fluid (CSF) analysis, holds the promise of providing a quantitative biomarker readout of spinal cord neural tissue injury, which may improve prognostication and facilitate stratification of patients for enrollment into clinical trials. Given evidence of the effectiveness of early surgical decompression and growing recognition of the concept that "time is spine," infrastructural changes at a systems level are being implemented in many regions around the world to provide a streamlined process for transfer of patients with acute SCI to a specialized unit. With the continued aging of the population, central cord syndrome is soon expected to become the most common form of acute traumatic SCI; characterization of the pathophysiology, natural history, and optimal treatment of these injuries is hence a key public health priority. Collaborative international efforts have led to the development of clinical practice guidelines for traumatic SCI based on robust evaluation of current evidence. The current article provides an in-depth review of progress in SCI, covering the above areas.


Asunto(s)
Ensayos Clínicos como Asunto , Traumatismos de la Médula Espinal/cirugía , Médula Espinal/cirugía , Columna Vertebral/cirugía , Descompresión Quirúrgica/métodos , Humanos , Recuperación de la Función/fisiología , Médula Espinal/fisiopatología , Columna Vertebral/fisiopatología
6.
Neurosurg Focus ; 40(5): E3, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27132524

RESUMEN

Brain radiation is a fundamental tool in neurooncology to improve local tumor control, but it leads to profound and progressive impairments in cognitive function. Increased attention to quality of life in neurooncology has accelerated efforts to understand and ameliorate radiation-induced cognitive sequelae. Such progress has coincided with a new understanding of the role of CNS progenitor cell populations in normal cognition and in their potential utility for the treatment of neurological diseases. The irradiated brain exhibits a host of biochemical and cellular derangements, including loss of endogenous neurogenesis, demyelination, and ablation of endogenous oligodendrocyte progenitor cells. These changes, in combination with a state of chronic neuroinflammation, underlie impairments in memory, attention, executive function, and acquisition of motor and language skills. Animal models of radiation-induced brain injury have demonstrated a robust capacity of both neural stem cells and oligodendrocyte progenitor cells to restore cognitive function after brain irradiation, likely through a combination of cell replacement and trophic effects. Oligodendrocyte progenitor cells exhibit a remarkable capacity to migrate, integrate, and functionally remyelinate damaged white matter tracts in a variety of preclinical models. The authors here critically address the opportunities and challenges in translating regenerative cell therapies from rodents to humans. Although valiant attempts to translate neuroprotective therapies in recent decades have almost uniformly failed, the authors make the case that harnessing human radiation-induced brain injury as a scientific tool represents a unique opportunity to both successfully translate a neuroregenerative therapy and to acquire tools to facilitate future restorative therapies for human traumatic and degenerative diseases of the central nervous system.


Asunto(s)
Lesiones Encefálicas/etiología , Regeneración Nerviosa/fisiología , Traumatismos por Radiación/complicaciones , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/psicología , Trastornos del Conocimiento/etiología , Modelos Animales de Enfermedad , Humanos , Oligodendroglía/fisiología , Calidad de Vida , Células Madre/fisiología
7.
J Neurosurg ; 122(1): 69-77, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25361488

RESUMEN

OBJECT: Glioblastoma stem-like cells (GSCs) exhibit stem-like properties, are highly efficient at forming tumor xenografts, and are resistant to many current therapies. Current molecular identifiers of GSCs are scarce and controversial. The authors describe differential cell-surface gene expression profiling to identify GSC-specific markers. METHODS: Independent human GSC lines were isolated and maintained in standard neural stem cell (NSC) media and were validated for self-renewal, multipotent differentiation, and tumor initiation properties. Candidate upregulated GSCspecific plasma membrane markers were identified through differential Affymetrix U133 Plus 2.0 Array gene expression profiling of GSCs, human NSCs (hNSCs), normal brain tissue, and primary/recurrent glioblastoma multiforme samples. Results were validated by using comparative quantitative reverse transcription polymerase chain reaction and Western blot analysis of GSCs, hNSCs, normal human astrocytes, U87 glioma cell line, and patient-matched serum-cultured glioblastoma multiforme samples. RESULTS: A candidate GSC-specific signature of 19 upregulated known and novel plasma membrane-associated genes was identified. Preferential upregulation of these plasma membrane-linked genes was validated by quantitative polymerase chain reaction. Cadherin-19 (CDH19) protein expression was enhanced in minimally infiltrative GSC lines. CONCLUSIONS: Gene expression profiling of GSCs has shown CDH19 to be an exciting new target for drug development and study of GBM tumorigenesis.


Asunto(s)
Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/diagnóstico , Cadherinas/análisis , Glioblastoma/diagnóstico , Vaina de Mielina/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Cadherinas/genética , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/metabolismo , Perfilación de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA