Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86.541
Filtrar
1.
J Environ Sci (China) ; 150: 532-544, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306426

RESUMEN

T-2 toxin, an omnipresent environmental contaminant, poses a serious risk to the health of humans and animals due to its pronounced cardiotoxicity. This study aimed to elucidate the molecular mechanism of cardiac tissue damage by T-2 toxin. Twenty-four male Sprague-Dawley rats were orally administered T-2 toxin through gavage for 12 weeks at the dose of 0, 10, and 100 nanograms per gram body weight per day (ng/(g·day)), respectively. Morphological, pathological, and ultrastructural alterations in cardiac tissue were meticulously examined. Non-targeted metabolomics analysis was employed to analyze alterations in cardiac metabolites. The expression of the Sirt3/FoxO3α/MnSOD signaling pathway and the level of oxidative stress markers were detected. The results showed that exposure to T-2 toxin elicited myocardial tissue disorders, interstitial hemorrhage, capillary dilation, and fibrotic damage. Mitochondria were markedly impaired, including swelling, fusion, matrix degradation, and membrane damage. Metabonomics analysis unveiled that T-2 toxin could cause alterations in cardiac metabolic profiles as well as in the Sirt3/FoxO3α/MnSOD signaling pathway. T-2 toxin could inhibit the expressions of the signaling pathway and elevate the level of oxidative stress. In conclusion, the T-2 toxin probably induces cardiac fibrotic impairment by affecting amino acid and choline metabolism as well as up-regulating oxidative stress mediated by the Sirt3/FoxO3α/MnSOD signaling pathway. This study is expected to provide targets for preventing and treating T-2 toxin-induced cardiac fibrotic injury.


Asunto(s)
Proteína Forkhead Box O3 , Estrés Oxidativo , Ratas Sprague-Dawley , Transducción de Señal , Superóxido Dismutasa , Toxina T-2 , Animales , Toxina T-2/toxicidad , Estrés Oxidativo/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos , Masculino , Proteína Forkhead Box O3/metabolismo , Superóxido Dismutasa/metabolismo , Fibrosis , Enfermedades Metabólicas/inducido químicamente , Regulación hacia Arriba/efectos de los fármacos , Sirtuina 3/metabolismo , Miocardio/patología , Miocardio/metabolismo
2.
J Environ Sci (China) ; 150: 632-644, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306435

RESUMEN

Arsenic, a naturally occurring toxic element, manifests in various chemical forms and is widespread in the environment. Exposure to arsenic is a well-established risk factor for an elevated incidence of various cancers and chronic diseases. The crux of arsenic-mediated toxicity lies in its ability to induce oxidative stress, characterized by an unsettling imbalance between oxidants and antioxidants, accompanied by the rampant generation of reactive oxygen species and free radicals. In response to this oxidative turmoil, cells deploy their defense mechanisms, prominently featuring the redox-sensitive transcription factor known as nuclear factor erythroid 2-related factor 2 (NRF2). NRF2 stands as a primary guardian against the oxidative harm wrought by arsenic. When oxidative stress activates NRF2, it orchestrates a symphony of downstream antioxidant genes, leading to the activation of pivotal antioxidant enzymes like glutathione-S-transferase, heme oxygenase-1, and NAD(P)H: quinone oxidoreductase 1. This comprehensive review embarks on the intricate and diverse ways by which various arsenicals influence the NRF2 antioxidant pathway and its downstream targets, shedding light on their roles in defending against arsenic exposure toxic effects. It offers valuable insights into targeting NRF2 as a strategy for safeguarding against or treating the harmful and carcinogenic consequences of arsenic exposure.


Asunto(s)
Arsénico , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Factor 2 Relacionado con NF-E2/metabolismo , Arsénico/toxicidad , Humanos , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo
3.
J Environ Sci (China) ; 150: 515-531, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306425

RESUMEN

Perchlorate (ClO4-) is a type of novel persistent inorganic pollutant that has gained increasing attention because of its high solubility, poor degradability, and widespread distribution. However, the impacts of perchlorate on aquatic autotrophs such cyanobacterium are still unclear. Herein, Synechocystis sp. PCC6803 (Synechocystis) was used to investigate the response mechanisms of perchlorate on cyanobacterium by integrating physiological and transcriptome analyses. Physiological results showed that perchlorate mainly damaged the photosystem of Synechocystis, and the inhibition degree of photosystem II (PSII) was severer than that of photosystem I (PSI). When the exposed cells were moved to a clean medium, the photosynthetic activities were slightly repaired but still lower than in the control group, indicating irreversible damage. Furthermore, perchlorate also destroyed the cellular ultrastructure and induced oxidative stress in Synechocystis. The antioxidant glutathione (GSH) content and the superoxide dismutase (SOD) enzyme activity were enhanced to scavenge harmful reactive oxygen (ROS) in Synechocystis. Transcriptome analysis revealed that the genes associated with "photosynthesis" and "electron transport" were significantly regulated. For instance, most genes related to PSI (e.g., psaf, psaJ) and the "electron transport chain" were upregulated, whereas most genes related to PSII (e.g., psbA3, psbD1, psbB, and psbC) were downregulated. Additionally, perchlorate also induced the expression of genes related to the antioxidant system (sod2, gpx, gst, katG, and gshB) to reduce oxidative damage. Overall, this study is the first to investigate the impacts and mechanisms of cyanobacterium under perchlorate stress, which is conducive to assessing the risk of perchlorate in aquatic environments.


Asunto(s)
Percloratos , Fotosíntesis , Synechocystis , Synechocystis/efectos de los fármacos , Synechocystis/fisiología , Synechocystis/genética , Percloratos/toxicidad , Fotosíntesis/efectos de los fármacos , Perfilación de la Expresión Génica , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Complejo de Proteína del Fotosistema II/metabolismo , Transcriptoma/efectos de los fármacos
4.
J Environ Sci (China) ; 149: 188-199, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181633

RESUMEN

Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments. Numerous strategies have been devised to facilitate the generation of reactive oxygen species (ROS) within photocatalysts, ultimately leading to the eradication of bacteria. However, the significance of the physical morphology of photocatalysts in the context of sterilization is frequently obscured, and the progress in the development of physical-chemical synergistic sterilization photocatalysts has been relatively limited. Herein, graphitic carbon nitride (g-C3N4) is chemically protonated to expose more sharp edges. PL fluorescence and EIS results indicate that the protonation can accelerate photogenerated carrier separation and enhance ROS production. Meanwhile, the sharp edges on the protonated g-C3N4 facilitate the physical disruption of cell walls for further promoting oxidative damage. Protonated C3N4 demonstrated superior bactericidal performance than that of pristine g-C3N4, effectively eliminating Escherichia coli within 40 minutes under irradiation. This work highlights the significance of incorporating physical and chemical synergies in photocatalyst design to enhance the disinfection efficiency of photocatalysis.


Asunto(s)
Desinfección , Nitrilos , Nitrilos/química , Desinfección/métodos , Catálisis , Escherichia coli/efectos de los fármacos , Especies Reactivas de Oxígeno , Grafito/química , Esterilización/métodos , Compuestos de Nitrógeno/química
5.
J Environ Sci (China) ; 149: 342-357, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181647

RESUMEN

The toxicity of PM2.5 does not necessarily change synchronously with its mass concentration. In this study, the chemical composition (carbonaceous species, water-soluble ions, and metals) and oxidative potential (dithiothreitol assay, DTT) of PM2.5 were investigated in 2017/2018 and 2022 in Xiamen, China. The decrease rate of volume-normalized DTT (DTTv) (38%) was lower than that of PM2.5 (55%) between the two sampling periods. However, the mass-normalized DTT (DTTm) increased by 44%. Clear seasonal patterns with higher levels in winter were found for PM2.5, most chemical constituents and DTTv but not for DTTm. The large decrease in DTT activity (84%-92%) after the addition of EDTA suggested that water-soluble metals were the main contributors to DTT in Xiamen. The increased gap between the reconstructed and measured DTTv and the stronger correlations between the reconstructed/measured DTT ratio and carbonaceous species in 2022 were observed. The decrease rates of the hazard index (32.5%) and lifetime cancer risk (9.1%) differed from those of PM2.5 and DTTv due to their different main contributors. The PMF-MLR model showed that the contributions (nmol/(min·m3)) of vehicle emission, coal + biomass burning, ship emission and secondary aerosol to DTTv in 2022 decreased by 63.0%, 65.2%, 66.5%, and 22.2%, respectively, compared to those in 2017/2018, which was consistent with the emission reduction of vehicle exhaust and coal consumption, the adoption of low-sulfur fuel oil used on board ships and the reduced production of WSOC. However, the contributions of dust + sea salt and industrial emission increased.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Material Particulado , Material Particulado/análisis , China , Contaminantes Atmosféricos/análisis , Oxidación-Reducción , Ciudades , Contaminación del Aire/estadística & datos numéricos
6.
J Environ Sci (China) ; 147: 382-391, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003056

RESUMEN

Arsenic-related oxidative stress and resultant diseases have attracted global concern, while longitudinal studies are scarce. To assess the relationship between arsenic exposure and systemic oxidative damage, we performed two repeated measures among 5236 observations (4067 participants) in the Wuhan-Zhuhai cohort at the baseline and follow-up after 3 years. Urinary total arsenic, biomarkers of DNA oxidative damage (8-hydroxy-2'-deoxyguanosine (8-OHdG)), lipid peroxidation (8-isoprostaglandin F2alpha (8-isoPGF2α)), and protein oxidative damage (protein carbonyls (PCO)) were detected for all observations. Here we used linear mixed models to estimate the cross-sectional and longitudinal associations between arsenic exposure and oxidative damage. Exposure-response curves were constructed by utilizing the generalized additive mixed models with thin plate regressions. After adjusting for potential confounders, arsenic level was significantly and positively related to the levels of global oxidative damage and their annual increased rates in dose-response manners. In cross-sectional analyses, each 1% increase in arsenic level was associated with a 0.406% (95% confidence interval (CI): 0.379% to 0.433%), 0.360% (0.301% to 0.420%), and 0.079% (0.055% to 0.103%) increase in 8-isoPGF2α, 8-OHdG, and PCO, respectively. More importantly, arsenic was further found to be associated with increased annual change rates of 8-isoPGF2α (ß: 0.147; 95% CI: 0.130 to 0.164), 8-OHdG (0.155; 0.118 to 0.192), and PCO (0.050; 0.035 to 0.064) in the longitudinal analyses. Our study suggested that arsenic exposure was not only positively related with global oxidative damage to lipid, DNA, and protein in cross-sectional analyses, but also associated with annual increased rates of these biomarkers in dose-dependent manners.


Asunto(s)
Arsénico , Exposición a Riesgos Ambientales , Estrés Oxidativo , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , 8-Hidroxi-2'-Desoxicoguanosina , Arsénico/toxicidad , Biomarcadores/orina , China , Estudios Transversales , Daño del ADN , Pueblos del Este de Asia , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/toxicidad , Peroxidación de Lípido/efectos de los fármacos , Estudios Longitudinales , Estrés Oxidativo/efectos de los fármacos
7.
J Ethnopharmacol ; 336: 118735, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182701

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Melastoma dodecandrum Lour. (MD), a traditional Chinese medicine used by the She ethnic group, has been used to treat cerebral ischemia-reperfusion (CIR) injury due to its efficacy in promoting blood circulation and removing blood stasiss; however, the therapeutic effects and mechanisms of MD in treating CIR injury remain unclear. AIM: To investigate the protective effects of MD on CIR injury, in addition to its impact on oxidative stress, endoplasmic reticulum (ER) stress, and cell apoptosis. MATERIALS AND METHODS: The research was conducted using both cell experiments and animal experiments. The CCK-8 method, immunofluorescence staining, and flow cytometry were used to analyze the effects of MD-containing serum on oxygen-glucose deprivation/reperfusion (OGD/R)-induced PC12 cell viability, reactive oxygen species (ROS) clearance, anti-inflammatory, neuroprotection and inhibition of apoptosis. Furthermore, 2,3,5-Triphenyl tetrazolium chloride staining, hematoxylin and eosin staining, Nissl staining, and immunohistochemistry were used to detect infarct size, pathological changes, Nissl corpuscula and neuronal protein expression in middle cerebral artery occlusion (MCAO) rats. Polymerase chain reaction and Western Blotting were conducted in cell and animal experiments to detect the expression levels of ER stress-related genes and proteins. RESULTS: The MD extract enhanced the viability of PC12 cells under OGD/R modeling, reduced ROS and IL-6 levels, increased MBP levels, and inhibited cell apoptosis. Furthermore, MD improved the infarct area in MCAO rats, increased the number of Nissl bodies, and regulated neuronal protein levels including Microtubule-Associated Protein 2 (MAP-2), Myelin Basic Protein (MBP), Glial Fibrillary Acidic Protein (GFAP), and Neurofilament 200 (NF200). Additionally, MD could regulate the expression levels of oxidative stress proteins malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and catalase (CAT). Both cell and animal experiments demonstrated that MD could inhibit ER stress-related proteins (GRP78, ATF4, ATF6, CHOP) and reduce cell apoptosis. CONCLUSION: This study confirmed that the therapeutic mechanism of the MD extract on CIR injury was via the inhibition of oxidative stress and the ER stress pathway, in addition to the inhibition of apoptosis.


Asunto(s)
Apoptosis , Estrés del Retículo Endoplásmico , Fármacos Neuroprotectores , Estrés Oxidativo , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Estrés Oxidativo/efectos de los fármacos , Ratas , Células PC12 , Masculino , Fármacos Neuroprotectores/farmacología , Apoptosis/efectos de los fármacos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de los fármacos , Isquemia Encefálica/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
8.
Food Chem ; 462: 140961, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208724

RESUMEN

The underlying toxicity mechanisms of microplastics on oysters have rarely been explored. To fill this gap, the present study investigated the metabolic profile and protein expression responses of oysters to microplastic stress through metabolomics and biochemical analyses. Oysters were exposed to microplastics for 21 days, and the results indicated that the microplastics induced oxidative stress, with a significant decrease in SOD activity in the 0.1 mg/L exposure group. Metabolomics revealed that exposure to microplastics disturbed many metabolic pathways, such as amino acid metabolism, lipid metabolism, biosynthesis of amino acids, aminoacyl-tRNA biosynthesis, and that different concentrations of microplastics induced diverse metabolomic profiles in oysters. Overall, the current study provides new reference data and insights for assessing food safety and consumer health risks caused by microplastic contamination.


Asunto(s)
Crassostrea , Microplásticos , Estrés Oxidativo , Poliestirenos , Contaminantes Químicos del Agua , Animales , Crassostrea/metabolismo , Crassostrea/efectos de los fármacos , Crassostrea/química , Microplásticos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Estrés Oxidativo/efectos de los fármacos , Poliestirenos/química , Poliestirenos/metabolismo , Metaboloma/efectos de los fármacos , Mariscos/análisis , Metabolómica , Contaminación de Alimentos/análisis
9.
Biomaterials ; 312: 122732, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39088913

RESUMEN

Fully restoring the lost population of cardiomyocytes and heart function remains the greatest challenge in cardiac repair post myocardial infarction. In this study, a pioneered highly ROS-eliminating hydrogel was designed to enhance miR-19a/b induced cardiomyocyte proliferation by lowering the oxidative stress and continuously releasing miR-19a/b in infarcted myocardium in situ. In vivo lineage tracing revealed that ∼20.47 % of adult cardiomyocytes at the injected sites underwent cell division in MI mice. In MI pig the infarcted size was significantly reduced from 40 % to 18 %, and thereby marked improvement of cardiac function and increased muscle mass. Most importantly, our treatment solved the challenge of animal death--all the treated pigs managed to live until their hearts were harvested at day 50. Therefore, our strategy provides clinical conversion advantages and safety for healing damaged hearts and restoring heart function post MI, which will be a powerful tool to battle cardiovascular diseases in patients.


Asunto(s)
Proliferación Celular , MicroARNs , Infarto del Miocardio , Miocitos Cardíacos , Estrés Oxidativo , Animales , MicroARNs/metabolismo , MicroARNs/genética , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Estrés Oxidativo/efectos de los fármacos , Ratones , Porcinos , Hidrogeles/química , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
10.
Semina cienc. biol. saude ; 45(2): 113-120, jul./dez. 2024. ilus
Artículo en Portugués | LILACS | ID: biblio-1568648

RESUMEN

A instabilidade de microssatélites é um fenômeno genético caracterizado pela alteração na repetição de sequências de nucleotídeos conhecidas como microssatélites. Esta instabilidade pode ocorrer devido a defeitos nos genes reparadores de DNA, como os genes MLH1, MSH2, MSH6 e PMS2. A inflamação crônica tem sido associada ao desenvolvimento do câncer colorretal. Os genes da instabilidade de microssatélites estão envolvidos na regulação da resposta inflamatória, podendo influenciar a progressão tumoral. Estudos demonstraram que a presença de instabilidade de microssatélites em tumores colorretais está relacionada a uma maior infiltração de células imunes, como linfócitos T, macrófagos e neutrófilos, que podem modular a resposta inflamatória no microambiente tumoral. O estresse oxidativo é caracterizado pelo desequilíbrio entre a produção de espécies reativas de oxigênio e a capacidade antioxidante do organismo e desempenha um papel importante na carcinogênese. Os genes da instabilidade de microssatélites podem influenciar a resposta ao estresse oxidativo, afetando a capacidade das células tumorais de lidar com o dano oxidativo e promovendo a sobrevivência celular. O objetivo deste trabalho consiste na compreensão dos genes envolvidos na instabilidade de microssatélites no câncer colorretal e como eles contribuem para o desenvolvimento da doença, relacionando com processos inflamatórios e estresse oxidativo nas células tumorais. Justifica-se pela necessidade de compreensão das interconexões entre a instabilidade de microssatélites, inflamação e o estresse oxidativo em pacientes com câncer colorretal.


Microsatellite instability is a genetic phenomenon characterized by changes in the repetition of nucleotide sequences known as microsatellites. This instability may occur due to defects in DNA repair genes, such as the MLH1, MSH2, MSH6 and PMS2 genes. Chronic inflammation has been linked to the development of colorectal cancer. Microsatellite instability genes are involved in regulating the inflammatory response and may influence tumor progression. Studies have shown that the presence of microsatellite instability in colorectal tumors is related to a greater infiltration of immune cells, such as T lymphocytes, macrophages and neutrophils, which can modulate the inflammatory response in the tumor microenvironment. Oxidative stress is characterized by the imbalance between the production of reactive oxygen species and the body's antioxidant capacity and plays an important role in carcinogenesis. Microsatellite instability genes can influence the response to oxidative stress, affecting the ability of tumor cells to deal with oxidative damage and promoting cell survival. The objective of this work is to understand the genes involved in microsatellite instability in colorectal cancer and how they contribute to the development of the disease, relating it to inflammatory processes and oxidative stress in tumor cells. It is justified by the need to understand the interconnections between microsatellite instability, inflammation and oxidative stress in patients with colorectal cancer.


Asunto(s)
Humanos
11.
Hum Reprod ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39361588

RESUMEN

This Directions article examines the mechanisms by which a father's age impacts the health and wellbeing of his children. Such impacts are significant and include adverse birth outcomes, dominant genetic conditions, neuropsychiatric disorders, and a variety of congenital developmental defects. As well as age, a wide variety of environmental and lifestyle factors are also known to impact offspring health via changes mediated by the male germ line. This picture of a dynamic germ line responsive to a wide range of intrinsic and extrinsic factors contrasts with the results of trio studies indicating that the incidence of mutations in the male germ line is low and exhibits a linear, monotonic increase with paternal age (∼two new mutations per year). While the traditional explanation for this pattern of mutation has been the metronomic plod of replication errors, an alternative model pivots around the 'faulty male' hypothesis. According to this concept, the genetic integrity of the male germ line can be dynamically impacted by age and a variety of other factors, and it is the aberrant repair of such damage that drives mutagenesis. Fortunately, DNA proofreading during spermatogenesis is extremely effective and these mutant cells are either repaired or deleted by apoptosis/ferroptosis. There appear to be only two mechanisms by which mutant germ cells can escape this apoptotic fate: (i) if the germ cells acquire a mutation that by enhancing proliferation or suppressing apoptosis, permits their clonal expansion (selfish selection hypothesis) or (ii) if a genetically damaged spermatozoon manages to fertilize an oocyte, which then fixes the damage as a mutation (or epimutation) as a result of defective DNA repair (oocyte collusion hypothesis). Exploration of these proposed mechanisms should not only help us better understand the aetiology of paternal age effects but also inform potential avenues of remediation.

12.
Neurotoxicol Teratol ; : 107397, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362385

RESUMEN

BACKGROUND: Gestational exposure to phthalates, endocrine disrupting chemicals widely used in consumer products, has been associated with poor recognition memory in infancy. Oxidative stress may represent one pathway linking this association. Hence, we examined whether exposure to phthalates was associated with elevated oxidative stress during pregnancy, and whether oxidative stress mediates the relationship between phthalate exposure and recognition memory. METHODS: Our analysis included a subset of mother-child pairs enrolled in the Illinois Kids Development Study (IKIDS, N = 225, recruitment years 2013-2018). Concentrations of 12 phthalate metabolites were quantified in 2nd trimester urine samples. Four oxidative stress biomarkers (8-isoprostane-PGF2α, 2,3-dinor-5,6-dihydro-8-isoPGF2α, 2,3-dinor-8-isoPGF2α, and prostaglandin-F2α) were measured in 2nd and 3rd trimester urine. Recognition memory was evaluated at 7.5 months, with looking times to familiar and novel stimuli recorded via infrared eye-tracking. Novelty preference (proportion of time looking at a novel stimulus when paired with a familiar one) was considered a measure of recognition memory. Linear mixed effect models were used to estimate associations between monoethyl phthalate (MEP), sum of di(2-ethylhexyl) phthalate metabolites (ΣDEHP), sum of di(isononyl) phthalate metabolites (ΣDINP), and sum of anti-androgenic phthalate metabolites (ΣAA) and oxidative stress biomarkers. Mediation analysis was performed to assess whether oxidative stress biomarkers mediated the effect of gestational phthalate exposure on novelty preference. RESULTS: The average maternal age at delivery was 31 years and approximately 50 % of participants had a graduate degree. A natural log unit increase in ΣAA, ΣDINP, and ΣDEHP was associated with a statistically significant increase in 8-isoPGF2α, 2,3-dinor-5,6-dihydro-8-isoPGF2α, and 2,3-dinor-8-isoPGF2α. The association was greatest in magnitude for ΣAA and 2,3-dinor-5,6-dihydro-8-isoPGF2α (ß = 0.45, 95 % confidence interval = 0.14, 0.76). The relationship between ΣAA, ΣDINP, ΣDEHP, and novelty preference was partially mediated by 2,3-dinor-8-isoPGF2α. CONCLUSIONS: Gestational exposure to some phthalates is positively associated with oxidative stress biomarkers, highlighting one mechanistic pathway through which these chemicals may impair early cognitive development.

13.
Int J Biol Macromol ; : 136218, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362432

RESUMEN

The over usage plastics have possessed serious threat to the ecological system. Thus progressive advancement in fabricating biodegradable and renewable bioplastics is persuasively required to furnish an effective alternative to non-biodegradable plastics. In this view, the current work highlights the production of starch based bioplastic films using waste Colocasia esculenta (taro herb) as a viable starting precursor. The functional ability of developed taro starch based film was further modified by incorporating carbon dots (CQDs) fillers generated from the waste slurry produced during starch extraction from taro herbs. The optimization of films production was achieved by varying the CQDs amount (0.4 %, 0.8 %, 2 % and 4 % w/w) on taro-based films using casting technology. The data illustrates that the addition of CQDs has the ability to enhance the fluorescence property, mechanical properties (Tensile Strength 0.332-4.635 MPa, Elongation at break 42.45-547.63 %) and water resistance ability of films (Moisture content 15-6.4 %, Water Solubility 50-30 % Water Vapour Transmission Rate 2.0012-1.0054 g-2 h-1 and Water Contact Angle 40.6-89.6°). The developed films are found to be thermally stable. The formed films possessed anti-oxidative abilities which safeguard the film from oxidative attacks and ultimately protect the film from the external environment. The fluorescence nanosensor probe has further been developed by utilizing CQDs embedded in a starch-based bioplastic nanocomposite. The developed sensor displayed selective sensing ability towards Fe2+ ion with high sensitivity and accuracy in aqueous medium. Thus, the proposed sensor in this work offers a portable, efficient, low-cost, disposable, non-lethal, and eco-friendly nanosensor for on-site monitoring of metal ion for the food, beverage, and pharmaceutical industries. This is one of the primary reports where metal ions sensing is reported for Taro@CQDs nanocomposites based films. Our outcomes of this work hold significant relevance to providing a smart sensory and biodegradable probe for metal ion sensing by using waste resources, thus offering a better and sustainable alternative for environmental remediation applications.

14.
Neurosci Lett ; : 137996, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362462

RESUMEN

AIM: Damage to the auditory pathways is one of the complications of diabetes. The aim of this study was to investigate the potential therapeutic effects of apelin-13 in the auditory pathways of rats with experimentally induced diabetes by examining its effect on auditory brainstem responses, cochlear oxidative stress and inflammatory cytokines. METHODS: Thirty-two male Wistar albino rats were divided into four groups: sham control, diabetes, apelin and diabetes + apelin. A single dose of 45 mg/kg streptozotocin (STZ) was administered to induce diabetes. The apelin group received 50 µg/kg apelin-13 for seven days intraperitoneally (ip). At the end of the apelin and STZ applications auditory brainstem responses (ABR) was recorded. At the end of the experiment, cochlea was removed and biochemical analyzes were performed. RESULTS: In ABR recordings, the latencies of wave V in diabetic group were observed to be longer than those of the control, with the apelin treatment exhibiting a partial reversal of this situation, particularly at specific frequencies and intensity levels. Apelin treatment leads to a significant increase in total antioxidant status (TAS) and a reduction in total oxidant status (TOS) and oxidative stress index (OSI) in cochlea compared to diabetic groups. The levels of tumor necrosis factor-alpha (TNF-alpha) and interleukin 1-beta (IL-1 beta) in cochlear tissue were found to be significantly reduced in the apelin-treated group compared to the diabetic group. CONCLUSION: Apelin-13 may have a protective effect on the auditory system and may be proposed as a potential new therapeutic strategy for the management diabetic auditory impairment.

15.
Sci Total Environ ; : 176640, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362548

RESUMEN

The present study is an attempt to understand the level of PM2.5pollution and its toxicity based on the oxidative potential (OP) during the winter-time pollution period over Kolkata, a megacity at the easternmost parts of Indo-Gangetic Plain (IGP) during the period of 2016-2023. We have assessed the effectiveness of the Government of India's national mission, the National Clean Air Program (NCAP) in PM2.5reduction over this city, and the study revealed that the mission has been efficacious in lessening the PM2.5 load by 28 % from pre-NCAP (2016-2019) to post-NCAP (2021-2023) periods. Several policy interventions reduced the contributions from various anthropogenic sources; however, biomass/solid waste burning remained a major concern with no significant reduction. The results revealed that the volume-weighted OP (OPv) remains mass-independent and the same when PM2.5 remains within 70 µg m-3 (OPv range between 2.7 and 3.1 nmol DTT min-1 m-3). With the rise in PM2.5mass from 70 µg m-3, OPv boosts up sharply and reaches its peak (at ~145 µg m-3 during pre-NCAP and ~105 µg m-3 during post-NCAP) followed by an insignificant change with the further rise in PM2.5. We observed that biomass/solid waste burning is the major concern over Kolkata in the current scenario (post-NCAP) even after NCAP policy interventions. Such high OP-based toxicity of PM2.5 during post-NCAP periods could be minimized if actions are taken against this particular source.

16.
Sci Total Environ ; : 176661, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362562

RESUMEN

This study investigates the combined toxicity of microplastics (MPs) and florfenicol (FLO) on biotransformation enzymes and oxidative stress biomarkers in the liver and kidney of yellowfin seabream (Acanthopagrus latus). Fish were fed 15 mg kg-1 of FLO and 100 or 500 mg kg-1 of MPs for 10 days. Biomarkers, including ethoxyresorufin-O-deethylase, glutathione-S-transferase, superoxide dismutase, catalase, glutathione peroxidase, malondialdehyde (MDA), and protein carbonylation (PC), were measured in both organs at 1, 7, and 14 days post-exposure. FLO levels peaked on day 1 and declined after that. Liver biomarkers were more responsive to pollutants, with the combined exposure of FLO and MPs leading to more pronounced toxicity. By day 14, only the FLO group showed a return to baseline biomarker levels, while MDA and PC levels remained elevated in MPs and co-exposed groups. These findings highlight the importance of considering the interactive effects of multiple pollutants in addressing marine environmental stressors.

17.
Toxicology ; : 153964, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362579

RESUMEN

Electronic cigarettes, commonly referred to as e-cigarettes have gained popularity over recent years especially among young individuals. In the light of the escalating prevalence of the use of these products and their potential for long-term health effects, in this study as the first of its kind a comprehensive toxicological profiling of the liquid from a panel of unregulated e-cigarettes seized in the UK was undertaken using an in vitro co-culture model of the upper airways. The data showed that e-cigarettes caused a dose dependent increase in cell death and inflammation manifested by enhanced release of IL1ß and IL6. Furthermore, the e-cigarettes induced oxidative stress as demonstrated by a reduction of intracellular glutathione and an increase in generation of reactive oxygen species. Moreover, the assessment of genotoxicity showed significant DNA strand breaks (following exposure to Tigerblood flavoured e-cigarette). Moreover, relevant to the toxicological observations, was the detection of varying and frequently high levels of hazardous metals including cadmium, copper, nickel and lead. This study highlights the importance of active and ongoing collaborations between academia, governmental organisations and policy makers (Trading standards, Public Health) and national health service in tackling vape addiction and better informing the general public regarding the risks associated with e-cigarette usage.

18.
Life Sci ; : 123093, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362583

RESUMEN

Acute kidney injury (AKI) is a high-burden medical condition, and current diagnostic criteria can only assess AKI after full manifestation. Stress marker growth differentiation factor 15 (GDF15) was reported to have a role in kidney injury of critical patients. Herein, we evaluated dynamic changes in GDF15 across diverse AKI scenarios and explored the underlying mechanisms of its induction. Serum parameters and renal lesions were analyzed in mouse models of unilateral ischemia-reperfusion injury (uni-IRI) and unilateral ureteral obstruction (UUO). The human proximal tubular (HK-2) cell line was stimulated with various conditions, and induction of GDF15 expression was determined. Serum GDF15 levels were rapidly induced within hours after injury in both animal models and declined thereafter. Renal GDF15 expression exhibited a temporary and early increased induction and was mainly located in aquaporin 1-positive proximal tubules in both unilateral AKI model tissues. In cell experiments, rapid GDF15 production was highly induced by t-BHP and CoCl2. Treatment with either an antioxidant or mitogen-activated protein kinase inhibitors abolished t-BHP- and CoCl2-mediated GDF15 expression. In addition, silencing nuclear factor erythroid 2-related factor 2 expression also reduced the basal and t-BHP- or CoCl2-mediated GDF15 expression level in HK-2 cells. Our data showed that elevated serum GDF15 levels could be detected early in unilateral AKI models without notable alterations in kidney function parameters. GDF15 expression was associated with oxidative stress- and hypoxia-mediated proximal tubular cell injury. These data document that elevated serum GDF15 can possibly serve as an early biomarker for proximal tubular cell injury in AKI.

19.
Mol Metab ; : 102041, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362601

RESUMEN

Dysregulation of hepatic cholesterol metabolism can contribute to elevated circulating cholesterol levels, which is a significant risk factor for cardiovascular disease. Cholesterol homeostasis in mammalian cells is tightly regulated by an integrated network of transcriptional and post-transcriptional signalling pathways. Whilst prior studies have identified many of the central regulators of these pathways, the extended supporting networks remain to be fully elucidated. Here, we leveraged an integrated discovery platform, combining multi-omics data from 107 strains of mice to investigate these supporting networks. We identified retinol dehydrogenase 11 (RDH11; also known as SCALD) as a novel protein associated with cholesterol metabolism. Prior studies have suggested that RDH11 may be regulated by alterations in cellular cholesterol status, but its specific roles in this pathway are mostly unknown. Here, we show that mice fed a Western diet (high fat, high cholesterol) exhibited a significant reduction in hepatic Rdh11 mRNA expression. Conversely, mice treated with a statin (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) inhibitor) exhibited a 2-fold increase in hepatic Rdh11 mRNA expression. Studies in human and mouse hepatocytes demonstrated that RDH11 expression was regulated by altered cellular cholesterol conditions in a manner consistent with SREBP2 target genes HMGCR and LDLR. Modulation of RDH11 in vitro and in vivo demonstrated modulation of pathways associated with cholesterol metabolism, inflammation and cellular stress. Finally, RDH11 silencing in mouse liver was associated with a reduction in hepatic cardiolipin abundance and a concomitant reduction in the abundance of proteins of the mitochondrial electron transport chain. Taken together, these findings suggest that RDH11 likely plays a role in protecting cells against the cellular toxicity that can arise as a by-product of endogenous cellular cholesterol synthesis.

20.
Environ Pollut ; : 125060, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39362620

RESUMEN

Addressing the environmental threat of oxytetracycline (OTC) contamination, this study harnesses the bioremediation capabilities of Bacillus brevis MM2, a manganese-oxidizing bacterium from acid mine drainage. We demonstrate the strain's exceptional efficiency in degrading OTC under high manganese conditions, with complete removal achieved within 24 hours. The degradation is facilitated by the production of Bio-MnOx, utilizing their high redox potential and large specific surface area, which significantly enhance the adsorption and oxidation of OTC. Advanced characterization techniques, including X-ray diffraction, scanning electron microscopy, High Resolution-Transmission Electronic Microscope and X-ray photoelectron spectroscopy, provide a detailed analysis of the structural and functional properties of Bio-MnOx. The study also reveals the crucial role of Mn(III) intermediates and reactive oxygen species in the OTC degradation process, with quenching experiments validating their substantial impact on efficiency. Laccase activity, a key manganese-oxidizing enzyme, is assessed spectrophotometrically, further highlighting the enzymatic contribution to Mn(II) oxidation and OTC breakdown. This research contributes valuable insights and approaches for the targeted bioremediation of OTC-contaminated aquatic environments, offering a promising strategy for combating pollution from antibiotics and analogous compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA