Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 863
Filtrar
1.
Int J Biol Macromol ; : 134533, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39116989

RESUMEN

Pseudomonas aeruginosa has become a top-priority pathogen in the health sector because it is ubiquitous, has high metabolic/genetic versatility, and is identified as an opportunistic pathogen. The production of numerous virulence factors by P. aeruginosa was reported to act individually or cooperatively to make them robots invasion, adherences, persistence, proliferation, and protection against host immune systems. P. aeruginosa produces various kinds of extracellular proteases such as alkaline protease, protease IV, elastase A, elastase B, large protease A, Pseudomonas small protease, P. aeruginosa aminopeptidase, and MucD. These proteases effectively allow the cells to invade and destroy host cells. Thus, inhibiting these protease activities has been recognized as a promising approach to controlling the infection caused by P. aeruginosa. The present review discussed in detail the characteristics of these proteases and their role in infection to the host system. The second part of the review discussed the recent updates on the multiple strategies for attenuating or inhibiting protease activity. These strategies include the application of natural and synthetic molecules, as well as metallic/polymeric nanomaterials. It has also been reported that a propeptide present in the middle domain of protease IV also attenuates the virulence properties and infection ability of P. aeruginosa.

2.
Int J Nanomedicine ; 19: 7895-7926, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108405

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa) is a common nosocomial pathogen that can cause severe infections in critically ill patients. Due to its resistance to multiple drugs, it is challenging to treat, which can result in serious illness and death. Conventional treatments for infected wounds often involve the topical or systemic application of antibiotics, which can lead to systemic toxicity and the development of drug resistance. The combination of wound dressings that promote wound healing with nanoparticles (NPs) represents a revolutionary strategy for optimizing the safety and efficacy of antibiotics. This review assesses a systematic search to identify the latest approaches where the evaluation of wound dressings loaded with antibiotic NPs is conducted. The properties of NPs, the features of wound dressings, the antimicrobial activity and biocompatibility of the different strategies are analyzed. The results indicate that most research in this field is focused on dressings loaded with silver NPs (57.1%) or other inorganic materials (22.4%). Wound dressings loaded with polymeric NPs and carbon-based NPs represent 14.3% and 6.1% of the evaluated studies, respectively. Nevertheless, there are no clinical trials that have evaluated the efficacy of NPs-loaded wound dressings in patients. Further research is required to ensure the safety of these treatments and to translate the findings from the bench to the bedside.


Asunto(s)
Antibacterianos , Vendajes , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/administración & dosificación , Infecciones por Pseudomonas/tratamiento farmacológico , Nanopartículas/química , Cicatrización de Heridas/efectos de los fármacos , Animales , Nanopartículas del Metal/química , Plata/química , Plata/farmacología , Plata/administración & dosificación
3.
Phage (New Rochelle) ; 5(2): 45-52, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39119204

RESUMEN

Background: Multi-drug resistant pathogens pose significant challenges towards the effective resolution of bacterial infections. A promising alternative strategy is phage therapy in which limited applications has afforded lifesaving resolution from drug resistant pathogens. However, adoption of this strategy is hampered by narrow bacteriophage host ranges, and as with antibiotics, bacteria can acquire resistance to phage. Methods: To address these issues, we isolated 25 broad-host range phages against multiple cystic fibrosis (CF)-derived P. aeruginosa clinical strains thus promoting their application against conspecific pathogens. To investigate evolved resistance to phage in relation to antibiotic resistance, one CF-derived P. aeruginosa strain was exposed to a lytic phage over a short time scale. Results: Trade-offs were observed in which evolved phage resistant P. aeruginosa strains showed decreased resistance to antibiotics. These traits that likely reflect single nucleotide polymorphisms. Conclusion: Results suggest phage and antibiotics may be a combined approach to treat bacterial infections.

4.
Int J Food Microbiol ; 422: 110823, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38991433

RESUMEN

Essential oils possess significant antimicrobial and antioxidant properties and are increasingly used as natural substitutes for food preservation. Therefore, this study investigated the potential application of rosemary essential oil (REO) and REO nano-emulsion in the dairy plant. The antimicrobial effects of REO and REO nano-emulsion were determined by an agar well diffusion assay after chemical profiling by Gas Chromatography-Mass Spectrometry (GC-MS). The REO nano-emulsion was characterized by a Transmission Electron Microscope (TEM). The REO chemical profile revealed the presence of 42 chemical compounds, including 1, 8-cineole (9.72 %), and α-pinene (5.46 %) as major active components. REO nano-emulsion demonstrated significant antimicrobial activity compared to REO (P < 0.05) with a MIC value of 0.0001 mg/ml against Listeria monocytogenes and Aspergillus flavus and 0.001 mg/ml against Pseudomonas aeruginosa and Bacillus cereus. REO nano-emulsion enhanced the oxidative stability of pasteurized fresh cream, revealing a non-significant difference compared with that inoculated with butylated hydroxy anisol (BHA; synthetic antioxidant) (P˃ 0.05). Fortified cream and Karish cheese with REO nano-emulsion were evaluated organoleptically, and the results showed higher grades of overall acceptability when compared to control samples with a statistically significant difference (P < 0.05). Viability studies were estimated using the previously mentioned microorganisms in fortified fresh cream and Karish cheese with REO nano-emulsion. Results of the fortified cream showed a complete reduction of L. monocytogenes, A. flavus, and B. cereus on days 5, 7, and 10, respectively, and a 96.93 % reduction of P. aeruginosa by the end of the storage period. Regarding Karish cheese viability studies, C. albicans, A. flavus, and P. aeruginosa exhibited complete reduction on days 10, 10, and 15 of storage, respectively. In conclusion, REO nano-emulsion was recommended as a natural, safe, and effective antimicrobial and antioxidant additive in the dairy industry.


Asunto(s)
Antiinfecciosos , Antioxidantes , Queso , Emulsiones , Aceites Volátiles , Antioxidantes/farmacología , Queso/microbiología , Queso/análisis , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Pruebas de Sensibilidad Microbiana , Conservación de Alimentos/métodos , Microbiología de Alimentos , Pasteurización/métodos , Listeria monocytogenes/efectos de los fármacos , Listeria monocytogenes/crecimiento & desarrollo , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo
5.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39000222

RESUMEN

Persisters are antibiotic-tolerant bacteria, playing a role in the recalcitrance and relapse of many bacterial infections, including P. aeruginosa pulmonary infections in Cystic Fibrosis (CF) patients. Among novel antimicrobial strategies, the use of probiotics and their products is emerging as a particularly promising approach. The aim of this study was to evaluate the anti-persisters activity of culture filtrate supernatants of Lacticaseibacillus rhamnosus (LRM-CFS) against P. aeruginosa in artificial sputum medium (ASM), which resembles the CF lung environment. Planktonic persisters of two clinical strains of P. aeruginosa (PaCF1 and PaCF4) were obtained following two different procedures: (i) exposing stationary-phase cultures to cyanide m-chlorophenylhydrazone (CCCP) in LB medium; (ii) incubating stationary-phase cultures with high doses of tobramycin (128-fold MIC) in ASM. In addition, persisters from biofilm were obtained by exposing 48 h old biofilm of P. aeruginosa to 128 x MIC of ciprofloxacin. LRM-CFS at dilutions of 1:6 and 1:4 resulted in being bactericidal in ASM against both PaCF1 and PaCF4 persisters obtained after CCCP or tobramycin treatment. Moreover, LRM-CFS at dilution 1:4 caused a reduction of antibiotic-tolerant bacteria in the biofilm of both P. aeruginosa strains. Overall, LRM-CFS represents a promising adjuvant therapeutic strategy against P. aeruginosa recalcitrant infections in CF patients.


Asunto(s)
Antibacterianos , Biopelículas , Lacticaseibacillus rhamnosus , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Esputo , Pseudomonas aeruginosa/efectos de los fármacos , Esputo/microbiología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Humanos , Lacticaseibacillus rhamnosus/fisiología , Antibacterianos/farmacología , Fibrosis Quística/microbiología , Medios de Cultivo/farmacología , Medios de Cultivo/química , Medios de Cultivo Condicionados/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Tobramicina/farmacología
6.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000675

RESUMEN

In medicine, the occurrence of antibiotic resistance was becoming a critical concern. At the same time, traditional synthesis methods of antibacterial agents often lead to environmental pollution due to the use of toxic chemicals. To address these problems, this study applies the green synthesis method to create a novel composite using a polymer blend (M8) consisting of chitosan (CS), polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and silver nanoparticles. The results show that the highest ratio of AgNO3:M8 was 0.15 g/60 mL, which resulted in a 100% conversion of Ag+ to Ag0 after 10 h of reaction at 80 °C. Hence, using M8, Ag nanoparticles (AgNPs) were synthesized at the average size of 42.48 ± 10.77 nm. The AgNPs' composite (M8Ag) was used to inhibit the growth of Staphylococcus aureus (SA), Pseudomonas aeruginosa (PA), and Salmonella enterica (SAL). At 6.25% dilution of M8Ag, the growth of these mentioned bacteria was inhibited. At the same dilution percentage of M8Ag, PA was killed.

7.
ACS Appl Bio Mater ; 7(7): 4785-4794, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963757

RESUMEN

The increasing prevalence of multidrug-resistant (MDR) pathogens has promoted the development of innovative approaches, such as drug repurposing, synergy, and efficient delivery, in complement to traditional antibiotics. In this study, we present an approach based on biocompatible nanocarriers containing antimicrobial cations and known antibiotics. The matrices were prepared by coordinating GaIII or InIII to formulations of chitosan/tripolyphosphate or catechol-functionalized chitosan with or without encapsulated antibiotics, yielding particles of 100-200 nm in hydrodynamic diameter. MDR clinical isolates of Pseudomonas aeruginosa were found to be effectively inhibited by the nanocarriers under nutrient-limiting conditions. Fractional inhibitory concentration (FIC) indices revealed that cation- and antibiotic-encapsulated nanomatrices were effective against both Gram-negative and Gram-positive pathogens. Metallophores, such as deferoxamine (DFO), were probed to facilitate the sequestration and transport of the antimicrobial cations GaIII or InIII. Although the antimicrobial activities were less significant with DFO, the eradication of biofilm-associated bacteria showed promising trends against P. aeruginosa and Staphylococcus epidermidis. Interestingly, indium-containing compounds showed enhanced activity on biofilm formation and eradication, neutralizing P. aeruginosa under Fe-limiting conditions. In particular, InIII-cross-linked catechol-modified chitosan matrices were able to inhibit pathogenic growth together with DFO. The nanocarriers showed low cytotoxicity toward A549 cells and improvable CC50 values with NIH/3T3 cells.


Asunto(s)
Antibacterianos , Portadores de Fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Pseudomonas aeruginosa , Antibacterianos/química , Antibacterianos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Portadores de Fármacos/química , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/síntesis química , Ratones , Animales , Biopelículas/efectos de los fármacos , Nanopartículas/química , Humanos , Supervivencia Celular/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Quitosano/química
8.
Appl Microbiol Biotechnol ; 108(1): 418, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012538

RESUMEN

Pseudomonas aeruginosa (P. aeruginosa) biofilm formation is a crucial cause of enhanced antibiotic resistance. Quorum sensing (QS) is involved in regulating biofilm formation; QS inhibitors block the QS signaling pathway as a new strategy to address bacterial resistance. This study investigated the potential and mechanism of L-HSL (N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide) as a QS inhibitor for P. aeruginosa. The results showed that L-HSL effectively inhibited the biofilm formation and dispersed the pre-formed biofilm of P. aeruginosa. The production of extracellular polysaccharides and the motility ability of P. aeruginosa were suppressed by L-HSL. C. elegans infection experiment showed that L-HSL was non-toxic and provided protection to C. elegans against P. aeruginosa infection. Transcriptomic analysis revealed that L-HSL downregulated genes related to QS pathways and biofilm formation. L-HSL exhibits a promising potential as a therapeutic drug for P. aeruginosa infection. KEY POINTS: • Chemical synthesis of N-(3-cyclic butyrolactone)-4-trifluorophenylacetamide, named L-HSL. • L-HSL does not generate survival pressure on the growth of P. aeruginosa and can inhibit the QS system. • KEGG enrichment analysis found that after L-HSL treatment, QS-related genes were downregulated.


Asunto(s)
4-Butirolactona , Biopelículas , Caenorhabditis elegans , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/genética , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Percepción de Quorum/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/microbiología , Animales , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacología , 4-Butirolactona/metabolismo , Antibacterianos/farmacología , Perfilación de la Expresión Génica , Homoserina/análogos & derivados , Homoserina/metabolismo , Homoserina/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
9.
J Microbiol Biotechnol ; 34(7): 1544-1549, 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-38956864

RESUMEN

This study presents a fluorescent mechanism for two-step amplification by combining two widely used techniques, exponential amplification reaction (EXPAR) and catalytic hairpin assembly (CHA). Pseudomonas aeruginosa (P. aeruginosa) engaged in competition with the complementary DNA in order to attach to the aptamer that had been fixed on the magnetic beads. The unbound complementary strand in the liquid above was utilized as a trigger sequence to initiate the protective-EXPAR (p-EXPAR) process, resulting in the generation of a substantial quantity of short single-stranded DNA (ssDNA). The amplified ssDNA can initiate the second CHA amplification process, resulting in the generation of many double-stranded DNA (dsDNA) products. The CHA reaction was initiated by the target/trigger DNA, resulting in the release of G-quadruplex sequences. These sequences have the ability to bond with the fluorescent amyloid dye thioflavin T (ThT), generating fluorescence signals. The method employed in this study demonstrated a detection limit of 16 CFU/ml and exhibited a strong linear correlation within the concentration range of 50 CFU/ml to 105 CFU/ml. This method of signal amplification has been effectively utilized to create a fluorescent sensing platform without the need for labels, enabling the detection of P. aeruginosa with high sensitivity.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Colorantes Fluorescentes , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico , Pseudomonas aeruginosa , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Colorantes Fluorescentes/química , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , ADN de Cadena Simple/genética , G-Cuádruplex , Fluorescencia , ADN Bacteriano/genética , Benzotiazoles
10.
J Inorg Biochem ; 259: 112663, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39024775

RESUMEN

Given the recognized major problem of microbial drug resistance for human health, new metal-based drugs have been currently explored for their antimicrobial properties, including gallium-based compounds as potential metallophores that could perturb Fe's interactions with proteins. Herein we have designed and synthesized two bis-kojate ligands (named L4 and L6) and studied their Ga(III) complexes for their physico-chemical and biological properties. In particular a detailed study of their complexation properties in aqueous solution, showed equilibrium models with formation of quite stable dinuclear 2:3 metal:ligand complexes, though with different stability. Solid state complexes were also prepared and characterized and complementary DFT studies indicated that [Ga2(L4)3] complex, with higher stability, seems to adopt a three-ligand bridging conformation, while that for L6 adopt a one ligand bridging conformation. Preliminary investigation of the antibacterial activity of these gallium complexes showed antipseudomonal activity, which appeared higher for the complex with L4, a feature of potential interest for the scientific community.


Asunto(s)
Antibacterianos , Complejos de Coordinación , Galio , Pruebas de Sensibilidad Microbiana , Galio/química , Galio/farmacología , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Ligandos
11.
Antimicrob Agents Chemother ; 68(8): e0063624, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39028191

RESUMEN

In this study, we showed that phenazine-1 carboxylic acid (PCA) of Pseudomonas aeruginosa induced the expression of Tet38 efflux pump triggering Staphylococcus aureus resistance to tetracycline and phenazines. Exposure of S. aureus RN6390 to supernatants of P. aeruginosa PA14 and its pyocyanin (PYO)-deficient mutants showed that P. aeruginosa non-PYO phenazines could induce the expression of Tet38 efflux pump. Direct exposure of RN6390 to PCA compound at 0.25× MIC led to a five-fold increase in tet38 transcripts. Expression of Tet38 protein was identified through confocal microscopy using RN6390(pRN-tet38p-yfp) that expressed YFP under control of the tet38 promoter by PCA at 0.25× MIC. The MICs of PCA of a Tet38-overexpressor and a Δtet38 mutant showed a three-fold increase and a two-fold decrease, respectively, compared with that of wild-type. Pre-exposure of RN6390 to PCA (0.25× MIC) for 1 hour prior to addition of tetracycline (1× or 10× MIC) improved bacteria viability of 1.5-fold and 2.6-fold, respectively, but addition of NaCl 7% together with tetracycline at 10× MIC reduced the number of viable PCA-exposed RN6390 of a 2.0-log10 CFU/mL. The transcript levels of tetR21, a repressor of tet38, decreased and increased two-fold in the presence of PCA and NaCl, respectively, suggesting that the effects of PCA and NaCl on tet38 production occurred through TetR21 expression. These data suggest that PCA-induced Tet38 protects S. aureus against tetracycline during coinfection with P. aeruginosa; however, induced tet38-mediated S. aureus resistance to tetracycline is reversed by NaCl 7%, a nebulized treatment used to enhance sputum mobilization in CF patients.


Asunto(s)
Antibacterianos , Pruebas de Sensibilidad Microbiana , Fenazinas , Pseudomonas aeruginosa , Staphylococcus aureus , Fenazinas/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Antibacterianos/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Tetraciclina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo
12.
Adv Sci (Weinh) ; : e2403101, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007186

RESUMEN

Exploring effective antibacterial approaches for targeted treatment of pathogenic bacterial infections with reduced drug resistance is of great significance. Combinational treatment modality that leverages different therapeutic components can improve the overall effectiveness and minimize adverse effects, thus displaying considerable potential against bacterial infections. Herein, red blood cell membrane fuses with macrophage membrane to develop hybrid cell membrane shell, which further camouflages around drug-loaded liposome to fabricate biomimetic liposome (AB@LRM) for precise antibacterial therapy. Specifically, photoactive agent black phosphorus quantum dots (BPQDs) and classical antibiotics amikacin (AM) are loaded in AB@LRM to accurately target the inflammatory sites through the guidance of macrophage membrane and long residence capability of red blood cell membrane, eventually exerting efficacious antibacterial activities. Besides, due to the excellent photothermal and photodynamic properties, BPQDs act as an efficient antibacterial agent when exposed to near-infrared laser irradiation, dramatically increasing the sensitivity of bacteria to antibiotics. Consequently, the synergistic sterilizing effect produced by AB@LRM further restricts bacterial resistance. Upon laser irradiation, AB@LRM shows superior anti-inflammatory and antibacterial properties in models of P. aeruginosa-infected pneumonia and wounds. Hence, this light-activatable antibacterial nanoplatform with good biocompatibility presents great potential to advance the clinical development in the treatment of bacterial infections.

13.
Viruses ; 16(7)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39066163

RESUMEN

The Gram-negative ESKAPE bacterium Pseudomonas aeruginosa has become a pathogen of serious concern due its extensive multi-drug resistance (MDR) profile, widespread incidences of hospital-acquired infections throughout the United States, and high occurrence in wound infections suffered by warfighters serving abroad. Bacteriophage (phage) therapy has received renewed attention as an alternative therapeutic option against recalcitrant bacterial infections, both as multi-phage cocktails and in combination with antibiotics as synergistic pairings. Environmental screening and phage enrichment has yielded three lytic viruses capable of infecting the MDR P. aeruginosa strain PAO1. Co-administration of each phage with the carbapenem antibiotics ertapenem, imipenem, and meropenem generated enhanced overall killing of bacteria beyond either phage or drug treatments alone. A combination cocktail of all three phages was completely inhibitory to growth, even without antibiotics. The same 3× phage cocktail also disrupted PAO1 biofilms, reducing biomass by over 75% compared to untreated biofilms. Further, the phage cocktail demonstrated broad efficacy as well, capable of infecting 33 out of 100 diverse clinical isolate strains of P. aeruginosa. Together, these results indicate a promising approach for designing layered medical countermeasures to potentiate antibiotic activity and possibly overcome resistance against recalcitrant, MDR bacteria such as P. aeruginosa. Combination therapy, either by synergistic phage-antibiotic pairings, or by phage cocktails, presents a means of controlling mutations that can allow for bacteria to gain a competitive edge.


Asunto(s)
Antibacterianos , Carbapenémicos , Farmacorresistencia Bacteriana Múltiple , Terapia de Fagos , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virología , Pseudomonas aeruginosa/efectos de los fármacos , Carbapenémicos/farmacología , Antibacterianos/farmacología , Infecciones por Pseudomonas/terapia , Infecciones por Pseudomonas/microbiología , Biopelículas/efectos de los fármacos , Bacteriófagos/fisiología , Pruebas de Sensibilidad Microbiana , Humanos , Fagos Pseudomonas/fisiología , Imipenem/farmacología
14.
Viruses ; 16(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39066209

RESUMEN

Infections due to antimicrobial-resistant bacteria have become a major threat to global health. Some patients may carry resistant bacteria in their gut microbiota. Specific risk factors may trigger the conversion of these carriages into infections in hospitalized patients. Preventively eradicating these carriages has been postulated as a promising preventive intervention. However, previous attempts at such eradication using oral antibiotics or probiotics have led to discouraging results. Phage therapy, the therapeutic use of bacteriophage viruses, might represent a worthy alternative in this context. Taking inspiration from this clinical challenge, we built Gut-On-A-Chip (GOAC) models, which are tridimensional cell culture models mimicking a simplified gut section. These were used to better understand bacterial dynamics under phage pressure using two relevant species: Pseudomonas aeruginosa and Escherichia coli. Model mucus secretion was documented by ELISA assays. Bacterial dynamics assays were performed in GOAC triplicates monitored for 72 h under numerous conditions, such as pre-, per-, or post-bacterial timing of phage introduction, punctual versus continuous phage administration, and phage expression of mucus-binding properties. The potential genomic basis of bacterial phage resistance acquired in the model was investigated by variant sequencing. The bacterial "escape growth" rates under phage pressure were compared to static in vitro conditions. Our results suggest that there is specific bacterial prosperity in this model compared to other in vitro conditions. In E. coli assays, the introduction of a phage harboring unique mucus-binding properties could not shift this balance of power, contradicting previous findings in an in vivo mouse model and highlighting the key differences between these models. Genomic modifications were correlated with bacterial phage resistance acquisition in some but not all instances, suggesting that alternate ways are needed to evade phage predation, which warrants further investigation.


Asunto(s)
Bacteriófagos , Escherichia coli , Microbioma Gastrointestinal , Terapia de Fagos , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virología , Bacteriófagos/fisiología , Bacteriófagos/genética , Humanos , Terapia de Fagos/métodos , Escherichia coli/virología , Dispositivos Laboratorio en un Chip
15.
J Water Health ; 22(5): 825-834, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38822462

RESUMEN

Hospital wastewater has been identified as a hotspot for the emergence and transmission of multidrug-resistant (MDR) pathogens that present a serious threat to public health. Therefore, we investigated the current status of antibiotic resistance as well as the phenotypic and genotypic basis of biofilm formation in Pseudomonas aeruginosa from hospital wastewater in Dhaka, Bangladesh. The disc diffusion method and the crystal violet assay were performed to characterize antimicrobial resistance and biofilm formation, respectively. Biofilm and integron-associated genes were amplified by the polymerase chain reaction. Isolates exhibited varying degrees of resistance to different antibiotics, in which >80% of isolates showed sensitivity to meropenem, amikacin, and gentamicin. The results indicated that 93.82% of isolates were MDR and 71 out of 76 MDR isolates showed biofilm formation activities. We observed the high prevalence of biofilm-related genes, in which algD+pelF+pslD+ (82.7%) was found to be the prevalent biofilm genotypic pattern. Sixteen isolates (19.75%) possessed class 1 integron (int1) genes. However, statistical analysis revealed no significant association between biofilm formation and multidrug resistance (χ2 = 0.35, P = 0.55). Taken together, hospital wastewater in Dhaka city may act as a reservoir for MDR and biofilm-forming P. aeruginosa, and therefore, the adequate treatment of wastewater is recommended to reduce the occurrence of outbreaks.


Asunto(s)
Antibacterianos , Biopelículas , Farmacorresistencia Bacteriana Múltiple , Hospitales , Pseudomonas aeruginosa , Aguas Residuales , Biopelículas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/genética , Aguas Residuales/microbiología , Bangladesh/epidemiología , Antibacterianos/farmacología , Integrones , Pruebas de Sensibilidad Microbiana
16.
Mol Imaging Biol ; 26(4): 704-713, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38942967

RESUMEN

PURPOSE: There is currently no ideal radiotracer for imaging bacterial infections. Radiolabelled D-amino acids are promising candidates because they are actively incorporated into the peptidoglycan of the bacterial cell wall, a structural feature which is absent in human cells. This work describes fluorine-18 labelled analogues of D-tyrosine and D-methionine, O-(2-[18F]fluoroethyl)-D-tyrosine (D-[18F]FET) and S-(3-[18F]fluoropropyl)-D-homocysteine (D-[18F]FPHCys), and their pilot evaluation studies as potential radiotracers for imaging bacterial infection. PROCEDURES: D-[18F]FET and D-[18F]FPHCys were prepared in classical fluorination-deprotection reactions, and their uptake in Staphylococcus aureus and Pseudomonas aeruginosa was evaluated over 2 h. Heat killed bacteria were used as controls. A clinically-relevant foreign body model of S. aureus infection was established in Balb/c mice, as well as a sterile foreign body to mimic inflammation. The ex vivo biodistribution of D-[18F]FPHCys in the infected and inflamed mice was evaluated after 1 h, by dissection and gamma counting. The uptake was compared to that of [18F]FDG. RESULTS: In vitro uptake of both D-[18F]FET and D-[18F]FPHCys was specific to live bacteria. Uptake was higher in S. aureus than in P. aeruginosa for both radiotracers, and of the two, higher for D-[18F]FPHCys than D-[18F]FET. Blocking experiments with non-radioactive D-[19F]FPHCys confirmed specificity of uptake. In vivo, D-[18F]FPHCys had greater accumulation in S. aureus infection compared with sterile inflammation, which was statistically significant. As anticipated, [18F]FDG showed no significant difference in uptake between infection and inflammation. CONCLUSIONS: D-[18F]FPHCys uptake was higher in infected tissues than inflammation, and represents a fluorine-18 labelled D-AA with potential to detect a S. aureus reference strain (Xen29) in vivo. Additional studies are needed to evaluate uptake of this radiotracer in clinical isolates.


Asunto(s)
Ratones Endogámicos BALB C , Tomografía de Emisión de Positrones , Staphylococcus aureus , Tirosina , Animales , Tomografía de Emisión de Positrones/métodos , Proyectos Piloto , Tirosina/análogos & derivados , Tirosina/química , Distribución Tisular , Homocisteína/metabolismo , Homocisteína/análogos & derivados , Homocisteína/química , Pseudomonas aeruginosa , Radiofármacos/química , Radiofármacos/farmacocinética , Radioisótopos de Flúor/química , Femenino , Ratones , Infecciones Bacterianas/diagnóstico por imagen , Infecciones Bacterianas/microbiología
17.
Inflamm Res ; 73(8): 1283-1297, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38850343

RESUMEN

OBJECTIVE P. AERUGINOSA: (PA), the major pathogen of lung cystic fibrosis (CF), polarizes macrophages into hyperinflammatory tissue damaging phenotype. The main aim of this study was to verify whether training of macrophages with ß-glucan might improve their response to P. aeruginosa infections. METHODS: To perform this task C57BL/6 mice sensitive to infections with P. aeruginosa were used. Peritoneal macrophages were trained with Saccharomyces cerevisiae ß-glucan and exposed to PA57, the strong biofilm-forming bacterial strain isolated from the patient with severe lung CF. The release of cytokines and the expression of macrophage phenotypic markers were measured. A quantitative proteomic approach was used for the characterization of proteome-wide changes in macrophages. The effect of in vivo ß-glucan-trained macrophages in the air pouch model of PA57 infection was investigated. In all experiments the effect of trained and naïve macrophages was compared. RESULTS: Trained macrophages acquired a specific phenotype with mixed pro-inflammatory and pro-resolution characteristics, however they retained anti-bacterial properties. Most importantly, transfer of trained macrophages into infected air pouches markedly ameliorated the course of infection. PA57 bacterial growth and formation of biofilm were significantly suppressed. The level of serum amyloid A (SAA), a systemic inflammation biomarker, was reduced. CONCLUSIONS: Training of murine macrophages with S. cerevisiae ß-glucan improved macrophage defense properties along with inhibition of secretion of some detrimental inflammatory agents. We suggest that training of macrophages with such ß-glucans might be a new therapeutic strategy in P. aeruginosa biofilm infections, including CF, to promote eradication of pathogens and resolution of inflammation.


Asunto(s)
Biopelículas , Citocinas , Ratones Endogámicos C57BL , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Saccharomyces cerevisiae , beta-Glucanos , Animales , beta-Glucanos/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/inmunología , Citocinas/metabolismo , Biopelículas/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/inmunología , Femenino , Ratones , Proteína Amiloide A Sérica , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Células Cultivadas
18.
Microbiology (Reading) ; 170(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900549

RESUMEN

Long-term administration of certain macrolides is efficacious in patients with persistent pulmonary Pseudomonas aeruginosa infection, despite how limited the clinically achievable concentrations are, being far below their MICs. An increase in the sub-MIC of macrolide exposure-dependent sensitivity to nitrosative stress is a typical characteristic of P. aeruginosa. However, a few P. aeruginosa clinical isolates do not respond to sub-MIC of macrolide treatment. Therefore, we examined the effects of sub-MIC of erythromycin (EM) on the sensitivity to nitrosative stress together with an efflux pump inhibitor (EPI) phenylalanine arginyl ß-naphthylamide (PAßN). The sensitivity to nitrosative stress increased, suggesting that the efflux pump was involved in inhibiting the sub-MIC of macrolide effect. Analysis using efflux pump-mutant P. aeruginosa revealed that MexAB-OprM, MexXY-OprM, and MexCD-OprJ are factors in reducing the sub-MIC of macrolide effect. Since macrolides interfere with quorum sensing (QS), we demonstrated that the QS-interfering agent furanone C-30 (C-30) producing greater sensitivity to nitric oxide (NO) stress than EM. The effect of C-30 was decreased by overproduction of MexAB-OprM. To investigate whether the increase in the QS-interfering agent exposure-dependent sensitivity to nitrosative stress is characteristic of P. aeruginosa clinical isolates, we examined the viability of P. aeruginosa treated with NO. Although treatment with EM could reduce cell viability, a high variability in EM effects was observed. Conversely, C-30 was highly effective at reducing cell viability. Treatment with both C-30 and PAßN was sufficiently effective against the remaining isolates. Therefore, the combination of a QS-interfering agent and an EPI could be effective in treating P. aeruginosa infections.


Asunto(s)
Antibacterianos , Eritromicina , Furanos , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Estrés Nitrosativo , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiología , Percepción de Quorum/efectos de los fármacos , Antibacterianos/farmacología , Estrés Nitrosativo/efectos de los fármacos , Eritromicina/farmacología , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Furanos/farmacología , Dipéptidos/farmacología , Macrólidos/farmacología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Humanos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
19.
Health Sci Rep ; 7(6): e2138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899004

RESUMEN

Background and Aims: Multidrug and extensive drug-resistant Pseudomonas aeruginosa was extracted from burn patients referring to burn centers in southwest Iran so that biofilm generation and antibiotic resistance could be investigated. Methods: A specific primer was used to confirm all our considered 110 P. aeruginosa culture-positive reports on 345 burn patients. The resistance of P. aeruginosa to seven antibiotics and Colistin with minimum inhibitory concentration (MIC) was assessed. Biofilm formation was assessed by the phenotypic study of specimens under Congo red agar and microtiter plate assays. Results: One hundred and 10 clinical P. aeruginosa isolates taken from burn wound infections were validated. Among P. aeruginosa isolates, Piperacillin, Ceftazidime, Maeropenem, Gentamycin, and Gatifloacin had the highest resistance to antibiotics, while Ticarcillin-Clavulanic acid and Ceftolozane-Tazobactam showed the least resistance. MICs were then evaluated via the E test. Seven isolates were resistant to colistin. Colistin reference MICs for multidrug-resistant P. aeruginosa prevalence was 38%, while it was 22% for extensively drug-resistant (XDR) P. aeruginosa. One P. aeruginosa was pandrug-resistant (PDR). Under Congo red agar test, 66 isolates (67%) formed biofilms and black colonies, whereas 44 isolates (50%) had red colonies. In MTP, 76% formed biofilm. 40%, 32%, 21% of the isolates were strong, moderate, and weak biofilm formers, respectively, while 43% did not form biofilms. Conclusion: The P. aeruginosa resistance to antimicrobial agents has largely challenged the control of the infection. Accordingly, a higher resistance occurred when the isolates were transferred to the patients. Less than 50% P. aeruginosa samples generated strong biofilms. Consequently, hygienic measurements are essential to inhibit P. aeruginosa transmission to hospitalized patients.

20.
BMC Oral Health ; 24(1): 752, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943115

RESUMEN

BACKGROUND: Tissue conditioners are used for treating and improving the tissues supporting complete dentures. On the other hand, recent advances in nanotechnology have revolutionized various fields of science, including dentistry. The present study aimed to investigate novel antimicrobial applications of copper oxide nanoparticle-based tissue conditioner used in complete prostheses. METHODS: The present experimental study included 126 tissue conditioner samples with different concentrations of copper oxide nanoparticles (20%, 10%, 5%, 2.5%, 1.25%, 0.625%, and 0% w/w). The samples were incubated with Enterococcus faecalis, Pseudomonas aeruginosa, and Candida albicans in 24-well plates for 24 h. Then, samples from the wells were re-incubated for 24 h, and the microorganisms were counted. RESULTS: The culture media containing E. faecalis and P. aeruginosa showed significantly different growth between different nanoparticle concentrations following 24 h (P < 0.001), showing a reduction in bacterial growth with increased nanoparticle concentration. Both bacteria did not show any growth at the 20% concentration. However, C. albicans showed significant differences in growth between different nanoparticle concentrations following 48 h (P < 0.001), showing a reduction in growth with increased nanoparticle concentration. Also, the least growth was observed at the 20% concentration. CONCLUSIONS: In conclusion, the CuO nanoparticles were prepared using a green synthesis methon in the suitable sizes. Moreover, the tissue conditioners containing CuO nanoparticles showed acceptable antimicrobial properties against E. faecalis, P. aeruginosa, and C. albicans.


Asunto(s)
Antiinfecciosos , Candida albicans , Cobre , Enterococcus faecalis , Pseudomonas aeruginosa , Cobre/farmacología , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/crecimiento & desarrollo , Candida albicans/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Antiinfecciosos/farmacología , Dentadura Completa/microbiología , Nanopartículas , Humanos , Nanopartículas del Metal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA