Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
1.
Front Mol Neurosci ; 17: 1399965, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39169951

RESUMEN

Human apolipoprotein E (ApoE) was first identified as a polymorphic gene in the 1970s; however, the genetic association of ApoE genotypes with late-onset sporadic Alzheimer's disease (sAD) was only discovered 20 years later. Since then, intensive research has been undertaken to understand the molecular effects of ApoE in the development of sAD. Despite three decades' worth of effort and over 10,000 papers published, the greatest mystery in the ApoE field remains: human ApoE isoforms differ by only one or two amino acid residues; what is responsible for their significantly distinct roles in the etiology of sAD, with ApoE4 conferring the greatest genetic risk for sAD whereas ApoE2 providing exceptional neuroprotection against sAD. Emerging research starts to point to a novel and compelling hypothesis that the sialoglycans posttranslationally appended to human ApoE may serve as a critical structural modifier that alters the biology of ApoE, leading to the opposing impacts of ApoE isoforms on sAD and likely in the peripheral systems as well. ApoE has been shown to be posttranslationally glycosylated in a species-, tissue-, and cell-specific manner. Human ApoE, particularly in brain tissue and cerebrospinal fluid (CSF), is highly glycosylated, and the glycan chains are exclusively attached via an O-linkage to serine or threonine residues. Moreover, studies have indicated that human ApoE glycans undergo sialic acid modification or sialylation, a structural alteration found to be more prominent in ApoE derived from the brain and CSF than plasma. However, whether the sialylation modification of human ApoE has a biological role is largely unexplored. Our group recently first reported that the three major isoforms of human ApoE in the brain undergo varying degrees of sialylation, with ApoE2 exhibiting the most abundant sialic acid modification, whereas ApoE4 is the least sialylated. Our findings further indicate that the sialic acid moiety on human ApoE glycans may serve as a critical modulator of the interaction of ApoE with amyloid ß (Aß) and downstream Aß pathogenesis, a prominent pathologic feature in AD. In this review, we seek to provide a comprehensive summary of this exciting and rapidly evolving area of ApoE research, including the current state of knowledge and opportunities for future exploration.

2.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-39126078

RESUMEN

Epigenetic mechanisms, including histone post-translational modifications (PTMs), play a critical role in regulating pain perception and the pathophysiology of burn injury. However, the epigenetic regulation and molecular mechanisms underlying burn injury-induced pain remain insufficiently explored. Spinal dynorphinergic (Pdyn) neurons contribute to heat hyperalgesia induced by severe scalding-type burn injury through p-S10H3-dependent signaling. Beyond p-S10H3, burn injury may impact various other histone H3 PTMs. Double immunofluorescent staining and histone H3 protein analyses demonstrated significant hypermethylation at H3K4me1 and H3K4me3 sites and hyperphosphorylation at S10H3 within the spinal cord. By analyzing Pdyn neurons in the spinal dorsal horn, we found evidence of chromatin activation with a significant elevation in p-S10H3 immunoreactivity. We used RNA-seq analysis to compare the effects of burn injury and formalin-induced inflammatory pain on spinal cord transcriptomic profiles. We identified 98 DEGs for burn injury and 86 DEGs for formalin-induced inflammatory pain. A limited number of shared differentially expressed genes (DEGs) suggest distinct central pain processing mechanisms between burn injury and formalin models. KEGG pathway analysis supported this divergence, with burn injury activating Wnt signaling. This study enhances our understanding of burn injury mechanisms and uncovers converging and diverging pathways in pain models with different origins.


Asunto(s)
Quemaduras , Epigénesis Genética , Histonas , Nocicepción , Médula Espinal , Animales , Quemaduras/complicaciones , Quemaduras/metabolismo , Quemaduras/genética , Ratones , Histonas/metabolismo , Médula Espinal/metabolismo , Médula Espinal/patología , Masculino , Ratones Endogámicos C57BL , Procesamiento Proteico-Postraduccional , Modelos Animales de Enfermedad
3.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201563

RESUMEN

Nitric oxide (NO) has been firmly established as a key signaling molecule in plants, playing a significant role in regulating growth, development and stress responses. Given the imperative of sustainable agriculture and the urgent need to meet the escalating global demand for food, it is imperative to safeguard crop plants from the effects of climate fluctuations. Plants respond to environmental challenges by producing redox molecules, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), which regulate cellular, physiological, and molecular processes. Nitric oxide (NO) plays a crucial role in plant stress tolerance, acting as a signaling molecule or free radical. NO is involved in various developmental processes in plants through diverse mechanisms. Exogenous NO supplementation can alleviate the toxicity of abiotic stresses and enhance plant resistance. In this review we summarize the studies regarding the production of NO in peroxisomes, and how its molecule and its derived products, (ONOO-) and S-nitrosoglutathione (GSNO) affect ROS metabolism in peroxisomes. Peroxisomal antioxidant enzymes including catalase (CAT), are key targets of NO-mediated post-translational modification (PTM) highlighting the dynamic metabolism of ROS and RNS in peroxisomes.


Asunto(s)
Óxido Nítrico , Peroxisomas , Procesamiento Proteico-Postraduccional , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Peroxisomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Plantas/metabolismo
4.
Protein J ; 43(4): 639-655, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39068633

RESUMEN

Nitric oxide (NO) induces protein posttranslational modification (PTM), known as S-nitrosylation, which has started to gain attention as a critical regulator of thousands of substrate proteins. However, our understanding of the biological consequences of this emerging PTM is incomplete because of the limited number of identified S-nitrosylated proteins (S-NO proteins). Recent advances in detection methods have effectively contributed to broadening the spectrum of discovered S-NO proteins. This article briefly reviews the progress in S-NO protein detection methods and discusses how these methods are involved in characterizing the biological consequences of this PTM. Additionally, we provide insight into S-NO protein-related diseases, focusing on the role of these proteins in mitigating the severity of infectious diseases.


Asunto(s)
Óxido Nítrico , Procesamiento Proteico-Postraduccional , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Humanos , Proteínas/química , Proteínas/metabolismo , Animales , S-Nitrosotioles/química , S-Nitrosotioles/metabolismo
5.
J Biol Chem ; 300(9): 107599, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39059494

RESUMEN

O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.

6.
Biotechnol Adv ; 75: 108415, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39033836

RESUMEN

Glycosylated bacteriocins, known as glycocins, were first discovered in 2011. These bioactive peptides are produced by bacteria to gain survival advantages. They exhibit diverse types of glycans and demonstrate varied antimicrobial activity. Currently, there are 13 experimentally known glycocins, with over 250 identified in silico across different bacterial phyla. Notably, glycocins are recognized for their glycan-mediated antimicrobial activity, proving effective against drug-resistant and foodborne pathogens. Many glycocins contain rare S-linked glycans. Glycosyltransferases (GTs), responsible for transferring sugar to glycocins and involved in glycocin biosynthesis, often cluster together in the producer's genome. This clustering makes them valuable for custom glycoengineering with diverse substrate specificities. Heterologous expression of glycocins has paved the way for the establishment of microbial factories for glycopeptide and glycoconjugate production across various industries. In this review, we emphasize the primary roles of fully and partially characterized glycocins and their glycosylating enzymes. Additionally, we explore how specific glycan structures facilitate these functions in antibacterial activities. Furthermore, we discuss newer approaches and increasing efforts aimed at exploiting bacterial glycobiology for the development of food preservatives and as replacements or complements to traditional antibiotics, particularly in the face of antibiotic-resistant pathogenic bacteria.


Asunto(s)
Glicosiltransferasas , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/química , Polisacáridos/química , Polisacáridos/metabolismo , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/metabolismo , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Glicosilación , Bacteriocinas/química , Bacteriocinas/metabolismo , Bacteriocinas/farmacología , Bacteriocinas/genética , Antiinfecciosos/farmacología , Antiinfecciosos/metabolismo , Antiinfecciosos/química
7.
Methods Mol Biol ; 2836: 37-55, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38995534

RESUMEN

Tandem mass spectrometry (MS/MS) facilitates the rapid identification of posttranslational modifications (PTMs), which play a pivotal role in regulating numerous biological processes. This chapter explores recent advancements that expand the types of detectable PTMs and enhance the speed of the PTM searches. We also delve into computational challenges associated with searching for a multitude of PTMs simultaneously. The latter section introduces an automated procedure to identify an extensive range of PTMs using MODplus, a free PTM analysis software tool. We guide the reader through the preparation of the modification search, the determination of optional search parameters, the execution of the search, and the analysis of results, exemplified by a case study using specific MS/MS dataset.


Asunto(s)
Procesamiento Proteico-Postraduccional , Programas Informáticos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Humanos , Proteómica/métodos , Bases de Datos de Proteínas , Biología Computacional/métodos , Proteínas/química
8.
Cell Mol Neurobiol ; 44(1): 53, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38960968

RESUMEN

Parkinsons disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss and alpha-synuclein aggregation. This comprehensive review examines the intricate role of post-translational modifications (PTMs) in PD pathogenesis, focusing on DNA methylation, histone modifications, phosphorylation, SUMOylation, and ubiquitination. Targeted PTM modulation, particularly in key proteins like Parkin, DJ1, and PINK1, emerges as a promising therapeutic strategy for mitigating dopaminergic degeneration in PD. Dysregulated PTMs significantly contribute to the accumulation of toxic protein aggregates and dopaminergic neuronal dysfunction observed in PD. Targeting PTMs, including epigenetic strategies, addressing aberrant phosphorylation events, and modulating SUMOylation processes, provides potential avenues for intervention. The ubiquitin-proteasome system, governed by enzymes like Parkin and Nedd4, offers potential targets for clearing misfolded proteins and developing disease-modifying interventions. Compounds like ginkgolic acid, SUMO E1 enzyme inhibitors, and natural compounds like Indole-3-carbinol illustrate the feasibility of modulating PTMs for therapeutic purposes in PD. This review underscores the therapeutic potential of PTM-targeted interventions in modulating PD-related pathways, emphasizing the need for further research in this promising area of Parkinsons disease therapeutics.


Asunto(s)
Enfermedad de Parkinson , Procesamiento Proteico-Postraduccional , Humanos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Animales
9.
Heliyon ; 10(12): e32517, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975176

RESUMEN

Ubiquitination is an essential post-translational modification mechanism involving the ubiquitin protein's bonding to a substrate protein. It is crucial in a variety of physiological activities including cell survival and differentiation, and innate and adaptive immunity. Any alteration in the ubiquitin system leads to the development of various human diseases. Numerous researches show the highly reversibility and dynamic of ubiquitin system, making the experimental identification quite difficult. To solve this issue, this article develops a model using a machine learning approach, tending to improve the ubiquitin protein prediction precisely. We deeply investigate the ubiquitination data that is proceed through different features extraction methods, followed by the classification. The evaluation and assessment are conducted considering Jackknife tests and 10-fold cross-validation. The proposed method demonstrated the remarkable performance in terms of 100 %, 99.88 %, and 99.84 % accuracy on Dataset-I, Dataset-II, and Dataset-III, respectively. Using Jackknife test, the method achieves 100 %, 99.91 %, and 99.99 % for Dataset-I, Dataset-II and Dataset-III, respectively. This analysis concludes that the proposed method outperformed the state-of-the-arts to identify the ubiquitination sites and helpful in the development of current clinical therapies. The source code and datasets will be made available at Github.

10.
Front Mol Biosci ; 11: 1422034, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044841

RESUMEN

Upon infection of host cells the Legionella pneumophila bacterium releases a multitude of effector enzymes into the host's cytoplasm that manipulate cellular host pathways, including the host-ubiquitination pathways. The effectors belonging to the SidE-family are involved in non-canonical phosphoribosyl serine ubiquitination (PR-ubiquitination) of host substrate proteins. This results in the recruitment of ER-remodeling proteins and the formation of a Legionella-containing vacuole which is crucial in the onset of legionnaires disease. PR-ubiquitination is a dynamic process reversed by other Legionella effectors called Dups. During PR-Ubiquitin phosphodiester hydrolysis Dups form a covalent intermediate with the phosphoribosyl ubiquitylated protein using its active site His67 residue. We envisioned that covalent probes to target Legionella effectors could be of value to study these effectors and contribute to deciphering the complex biology of Legionella infection. Hence we effectively installed a photo-activatable pyridinium warhead on the 5'-OH of triazole-linked ribosylated ubiquitin allowing crosslinking of the probe to the catalytic histidine residues in Legionella SidE or Dup enzymes. In vitro tests on recombinantly expressed DupA and SdeAPDE revealed that the probe was able to capture the enzymes covalently upon photo-activation.

11.
Vitam Horm ; 125: 47-88, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38997172

RESUMEN

Glycation is a protein post-translational modification that can occur on lysine and arginine residues as a result of a non-enzymatic process known as the Maillard reaction. This modification is irreversible, so the only way it can be removed is by protein degradation and replacement. Small reactive carbonyl species, glyoxal and methylglyoxal, are the primary glycating agents and are elevated in several conditions associated with an increased risk of cardiovascular disease, including diabetes, rheumatoid arthritis, smoking, and aging. Thus, how protein glycation impacts the cardiomyocyte is of particular interest, to both understand how these conditions increase the risk of cardiovascular disease and how glycation might be targeted therapeutically. Glycation can affect the cardiomyocyte through extracellular mechanisms, including RAGE-based signaling, glycation of the extracellular matrix that modifies the mechanical environment, and signaling from the vasculature. Intracellular glycation of the cardiomyocyte can impact calcium handling, protein quality control and cell death pathways, as well as the cytoskeleton, resulting in a blunted contractility. While reducing protein glycation and its impact on the heart has been an active area of drug development, multiple clinical trials have had mixed results and these compounds have not been translated to the clinic-highlighting the challenges of modulating myocyte glycation. Here we will review protein glycation and its effects on the cardiomyocyte, therapeutic attempts to reverse these, and offer insight as to the future of glycation studies and patient treatment.


Asunto(s)
Productos Finales de Glicación Avanzada , Miocitos Cardíacos , Humanos , Miocitos Cardíacos/metabolismo , Glicosilación , Animales , Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal , Procesamiento Proteico-Postraduccional , Enfermedades Cardiovasculares/metabolismo
12.
Mol Cell Proteomics ; 23(7): 100796, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38851451

RESUMEN

Protein O-linked mannose (O-Man) glycosylation is an evolutionary conserved posttranslational modification that fulfills important biological roles during embryonic development. Three nonredundant enzyme families, POMT1/POMT2, TMTC1-4, and TMEM260, selectively coordinate the initiation of protein O-Man glycosylation on distinct classes of transmembrane proteins, including α-dystroglycan, cadherins, and plexin receptors. However, a systematic investigation of their substrate specificities is lacking, in part due to the ubiquitous expression of O-Man glycosyltransferases in cells, which precludes analysis of pathway-specific O-Man glycosylation on a proteome-wide scale. Here, we apply a targeted workflow for membrane glycoproteomics across five human cell lines to extensively map O-Man substrates and genetically deconstruct O-Man initiation by individual and combinatorial knockout of O-Man glycosyltransferase genes. We established a human cell library for the analysis of substrate specificities of individual O-Man initiation pathways by quantitative glycoproteomics. Our results identify 180 O-Man glycoproteins, demonstrate new protein targets for the POMT1/POMT2 pathway, and show that TMTC1-4 and TMEM260 pathways widely target distinct Ig-like protein domains of plasma membrane proteins involved in cell-cell and cell-extracellular matrix interactions. The identification of O-Man on Ig-like folds adds further knowledge on the emerging concept of domain-specific O-Man glycosylation which opens for functional studies of O-Man-glycosylated adhesion molecules and receptors.


Asunto(s)
Manosa , Humanos , Glicosilación , Manosa/metabolismo , Especificidad por Sustrato , Glicoproteínas/metabolismo , Proteómica/métodos , Línea Celular , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Procesamiento Proteico-Postraduccional , Ingeniería Celular/métodos
13.
Cell Mol Immunol ; 21(8): 856-872, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849539

RESUMEN

The key role of structural cells in immune modulation has been revealed with the advent of single-cell multiomics, but the underlying mechanism remains poorly understood. Here, we revealed that the transcriptional activation of interferon regulatory factor 1 (IRF1) in response to ionizing radiation, cytotoxic chemicals and SARS-CoV-2 viral infection determines the fate of structural cells and regulates communication between structural and immune cells. Radiation-induced leakage of mtDNA initiates the nuclear translocation of IRF1, enabling it to regulate the transcription of inflammation- and cell death-related genes. Novel posttranslational modification (PTM) sites in the nuclear localization sequence (NLS) of IRF1 were identified. Functional analysis revealed that mutation of the acetylation site and the phosphorylation sites in the NLS blocked the transcriptional activation of IRF1 and reduced cell death in response to ionizing radiation. Mechanistically, reciprocal regulation between the single-stranded DNA sensors SSBP1 and IRF1, which restrains radiation-induced and STING/p300-mediated PTMs of IRF1, was revealed. In addition, genetic deletion or pharmacological inhibition of IRF1 tempered radiation-induced inflammatory cell death, and radiation mitigators also suppressed SARS-CoV-2 NSP-10-mediated activation of IRF1. Thus, we revealed a novel cytoplasm-oriented mechanism of IRF1 activation in structural cells that promotes inflammation and highlighted the potential effectiveness of IRF1 inhibitors against immune disorders.


Asunto(s)
Muerte Celular , Inflamación , Factor 1 Regulador del Interferón , Procesamiento Proteico-Postraduccional , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Humanos , Muerte Celular/efectos de la radiación , Inflamación/patología , Animales , Ratones , SARS-CoV-2 , COVID-19/inmunología , Fosforilación , Radiación Ionizante , Células HEK293 , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Señales de Localización Nuclear , Activación Transcripcional
14.
Am J Cancer Res ; 14(5): 2523-2537, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859858

RESUMEN

Chemotherapy is the principal treatment for advanced cancer patients. However, chemotherapeutic resistance, an important hallmark of cancer, is considered as a key impediment to effective therapy in cancer patients. Multiple signaling pathways and factors have been underscored to participate in governing drug resistance. Posttranslational modifications, including ubiquitination, glycosylation, acetylation and phosphorylation, have emerged as key players in modulating drug resistance in gynecological tumors, such as ovarian cancer, cervical cancer and endometrial cancer. In this review article, we summarize the role of ubiquitination in governing drug sensitivity in gynecological cancers. Moreover, we describe the numerous compounds that target ubiquitination in gynecological cancers to reverse chemotherapeutic resistance. In addition, we provide the future perspectives to fully elucidate the mechanisms by which ubiquitination controls drug resistance in gynecological tumors, contributing to restoring drug sensitivity. This review highlights the complex interplay between ubiquitination and drug resistance in gynecological tumors, providing novel insights into potential therapeutic targets and personalized treatment strategies to overcome the bottleneck of drug resistance.

15.
Plant Physiol Biochem ; 213: 108842, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38889533

RESUMEN

Initiation of flowering is a key switch for plants to shift from the vegetative growth to the phase of reproductive growth. This critical phase is essential not only for achieving successful reproduction, but also for facilitating environmental adaptation and maximizing yield potential. In the past decades, the environmental factors and genetic pathways that control flowering time have undergone extensive investigation in both model plant Arabidopsis and various crop species. The impact of environmental factors on plant flowering time is well documented. This paper focuses on the multilayered modulation of flowering time. Recent multi-omics approaches, and genetic screens have revealed additional components that modulate flowering time across various levels, encompassing chromatin modification, transcriptional and post-transcriptional control, as well as translational and post-translational regulation. The interplay between these various layers of regulation creates a finely-tuned system that can respond to a wide variety of inputs and allows plants to adjust flowering time in response to changing environmental conditions. In this review, we present a comprehensive overview of the recent progress made in understanding the intricate regulation of flowering time in plants, emphasizing the pivotal molecular components and their intricate interactions. Additionally, we provide an exhaustive list of key genes implicated in the intricate modulation of flowering time and offer a detailed summary of regulators of FLOWERING LOCUS T (FT) and FLOWERING LOCUS (FLC). We also discuss the implications of this knowledge for crop improvement and adaptation to changing environments.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
16.
J Proteomics ; 303: 105214, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823442

RESUMEN

Small ORF-encoded peptides (SEPs) are a class of low molecular weight proteins and peptides comprising <100 amino acids with important functions in various life activities. Although the sequence length is short, SEPs might also have post-translational modification (PTM). Phosphorylation is one of the most essential PTMs of proteins. In this work, we enriched phosphopeptides with IMAC and TiO2 materials and analyzed the phosphorylated SEPs in Hep3B cells. A total of 24 phosphorylated SEPs were identified, and 11 SEPs were coded by ncRNA. For the sequence analysis, we found that the general characteristics of phosphorylated SEPs are roughly the same as canonical proteins. Besides, two phosphorylation SEPs have the Stathmin family signature 2 motif, which can regulate the microtubule cytoskeleton. Some SEPs have domains or signal peptides, indicating their specific functions and subcellular locations. Kinase network analysis found a small number of kinases that may be a clue to the specific functions of some SEPs. However, only one-fifth of the predicted phosphorylation sites were identified by LC/MS/MS, indicating that many SEP PTMs are hidden in the dark, waiting to be uncovered and verified. This study helps expand our understanding of SEP and provides information for further SEP function investigation. SIGNIFICANCE: Small ORF-encoded peptides (SEPs) are important in various life activities. Although the sequence length is short (<100AA), SEPs might also have post-translational modification (PTM). Phosphorylation is one of the most essential PTMs of proteins. We enriched phosphopeptides and analyzed the phosphorylated SEPs in Hep3B cells. That is the first time to explore the PTM of SPEs systematically. Kinase network analysis found a small number of kinases that may be a clue to the specific functions of SEPs. More SEP PTMs are hidden in the dark and waiting to be uncovered and verified. This study helps expand our understanding of SEP and provides information for further SEP function investigation.


Asunto(s)
Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem , Humanos , Fosforilación , Cromatografía Liquida , Sistemas de Lectura Abierta , Línea Celular Tumoral , Fosfopéptidos/análisis , Fosfopéptidos/metabolismo , Proteómica/métodos , Péptidos/metabolismo , Péptidos/química , Micropéptidos
17.
Artículo en Inglés | MEDLINE | ID: mdl-38862432

RESUMEN

Lysine post-translational modifications (PTMs) are widespread and versatile protein PTMs that are involved in diverse biological processes by regulating the fundamental functions of histone and non-histone proteins. Dysregulation of lysine PTMs is implicated in many diseases, and targeting lysine PTM regulatory factors, including writers, erasers, and readers, has become an effective strategy for disease therapy. The continuing development of mass spectrometry (MS) technologies coupled with antibody-based affinity enrichment technologies greatly promotes the discovery and decoding of PTMs. The global characterization of lysine PTMs is crucial for deciphering the regulatory networks, molecular functions, and mechanisms of action of lysine PTMs. In this review, we focus on lysine PTMs, and provide a summary of the regulatory enzymes of diverse lysine PTMs and the proteomics advances in lysine PTMs by MS technologies. We also discuss the types and biological functions of lysine PTM crosstalks on histone and non-histone proteins and current druggable targets of lysine PTM regulatory factors for disease therapy.


Asunto(s)
Histonas , Lisina , Procesamiento Proteico-Postraduccional , Lisina/metabolismo , Humanos , Histonas/metabolismo , Animales , Proteómica/métodos
18.
J Proteome Res ; 23(7): 2386-2396, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38900499

RESUMEN

Tyrosine sulfation, an understudied but crucial post-translational modification, cannot be directly detected in conventional nanoflow liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) due to the extreme sulfate lability. Here, we report the detection of sulfate-retaining fragments from LC-electron capture dissociation (ECD) and nanoLC-electron transfer higher energy collision dissociation (EThcD). Sulfopeptide candidates were identified by Proteome Discoverer and MSFragger analysis of nanoLC-HCD MS/MS data and added to inclusion lists for LC-ECD or nanoLC-EThcD MS/MS. When this approach failed, targeted LC-ECD with fixed m/z isolation windows was performed. For the plasma protein fibrinogen, the known pyroglutamylated sulfopeptide QFPTDYDEGQDDRPK from the beta chain N-terminus was identified despite a complete lack of sulfate-containing fragment ions. The peptide QVGVEHHVEIEYD from the gamma-B chain C-terminus was also identified as sulfated or phosphorylated. This sulfopeptide is not annotated in Uniprot but was previously reported. MSFragger further identified a cysteine-containing peptide from the middle of the gamma chain as sulfated and deamidated. NanoLC-EThcD and LC-ECD MS/MS confirmed the two former sulfopeptides via sulfate-retaining fragment ions, whereas an unexpected fragmentation pattern was observed for the third sulfopeptide candidate. Manual interpretation of the LC-ECD spectrum revealed two additional isobaric identifications: a trisulfide-linked cysteinyl-glycine or a carbamidomethyl-dithiothreiotol covalent adduct. Synthesis of such adducts confirmed the latter identity.


Asunto(s)
Fibrinógeno , Espectrometría de Masas en Tándem , Tirosina , Tirosina/química , Tirosina/análogos & derivados , Espectrometría de Masas en Tándem/métodos , Fibrinógeno/química , Fibrinógeno/metabolismo , Cromatografía Liquida/métodos , Humanos , Procesamiento Proteico-Postraduccional , Tripsina/química , Tripsina/metabolismo , Sulfatos/química , Secuencia de Aminoácidos , Péptidos/química , Péptidos/análisis , Electrones
19.
J Exp Bot ; 75(15): 4611-4624, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38872385

RESUMEN

Post-translational modifications (PTMs) greatly increase protein diversity and functionality. To help the plant research community interpret the ever-increasing number of reported PTMs, the Plant PTM Viewer (https://www.psb.ugent.be/PlantPTMViewer) provides an intuitive overview of plant protein PTMs and the tools to assess it. This update includes 62 novel PTM profiling studies, adding a total of 112 000 modified peptides reporting plant PTMs, including 14 additional PTM types and three species (moss, tomato, and soybean). Furthermore, an open modification re-analysis of a large-scale Arabidopsis thaliana mass spectrometry tissue atlas identified previously uncharted landscapes of lysine acylations predominant in seed and flower tissues and 3-phosphoglycerylation on glycolytic enzymes in plants. An extra 'Protein list analysis' tool was developed for retrieval and assessing the enrichment of PTMs in a protein list of interest. We conducted a protein list analysis on nuclear proteins, revealing a substantial number of redox modifications in the nucleus, confirming previous assumptions regarding the redox regulation of transcription. We encourage the plant research community to use PTM Viewer 2.0 for hypothesis testing and new target discovery, and also to submit new data to expand the coverage of conditions, plant species, and PTM types, thereby enriching our understanding of plant biology.


Asunto(s)
Proteínas de Plantas , Procesamiento Proteico-Postraduccional , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo
20.
J Agric Food Chem ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850252

RESUMEN

Protein lysine lactylation, a recently discovered post-translational modification (PTM), is prevalent across tissues and cells of diverse species, serving as a regulator of glycolytic flux and biological metabolism. The yak (Bos grunniens), a species that has inhabited the Qinghai-Tibetan Plateau for millennia, has evolved intricate adaptive mechanisms to cope with the region's unique geographical and climatic conditions, exhibiting remarkable energy utilization and metabolic efficiency. Nonetheless, the specific landscape of lysine lactylation in yaks remains poorly understood. Herein, we present the first comprehensive lactylome profile of the yak, effectively identifying 421, 308, and 650 lactylated proteins in the heart, muscles, and liver, respectively. These lactylated proteins are involved in glycolysis/gluconeogenesis, the tricarboxylic acid cycle, oxidative phosphorylation, and metabolic process encompassing carbohydrates, lipids, and proteins during both anaerobic and aerobic glucose bio-oxidation, implying their crucial role in material and energy metabolism, as well as in maintaining homeostasis in yaks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA