Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Epilepsia ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953796

RESUMEN

OBJECTIVE: DYNC1H1 variants are involved on a disease spectrum from neuromuscular disorders to neurodevelopmental disorders. DYNC1H1-related epilepsy has been reported in small cohorts. We dissect the electroclinical features of 34 patients harboring de novo DYNC1H1 pathogenic variants, identify subphenotypes on the DYNC1H1-related epilepsy spectrum, and compare the genotype-phenotype correlations observed in our cohort with the literature. METHODS: Patients harboring de novo DYNC1H1 pathogenic variants were recruited through international collaborations. Clinical data were retrospectively collected. Latent class analysis was performed to identify subphenotypes. Multivariable binary logistic regression analysis was applied to investigate the association with DYNC1H1 protein domains. RESULTS: DYNC1H1-related epilepsy presented with infantile epileptic spasms syndrome (IESS) in 17 subjects (50%), and in 25% of these individuals the epileptic phenotype evolved into Lennox-Gastaut syndrome (LGS). In 12 patients (35%), focal onset epilepsy was defined. In two patients, the epileptic phenotype consisted of generalized myoclonic epilepsy, with a progressive phenotype in one individual harboring a frameshift variant. In approximately 60% of our cohort, seizures were drug-resistant. Malformations of cortical development were noticed in 79% of our patients, mostly on the lissencephaly-pachygyria spectrum, particularly with posterior predominance in a half of them. Midline and infratentorial abnormalities were additionally reported in 45% and 27% of subjects. We have identified three main classes of subphenotypes on the DYNC1H1-related epilepsy spectrum. SIGNIFICANCE: We propose a classification in which pathogenic de novo DYNC1H1 variants feature drug-resistant IESS in half of cases with potential evolution to LGS (Class 1), developmental and epileptic encephalopathy other than IESS and LGS (Class 2), or less severe focal or genetic generalized epilepsy including a progressive phenotype (Class 3). We observed an association between stalk domain variants and Class 1 phenotypes. The variants p.Arg309His and p.Arg1962His were common and associated with Class 1 subphenotype in our cohort. These findings may aid genetic counseling of patients with DYNC1H1-related epilepsy.

2.
Cureus ; 16(5): e59475, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38826968

RESUMEN

We present a rare neurocutaneous genetic disorder where patients develop a combination of cerebral dysgenesis, neuropathy, ichthyosis, and keratoderma, commonly known as CEDNIK syndrome. It is an autosomal recessive inheritance involving the SNAP29 protein, mapped to the 22q11.2 gene. Phenotypic variation is seen with this disease, with clinical manifestation of developmental milestone delays ranging in severity. With only a handful of documented cases, available research, management of the syndrome, and prognosis are not well established. As CEDNIK syndrome has systemic implications, care coordination between specialists is essential in improving patient outcomes. Particularly important is preventing patients from meeting the criteria of failure to thrive, a commonly reported issue. In this case, we present a four-month-old male with a past medical history of pyloric stenosis status/post pyloromyotomy who has failure to thrive, gastroesophageal reflux disease, profound hypotonia, and delayed progression of developmental milestones. Additionally, the case is complicated by idiopathic pyloric stenosis, further contributing to the patient's failure to thrive. We aim to discuss the pathophysiology of this syndrome, explore the timeline of disease progression, as well as compare our case to the current literature.

3.
Epileptic Disord ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758065

RESUMEN

OBJECTIVE: Recessive LAMC3 mutations are recognized to cause epilepsy with cortical malformations characterized by polymicrogyria and pachygyria. The objective of this study was to describe the clinical picture and epilepsy phenotype of four patients with a previously undescribed LAMC3 variant. METHODS: All epilepsy patients treated in Kuopio Epilepsy Center (located in Kuopio, Finland) are offered the possibility to participate in a scientific study investigating biomarkers in epilepsy (Epibiomarker study). We have collected a comprehensive database of the study population, and are currently re-evaluating our database regarding the patients with developmental and/or epileptic encephalopathy (DEE). If the etiology of epilepsy remains unknown in the clinical setting, we are performing whole exome sequencing to recognize the genetic causes. RESULTS: Among our study population of 323 DEE patients we recognized three patients with similar homozygous LAMC3 c.1866del (p.(Phe623Serfs*10)) frameshift variant and one patient with a compound heterozygous mutation where the same frameshift variant was combined with an intronic LAMC3 c.4231-12C>G variant on another allele. All these patients have severe epilepsy and either bilateral agyria-pachygyria or bilateral polymicrogyria in their clinical MRI scanning. Cortical malformations involve the occipital lobes in all our patients. Epilepsy phenotype is variable as two of our patients have DEE with epileptic spasms progressing to Lennox-Gastaut syndrome and intellectual disability. The other two patients have focal epilepsy without marked cognitive deficit. The four patients are unrelated. LAMC3 c.1866del p.(Phe623Serfs*10) frameshift variant is enriched in the Finnish population. SIGNIFICANCE: Only a few patients with epilepsy caused by LAMC3 homozygous or compound heterozygous mutations have been described in the literature. To our knowledge, the variants discovered in our patients have not previously been published. Clinical phenotype appears to be more varied than previously assumed and patients with a milder phenotype and normal cognition have probably remained unrecognized.

4.
Am J Med Genet A ; 191(12): 2878-2883, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37621218

RESUMEN

Lissencephaly type 10 is a recently reported condition characterized by posterior predominant abnormalities in gyration with associated seizures, developmental delays or intellectual disability. We report a boy who presented at 5 years of age with epilepsy and developmental delays. His family history was notable for epilepsy in two prior generations associated with variable developmental and cognitive impact. Exome sequencing identified a novel missense variant in CEP85L [NM_001042475.2; c.196A>G, p.(Thr66Ala)] which segregated in four affected family members across three generations. Brain imaging of the proband demonstrated a posterior lissencephaly pattern with pachygyria, while other affected family members demonstrated a similar subcortical band heterotopia. This report expands the phenotypic spectrum of this rare disorder by describing a novel variant in CEP85L in a family with variable clinical and neuroimaging findings.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Epilepsia , Lisencefalia , Masculino , Humanos , Lisencefalia/diagnóstico por imagen , Lisencefalia/genética , Encéfalo/diagnóstico por imagen , Mutación Missense , Proteínas del Citoesqueleto/genética , Proteínas de Fusión Oncogénica
5.
J Neuroimaging ; 33(5): 731-736, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355835

RESUMEN

BACKGROUND AND PURPOSE: Subcortical band heterotopia (SBH) is a malformation of cortical development diagnosed via MRI. Currently, patients with SBH are classified according to Di Donato's classification. We aimed to show a variation of SBH and the usefulness of double inversion recovery (DIR) images. METHODS: We retrospectively reviewed the MRI findings of 28 patients with SBH. The patients were classified according to Donato's classification by using conventional MR images, and their DIR findings were reviewed. RESULTS: Of 28 patients, 20 were grade 1 and 8 were grade 2 according to Di Donato's classification. In 15 of 28 patients, the following four types of atypical MRI findings were detected: asymmetry distribution (four cases), coexistence of thin and thick SBH (five cases), and DIR faint abnormal signal intensity in subcortical white matter (five cases) and in deep white matter (five cases). The latter two types were detected on DIR alone and have not been reported. Additionally, these were identified only in the mild group (Di Donato's classification 1-1 or 1-2). CONCLUSION: DIR is a useful MRI sequence for detecting faint white matter signal abnormalities, and it can aid in the accurate classification of SBH and identification of its variations, which may reflect the pathology of SBH.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Humanos , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/diagnóstico por imagen , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos
6.
Am J Hum Genet ; 109(11): 2068-2079, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36283405

RESUMEN

Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda , Lisencefalia , Malformaciones del Sistema Nervioso , Humanos , Animales , Ratones , Lisencefalia/genética , Alelos , Tubulina (Proteína)/genética , Fenotipo , Malformaciones del Sistema Nervioso/genética , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/genética
7.
Am J Med Genet A ; 188(7): 2168-2172, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35316582

RESUMEN

SATB2-associated syndrome (SAS) is a rare disorder characterized by developmental delay, behavioral problems, and craniofacial anomalies in particular dental and palatal abnormalities. We describe the clinical course, genetic and autopsy findings in a Chinese boy with global developmental delay, hypotonia, epilepsy, recurrent fractures and osteopenia. Brain magnetic resonance imaging showed pachygyria, white matter hypoplasia and hypogenesis of the corpus callosum. Whole-exome sequencing identified a novel heterozygous missense variant c.1555G>A p.(Glu519Lys) in the SATB2 gene. Unfortunately, he died at 26 months of bronchiolitis and pneumonia. Autopsy revealed pachygyria which was more severe anteriorly, dilated lateral and third ventricles and partial agenesis of the corpus callosum. Histology showed features compatible with two-layered lissencephaly. The bone showed disordered lamination and bone matrix. Although SATB2 has been shown to be involved in the regulation of neuronal migration in the developing brain, lissencephaly has not been reported so far. This could represent a more severe phenotype of SAS.


Asunto(s)
Enfermedades Óseas Metabólicas , Lisencefalia , Proteínas de Unión a la Región de Fijación a la Matriz , Enfermedades Óseas Metabólicas/diagnóstico , Enfermedades Óseas Metabólicas/genética , Enfermedades Óseas Metabólicas/patología , Encéfalo/anomalías , China , Humanos , Lisencefalia/patología , Imagen por Resonancia Magnética , Masculino , Proteínas de Unión a la Región de Fijación a la Matriz/genética , Síndrome , Factores de Transcripción/genética
8.
Mol Syndromol ; 13(1): 56-63, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35221876

RESUMEN

Autosomal recessive primary microcephaly (MCPH) is a uncommon disorder due to congenital deficiency in the development of the cerebral cortex, characterized by a head circumference below 2 SD. MCPH is a group of diseases with genetic heterogeneity and has been reported by the Online Mendelian Inheritance In Man® (OMIM) database and associated with 25 different genes. It is known that MCPH cases are most frequently associated with abnormal spindle-like, microcephaly-associated (ASPM) gene mutations. The ASPM protein consists of an N-terminal 81 IQ (isoleucine-glutamine) domain, a calponin-homology domain, and a C-terminal domain. It interacts with calmodulin and calmodulin-related proteins via the IQ domain and acts as a part in mitotic spindle function. The basic characteristics of cases with ASPM gene mutations are microcephaly (below -3 SD) present before 1 year of age, intellectual disability, and the absence of other congenital anomalies. Macroscopic organization of the brain is preserved in cases with ASPM mutation, and a decrease in brain volume, particularly gray matter volume loss and a simplified gyral pattern are observed. Cortical migration defects are a very rare finding in patients with ASPM mutations. In the present study, we aimed to discuss the clinical and genetic findings in 2 cases with cortical dysplasia in which truncated variants in the ASPM gene were detected, particularly in terms of genotype-phenotype correlation in comparison with the literature.

9.
Brain Dev ; 43(8): 857-862, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34092403

RESUMEN

BACKGROUND: The DYNC1H1 gene encodes the heavy chain of cytoplasmic dynein 1, a core structure of the cytoplasmic dynein complex. Dominant DYNC1H1 mutations are implicated in Charcot-Marie-Tooth disease, axonal, type 20, spinal muscular atrophy, lower extremity-predominant 1, and autosomal dominant mental retardation 13 with neuronal migration defects. We report two patients with DYNC1H1 mutations who had intractable epilepsy and intellectual disability (ID), one with and one without pachygyria. CASE REPORTS: Patient 1 had severe ID. At the age of 2 months, she presented myoclonic seizures and tonic seizures, and later experienced atonic seizures and focal impaired-awareness seizures (FIAS). EEG showed slow waves in right central areas during myoclonic seizures. Brain MRI revealed pachygyria, predominantly in the occipital lobe. After callosal transection her atonic seizures disappeared, but FIAS remained. Patient 2 was diagnosed with autism spectrum disorder (ASD) and severe ID. At the age of 7 years, he presented generalized tonic-clonic seizures, myoclonic seizures, and FIAS. Interictal EEG showed generalized spike-and-wave complexes, predominantly in the left frontal area. Brain MRI was unremarkable. Exome sequencing revealed novel de novo mutations in DYNC1H1: c.4691A > T, p.(Glu1564Val) in Patient 1 and c.12536 T > C, p.(Leu4179Ser) in Patient 2. CONCLUSIONS: DYNC1H1 comprises a stem, stalk, and six AAA domains. Patient 2 is the second report of an AAA6 domain mutation without malformations of cortical development. The p.(Gly4072Ser) mutation in the AAA6 domain was also reported in a patient with ASD. It may be that the AAA6 domain has little effect on neuronal movement of DYNC1H1 along microtubules.


Asunto(s)
Dineínas Citoplasmáticas/genética , Epilepsia Refractaria/genética , Adolescente , Anticonvulsivantes/administración & dosificación , Trastorno del Espectro Autista/genética , Niño , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/tratamiento farmacológico , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Malformaciones del Desarrollo Cortical/genética , Secuenciación del Exoma
10.
Eur J Med Genet ; 64(4): 104181, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33647455

RESUMEN

In a consanguineous Pakistani kinship afflicted with mild to moderate intellectual disability (ID), mild lissencephaly, brain atrophy and skeletal anomalies, we detected homozygous CRADD c.2T > G (p.Met1?) and USP44 c.873_886delinsT (p.Leu291Phefs*8), two good candidates 1.85-Mb apart that segregated with the disorder. Biallelic damaging variants in CRADD cause recessive mental retardation-34 (MRT34; MIM 614499) with mild to moderate ID, "thin" lissencephaly, and variable megalencephaly and seizures. For USP44, only a single ID family has been reported with a homozygous deleterious variant, which is the same as the variant we detected. In affected individuals we present, at ages 29-32 years, clinical findings are similar yet not fully concordant with phenotypes for either gene considering the skeletal findings, and ID is not as severe as would be expected for defects in two genes with additive effect. Some variable CRADD-related features such as language impairment and seizures are not observed in the presented family. The presence of the two variants in the family is a very rare example of familial linked homozygous variants, and whether the damaging USP44 variant contributed to the disease in the family we present is not clear. As for the skeletal findings, facial dysmorphism and digestive problems, we did not find a candidate variant. This study is an example of both clinical variation and difficulty in variant detection and evaluation. Our findings highlight that even an extensive exome sequence analysis can fail to fully uncover the complex molecular basis of a syndrome even if potentially causative variants are identified.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Lisencefalia/genética , Anomalías Musculoesqueléticas/genética , Estrabismo/genética , Ubiquitina Tiolesterasa/genética , Adulto , Consanguinidad , Discapacidades del Desarrollo/patología , Femenino , Humanos , Discapacidad Intelectual/patología , Lisencefalia/patología , Masculino , Anomalías Musculoesqueléticas/patología , Mutación , Linaje , Estrabismo/patología , Síndrome
11.
Eur J Paediatr Neurol ; 30: 71-81, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33453472

RESUMEN

INTRODUCTION: Lissencephaly is a rare malformation of cortical development due to abnormal transmantle migration resulting in absent or reduced gyration. The lissencephaly spectrum consists of agyria, pachygyria and subcortical band heterotopia. In this study we compared genetic aetiology, neuroradiology, clinical phenotype and response to antiepileptic drugs in patients with epilepsy and lissencephaly spectrum malformations. METHODS: The study group consisted of 20 patients - 13 males and 7 females, aged 18 months to 21 years at the time of data collection. Genetic testing was performed by oligonucleotide array comparative genomic hybridization (microarray), multiplex ligation-dependent probe amplification (MLPA), targeted gene panels and whole exome/genome sequencing. All neuroradiological investigations were re-evaluated and the malformations were classified by the same neuroradiologist. Clinical features and response to anti-epileptic drugs (AEDs) were evaluated by retrospective review of medical records. RESULTS: In eleven patients (55%) mutations in PAFAH1B1 (LIS1) or variable microdeletions of 17p13.3 including the PAFAH1B1 gene were detected. Four patients (20%) had tubulin encoding gene mutations (TUBA1A, TUBG1 and TUBGCP6). Mutations in DCX, DYNC1H1, ADGRG1 and WDR62 were identified in single patients. In one patient, a possibly pathogenic intragenic deletion in TRIO was detected. A clear radiologic distinction could be made between tubulinopathies and PAFAH1B1 related lissencephaly. The majority of the patients had therapy resistant epilepsy and epileptic spasms was the most prominent seizure type. The best therapeutic response to seizure control in our cohort was obtained by the ketogenic diet, vigabatrin, clobazam, phenobarbital and valproate. CONCLUSION: The most common genetic aetiologies in our cohort of 20 individuals with epilepsy and lissencephaly spectrum were intragenic deletions or single nucleotide mutations in PAFAH1B1 or larger deletions in 17p13.3, encompassing PAFAH1B1, followed by mutations in tubulin encoding genes. Radiological findings could reliably predict molecular results only in agyria with a posterior to anterior gradient. Radiological and molecular findings did not correlate consistently with severity of clinical outcome or therapeutic response.


Asunto(s)
Lisencefalia/clasificación , Lisencefalia/diagnóstico por imagen , Lisencefalia/genética , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Adolescente , Anticonvulsivantes/uso terapéutico , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Proteínas Asociadas a Microtúbulos/genética , Mutación , Fenotipo , Estudios Retrospectivos , Tubulina (Proteína)/genética
12.
Brain Dev ; 43(2): 337-342, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33059947

RESUMEN

BACKGROUND: Microcephalic osteodysplastic primordial dwarfism type I (MOPD I, also known as Taybi-Linder syndrome) is a rare genetic disorder associated with severe intrauterine growth retardation, short stature, microcephaly, brain anomalies, stunted limbs, and early mortality. RNU4ATAC, the gene responsible for this disorder, does not encode a protein but instead the U4atac small nuclear RNA (snRNA), a crucial component of the minor spliceosome. Roifman syndrome is an allelic disorder of MOPD I that is characterized by immunodeficiency complications. CASE REPORT: The patient described herein is an 18-year-old woman exhibiting congenital dwarfism and microcephaly with structural brain anomaly. She suffered human herpesvirus 6 (HHV-6)-associated acute necrotizing encephalopathy at the age of one, thereafter resulting in severe psychomotor disabilities. Genetic analysis using gene microarray and whole-exome sequencing could not identify the cause of her congenital anomalies. However, Sanger sequencing revealed a compound heterozygous mutation within RNU4ATAC (NR_023343.1:n.[50G > A];[55G > A]). Immunological findings showed decreases in total lymphocytes, CD4+ T cells, and T cell regenerative activity. Furthermore, antibodies against varicella-zoster, rubella, measles, mumps, and influenza were very low or negative despite having received vaccinations for these viruses. HHV-6 IgG antibodies were also undetected. DISCUSSION: The patient here exhibited a marked MOPD I phenotype complicated by various immunodeficiencies. Previous studies have not demonstrated immunodeficiency comorbidities within MOPD I subjects, but this report suggests an evident immunodeficiency in MOPD I. Patients with MOPD I should be treated with one of the immunodeficiency syndromes.


Asunto(s)
Cardiomiopatías/genética , Enanismo/genética , Retardo del Crecimiento Fetal/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Microcefalia/genética , Osteocondrodisplasias/genética , Enfermedades de Inmunodeficiencia Primaria/genética , ARN Nuclear Pequeño/genética , Enfermedades de la Retina/genética , Adolescente , Alelos , Cardiomiopatías/fisiopatología , Enanismo/fisiopatología , Femenino , Retardo del Crecimiento Fetal/fisiopatología , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/fisiopatología , Microcefalia/fisiopatología , Mutación , Osteocondrodisplasias/fisiopatología , Linaje , Fenotipo , Enfermedades de Inmunodeficiencia Primaria/fisiopatología , Enfermedades de la Retina/fisiopatología , Secuenciación del Exoma
13.
Am J Med Genet A ; 182(10): 2372-2376, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32744776

RESUMEN

Microcephalic osteodysplastic primordial dwarfism (MOPD) type II is a rare disorder characterized by skeletal dysplasia, severe proportionate short stature, insulin resistance and cerebrovascular abnormalities including cerebral aneurysms and moyamoya disease. MOPD type II is caused by mutations in the pericentrin (PCNT) gene, which encodes a protein involved in centrosomes function. We report a 2 year old girl affected by MOPD type II caused by two compound heterozygous loss-of-function variants in PCNT gene, of which one is a novel variant (c.5304delT; p.Gly1769AlafsTer34). The patient presented atypical brain magnetic resonance imaging (MRI) findings consistent with pachygyria. This was confirmed by morphometric analysis of cortical thickness (CT) and gyrification index by comparing MRI data of the patient with a group of eight age-matched healthy controls. The statistical analysis revealed a significant and diffuse increase of CT with an anterior-predominant pattern and diffuse reduced gyrification (p < .05). These findings provide new evidences to the emergent concept that malformations of cortical development are complex disorders and that new genetic findings contribute to the fading of classification borders.


Asunto(s)
Antígenos/genética , Enanismo/genética , Retardo del Crecimiento Fetal/genética , Lisencefalia/genética , Microcefalia/genética , Osteocondrodisplasias/genética , Preescolar , Enanismo/diagnóstico por imagen , Enanismo/patología , Femenino , Retardo del Crecimiento Fetal/diagnóstico por imagen , Retardo del Crecimiento Fetal/patología , Humanos , Lisencefalia/diagnóstico por imagen , Lisencefalia/patología , Imagen por Resonancia Magnética , Microcefalia/diagnóstico por imagen , Microcefalia/patología , Mutación/genética , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/patología
14.
Clin Genet ; 98(3): 282-287, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32557621

RESUMEN

Biallelic loss-of-function mutations in the centrosomal pericentrin gene (PCNT) cause microcephalic osteodysplastic primordial dwarfism type II (MOPDII), which is characterized by extreme growth retardation, microcephaly, skeletal dysplasia, and dental anomalies. Life expectancy is reduced due to a high risk of cerebral vascular anomalies. Here, we report two siblings with MOPDII and attenuated growth restriction, and pachygyria. Compound heterozygosity for two novel truncated PCNT variants was identified. Both truncated PCNT proteins were expressed in patient's fibroblasts, with a reduced total protein amount compared to control. Patient's fibroblasts showed impaired cell cycle progression. As a novel finding, 20% of patient's fibroblasts were shown to express PCNT comparable to control. This was associated with normal mitotic morphology and normal co-localization of mutated PCNT with centrosome-associated proteins γ-tubulin and centrin 3, suggesting some residual function of truncated PCNT proteins. These data expand the clinical and molecular spectrum of MOPDII and indicate that residual PCNT function might be associated with attenuated growth restriction in MOPDII.


Asunto(s)
Antígenos/genética , Enanismo/genética , Retardo del Crecimiento Fetal/genética , Predisposición Genética a la Enfermedad , Lisencefalia/genética , Microcefalia/genética , Osteocondrodisplasias/genética , Adolescente , Adulto , Alelos , Centrosoma/metabolismo , Niño , Preescolar , Enanismo/patología , Femenino , Retardo del Crecimiento Fetal/patología , Fibroblastos/metabolismo , Humanos , Lisencefalia/patología , Mutación con Pérdida de Función/genética , Masculino , Microcefalia/patología , Osteocondrodisplasias/patología , Hermanos , Tubulina (Proteína)/genética , Adulto Joven
15.
Acta Vet Scand ; 62(1): 32, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32563254

RESUMEN

BACKGROUND: Lissencephaly is a brain malformation characterized by smooth and thickened cerebral surface, which may result in structural epilepsy. Lissencephaly is not common in veterinary medicine. Here, we characterize the first cases of lissencephaly in four Shih Tzu dogs, including clinical presentations and findings of magnetic resonance imaging of lissencephaly and several concomitant brain malformations. CASE PRESENTATION: Early-onset acute signs of forebrain abnormalities were observed in all dogs, which were mainly cluster seizures and behavioral alterations. Based on neurological examination, the findings were consistent with symmetrical and bilateral forebrain lesions. Metabolic disorders and inflammatory diseases were excluded. Magnetic resonance imaging for three dogs showed diffuse neocortical agyria and thickened gray matter while one dog had mixed agyria and pachygyria. Other features, such as internal hydrocephalus, supracollicular fluid accumulation, and corpus callosum hypoplasia, were detected concomitantly. Antiepileptic drugs effectively controlled cluster seizures, however, sporadic isolated seizures and signs of forebrain abnormalities, such as behavioral alterations, central blindness, and strabismus persisted. CONCLUSIONS: Lissencephaly should be considered an important differential diagnosis in Shih Tzu dogs presenting with early-onset signs of forebrain abnormalities, including cluster seizures and behavioral alterations. Magnetic resonance imaging was appropriate for ante-mortem diagnosis of lissencephaly and associated cerebral anomalies.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Enfermedades de los Perros/diagnóstico por imagen , Epilepsia/veterinaria , Lisencefalia/veterinaria , Animales , Enfermedades de los Perros/congénito , Enfermedades de los Perros/diagnóstico , Perros , Epilepsia/tratamiento farmacológico , Epilepsia/etiología , Femenino , Lisencefalia/complicaciones , Lisencefalia/diagnóstico , Lisencefalia/diagnóstico por imagen , Imagen por Resonancia Magnética/veterinaria , Masculino
16.
Cytogenet Genome Res ; 160(4): 177-184, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32369810

RESUMEN

Nonmosaic trisomy involving 19p13.3p13.2 is a very uncommon abnormality. At present, only 12 cases with this genetic condition have been reported in the literature. However, the size of the trisomic fragment is heterogeneous and thus, the clinical spectrum is variable. Herein, we report the clinical and cytogenetic characterization of a 5-year-old boy with nonmosaic trisomy 19p13.3p13.2 (7.38 Mb), generated by a derivative Y chromosome resulting from a de novo unbalanced translocation t(Y;19)(q12;p13.2). We demonstrated the integrity of the euchromatic regions in the abnormal Y chromosome to confirm the pure trisomy 19p. Our patient shares some clinical features described in other reported patients with pure trisomy 19p, such as craniofacial anomalies, developmental delay, and heart defects. Different to previous reports, our case exhibits frontal pachygyria and polymicrogyria. These additional features contribute to further delineate the clinical spectrum of trisomy 19p13.3p13.2.


Asunto(s)
Cromosomas Humanos Par 19/genética , Cromosomas Humanos Y/genética , Lisencefalia/genética , Polimicrogiria/genética , Translocación Genética/genética , Trisomía/genética , Preescolar , Humanos , Lisencefalia/patología , Masculino , Mosaicismo , Padres , Polimicrogiria/patología , Trisomía/patología , Adulto Joven
17.
Eur J Med Genet ; 63(5): 103877, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32028042

RESUMEN

Baraitser-Winter cerebrofrontofacial syndrome is an autosomal dominant disease characterized by multiple congenital abnormalities and intellectual disability, which is caused by mutations in either the ACTB or ACTG1 genes. In this report, we described novel phenotypic findings in two Mexican patients with the disorder in whom two novel ACTG1 mutations (c.176A > G, p.Gln59Arg; and c.608C > T, p.Thr203Met) were identified.


Asunto(s)
Actinas/genética , Anomalías Craneofaciales/patología , Discapacidades del Desarrollo/patología , Fenotipo , Niño , Anomalías Craneofaciales/genética , Discapacidades del Desarrollo/genética , Ojo/patología , Humanos , Lactante , Masculino , Mutación Missense , Síndrome
18.
Neuron ; 106(2): 246-255.e6, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32097629

RESUMEN

Genes mutated in human neuronal migration disorders encode tubulin proteins and a variety of tubulin-binding and -regulating proteins, but it is very poorly understood how these proteins function together to coordinate migration. Additionally, the way in which regional differences in neocortical migration are controlled is completely unknown. Here we describe a new syndrome with remarkably region-specific effects on neuronal migration in the posterior cortex, reflecting de novo variants in CEP85L. We show that CEP85L is required cell autonomously in vivo and in vitro for migration, that it localizes to the maternal centriole, and that it forms a complex with many other proteins required for migration, including CDK5, LIS1, NDE1, KIF2A, and DYNC1H1. Loss of CEP85L disrupts CDK5 localization and activation, leading to centrosome disorganization and disrupted microtubule cytoskeleton organization. Together, our findings suggest that CEP85L highlights a complex that controls CDK5 activity to promote neuronal migration.


Asunto(s)
Movimiento Celular , Quinasa 5 Dependiente de la Ciclina/genética , Proteínas del Citoesqueleto/genética , Lisencefalia/genética , Lisencefalia/patología , Neocórtex/patología , Neuronas/patología , Proteínas de Fusión Oncogénica/genética , Centriolos/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Microtúbulos/genética , Microtúbulos/ultraestructura , Proteínas del Tejido Nervioso/fisiología , Adulto Joven
19.
Neuron ; 106(2): 237-245.e8, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32097630

RESUMEN

Lissencephaly (LIS), denoting a "smooth brain," is characterized by the absence of normal cerebral convolutions with abnormalities of cortical thickness. Pathogenic variants in over 20 genes are associated with LIS. The majority of posterior predominant LIS is caused by pathogenic variants in LIS1 (also known as PAFAH1B1), although a significant fraction remains without a known genetic etiology. We now implicate CEP85L as an important cause of posterior predominant LIS, identifying 13 individuals with rare, heterozygous CEP85L variants, including 2 families with autosomal dominant inheritance. We show that CEP85L is a centrosome protein localizing to the pericentriolar material, and knockdown of Cep85l causes a neuronal migration defect in mice. LIS1 also localizes to the centrosome, suggesting that this organelle is key to the mechanism of posterior predominant LIS.


Asunto(s)
Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Proteínas del Citoesqueleto/genética , Proteínas de Fusión Oncogénica/genética , Adolescente , Adulto , Edad de Inicio , Animales , Centrosoma/patología , Niño , Preescolar , Aberraciones Cromosómicas , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/diagnóstico por imagen , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/patología , Femenino , Técnicas de Silenciamiento del Gen , Variación Genética , Heterocigoto , Humanos , Lactante , Imagen por Resonancia Magnética , Masculino , Ratones , Mutación/genética , Linaje , Convulsiones/etiología , Adulto Joven
20.
Am J Hum Genet ; 105(4): 844-853, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31585108

RESUMEN

Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.


Asunto(s)
Alelos , Lisencefalias Clásicas y Heterotopias Subcorticales en Banda/genética , Proteínas del Citoesqueleto/genética , Discapacidades del Desarrollo/genética , Lisencefalia/genética , Femenino , Humanos , Masculino , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA