Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; : 101410, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39349247

RESUMEN

BACKGROUND & AIMS: Small noncoding vault RNAs (vtRNAs) are involved in many cell processes important for health and disease, but their pathobiological functions in the intestinal epithelium are underexplored. Here, we investigated the role of human vtRNA1-1 in regulating intestinal epithelial renewal and barrier function. METHODS: Studies were conducted in vtRNA1-1 transgenic (vtRNA1-1Tg) mice, primary enterocytes, and Caco-2 cells. Extracellular vesicles (EVs) were isolated from the serum of shock patients and septic mice. Intestinal organoids (enteroids) were prepared from vtRNA1-1Tg and littermate mice. Mucosal growth was measured by Ki67 immunostaining or BrdU incorporation, and gut permeability assessed using the FITC-dextran assay. RESULTS: Intestinal tissues recovered from shock patients and septic mice evidenced mucosal injury and gut barrier dysfunction; vtRNA levels were elevated in EVs isolated from their sera. In mice, intestinal epithelial-specific transgenic expression of vtRNA1-1 inhibited mucosal growth, reduced Paneth cell numbers and intercellular junction (IJ) protein expression, and increased gut barrier vulnerability to lipopolysaccharide exposure. Conversely, in vitro silencing of vtRNA1-1 increased IJ protein levels and enhanced epithelial barrier function. Exposing enteroids to vtRNA1-1-rich EVs augmented paracellular permeability. Mechanistically, vtRNA1-1 interacted with CUG-binding protein 1 (CUGBP1) and increased CUGBP1 association with claudin-1 and occludin mRNAs, thereby inhibiting their expression. CONCLUSIONS: These findings indicate that elevated levels of vtRNA1-1 in EVs and mucosal tissues repress intestinal epithelial renewal and barrier function. Notably, this work reveals a novel role for dysregulation of the vtRNA1-1/CUGBP1 axis in the pathogenesis of gut mucosal disruption in critical illness.

2.
Am J Clin Nutr ; 120 Suppl 1: S15-S30, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39300660

RESUMEN

BACKGROUND: Environmental enteric dysfunction (EED) is an asymptomatic intestinal disorder associated with growth impairment, delayed neurocognitive development, and impaired oral vaccine responses. OBJECTIVES: We set out to develop and validate a histopathologic scoring system on duodenal biopsies from a cohort study of children with growth failure in Bangladesh, Pakistan, and Zambia ("EED") with reference to biopsies from United States children with no clinically reported histologic pathology (referred to hereafter as "normal") or celiac disease. METHODS: Five gastrointestinal pathologists evaluated 745 hematoxylin and eosin slide images from 291 children with EED (mean age: 1.6 y) and 66 United States children (mean age: 6.8 y). Histomorphologic features (i.e., villus/crypt architecture, goblet cells, epithelial and lamina propria acute/chronic inflammation, Brunner's glands, Paneth cells, epithelial detachment, enterocyte injury, and foveolar metaplasia) were used to score each histopathologic slide. Generalized estimating equations were used to determine differences between EED, normal, and celiac disease, and receiver operating characteristic curves were used to assess predictive value. RESULTS: Biopsies from the duodenal bulb showed higher intramucosal Brunner's gland scores and lower intraepithelial lymphocyte scores than from the second or third parts of the duodenum (D2/3), so only D2/3 were included in the final analysis. Although 7 parameters differed significantly between EED and normal biopsies in regression models, only 5 (blunted villus architecture, increased intraepithelial lymphocytosis, goblet cell depletion, Paneth cell depletion, and reduced intramucosal Brunner's glands) were required to create a total score percentage (TSP-5) that correctly identified EED against normal biopsies (AUC: 0.992; 95% CI: 0.983, 0.998). Geographic comparisons showed more severe goblet cell depletion in Bangladesh and more marked intraepithelial lymphocytosis in Pakistan. CONCLUSIONS: This scoring system involving 5 histologic parameters demonstrates very high discrimination between EED and normal biopsies, indicating that this scoring system can be applied with confidence to studies of intestinal biopsies in EED.


Asunto(s)
Duodeno , Humanos , Bangladesh/epidemiología , Pakistán/epidemiología , Zambia/epidemiología , Estudios de Cohortes , Niño , Femenino , Masculino , Lactante , Preescolar , Duodeno/patología , Estados Unidos/epidemiología , Biopsia , Enfermedades Intestinales/patología , Enfermedad Celíaca/patología , Mucosa Intestinal/patología , Células Caliciformes/patología , Trastornos de la Nutrición del Niño/epidemiología , Trastornos de la Nutrición del Niño/patología
3.
Cells ; 13(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39273007

RESUMEN

The small intestinal crypts harbor secretory Paneth cells (PCs) which express bactericidal peptides that are crucial for maintaining intestinal homeostasis. Considering the diverse environmental conditions throughout the course of the small intestine, multiple subtypes of PCs are expected to exist. We applied single-cell RNA-sequencing of PCs combined with deep bulk RNA-sequencing on PC populations of different small intestinal locations and discovered several expression-based PC clusters. Some of these are discrete and resemble tuft cell-like PCs, goblet cell (GC)-like PCs, PCs expressing stem cell markers, and atypical PCs. Other clusters are less discrete but appear to be derived from different locations along the intestinal tract and have environment-dictated functions such as food digestion and antimicrobial peptide production. A comprehensive spatial analysis using Resolve Bioscience was conducted, leading to the identification of different PC's transcriptomic identities along the different compartments of the intestine, but not between PCs in the crypts themselves.


Asunto(s)
Intestino Delgado , Células de Paneth , Células de Paneth/metabolismo , Animales , Intestino Delgado/metabolismo , Intestino Delgado/citología , Ratones , Ratones Endogámicos C57BL , Transcriptoma/genética , Análisis de la Célula Individual
4.
Cell Host Microbe ; 32(10): 1725-1743.e7, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39243761

RESUMEN

The cytokine tumor necrosis factor (TNF) plays important roles in limiting infection but is also linked to sepsis. The mechanisms underlying these paradoxical roles are unclear. Here, we show that TNF limits the antimicrobial activity of Paneth cells (PCs), causing bacterial translocation from the gut to various organs. This TNF-induced lethality does not occur in mice with a PC-specific deletion in the TNF receptor, P55. In PCs, TNF stimulates the IFN pathway and ablates the steady-state unfolded protein response (UPR), effects not observed in mice lacking P55 or IFNAR1. TNF triggers the transcriptional downregulation of IRE1 key genes Ern1 and Ern2, which are key mediators of the UPR. This UPR deficiency causes a significant reduction in antimicrobial peptide production and PC antimicrobial activity, causing bacterial translocation to organs and subsequent polymicrobial sepsis, organ failure, and death. This study highlights the roles of PCs in bacterial control and therapeutic targets for sepsis.


Asunto(s)
Traslocación Bacteriana , Células de Paneth , Sepsis , Transducción de Señal , Factor de Necrosis Tumoral alfa , Animales , Células de Paneth/metabolismo , Sepsis/microbiología , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Respuesta de Proteína Desplegada , Ratones Endogámicos C57BL , Ratones Noqueados , Endorribonucleasas/metabolismo , Endorribonucleasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Péptidos Antimicrobianos/metabolismo
5.
Histochem Cell Biol ; 162(5): 351-362, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39073425

RESUMEN

The study of intestinal stem cells is a prerequisite for the development of therapies aimed at regenerating the gut. To enable investigation of adult slow-cycling H2B-GFP-retaining putative small intestinal (SI) stem cells in vitro, we have developed a three-dimensional (3D) SI organoid culture model based on the Tet-Op histone 2 B (H2B)-green fluorescent protein (GFP) fusion protein (Tet-Op-H2B-GFP) transgenic mouse. SI crypts were isolated from 6- to 12-week-old Tet-Op-H2B-GFP transgenic mice and cultured with appropriate growth factors and an animal-derived matrix (Matrigel). For in vitro transgene expression, doxycycline was added to the culture medium for 24 h. By pulse-chase experiments, H2B-GFP expression and retention were assessed through direct GFP fluorescence observations, both by confocal and fluorescence microscopy and by immunohistochemistry. The percentages of H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells persisting in organoids were determined by scoring relevant GFP-positive cells. Our results indicate that 24 h exposure to doxycycline (pulse) induced ubiquitous expression of H2B-GFP in the SI organoids. During subsequent culture, in the absence of doxycycline (chase), there was a gradual loss (due to cell division) of H2B-GFP. At 6-day chase, slow-cycling H2B-GFP-retaining putative SI stem cells and H2B-GFP-retaining Paneth cells were detected in the SI organoids. The developed culture model allows detection of slow-cycling H2B-GFP-retaining putative SI stem cells and will enable the study of self-renewal and regeneration for further characterization of these cells.


Asunto(s)
Ratones Transgénicos , Organoides , Animales , Ratones , Organoides/citología , Organoides/metabolismo , Células Madre/citología , Células Madre/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Células Cultivadas , Intestino Delgado/citología , Intestino Delgado/metabolismo
6.
Ecotoxicol Environ Saf ; 282: 116741, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024956

RESUMEN

Ciguateric syndrome is a food poisoning associated with the consumption of some species of fish that have accumulated ciguatoxins (CTXs) in their tissues. The effects of the syndrome occur with nervous imbalances which have been described for quite some time, and mentioned in sailing literature for centuries. In the last decade, research has been focused on the implementation of analytical methods for toxin identification and the study of action modes of CTXs to design effective treatments. However, an important aspect is to determine the damage that CTXs caused in the organs of affected individuals. In this work, the damages observed in tissues of mice, mainly in the small intestine, were analyzed. The animals were fed with CTX-contaminated fish muscle at concentrations 10-times below the median lethal dose (LD50) for 10 weeks. The analysis of tissues derived from the oral treatment resulted in an increased occurrence of Paneth cells, presence of lymphoid tissue infiltrating the mucosa and fibrous lesions in the mucosal layer of the small intestine. A decreasing weight in animals fed with toxic muscle was observed.


Asunto(s)
Ciguatoxinas , Peces , Intestino Delgado , Animales , Intestino Delgado/efectos de los fármacos , Intestino Delgado/patología , Ciguatoxinas/toxicidad , Ratones , Contaminación de Alimentos/análisis , Intoxicación por Ciguatera , Masculino , Alimentos Marinos , Dosificación Letal Mediana
7.
Tissue Cell ; 89: 102466, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986346

RESUMEN

The gut microbiota is responsible for several metabolic functions, producing various metabolites with numerous roles for the host. The gut microbiota plays a key role in constructing the microvascular network in the intestinal villus, depending on the Paneth cells, strategically positioned to coordinate the development of both the microbiota and the microvasculature. The gut microbiota secretes several molecules and chemokines involved in the induction of the secretion of pro-angiogenic factors.


Asunto(s)
Microbioma Gastrointestinal , Neovascularización Fisiológica , Microbioma Gastrointestinal/fisiología , Humanos , Animales , Intestinos/microbiología , Intestinos/irrigación sanguínea , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Patológica/microbiología , Neovascularización Patológica/patología , Células de Paneth/metabolismo , Angiogénesis
8.
Eur J Immunol ; : e2350716, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837757

RESUMEN

Immune mediators affect multiple biological functions of intestinal epithelial cells (IECs) and, like Paneth and Paneth-like cells, play an important role in intestinal epithelial homeostasis. IFN-γ a prototypical proinflammatory cytokine disrupts intestinal epithelial homeostasis. However, the mechanism underlying the process remains unknown. In this study, using in vivo and in vitro models we demonstrate that IFN-γ is spontaneously secreted in the small intestine. Furthermore, we observed that this cytokine stimulates mitochondrial activity, ROS production, and Paneth and Paneth-like cell secretion. Paneth and Paneth-like secretion downstream of IFN-γ, as identified here, is mTORC1 and necroptosis-dependent. Thus, our findings revealed that the pleiotropic function of IFN-γ also includes the regulation of Paneth cell function in the homeostatic gut.

9.
Engineering (Beijing) ; 35: 241-256, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38911180

RESUMEN

Intestinal homeostasis is maintained by specialized host cells and the gut microbiota. Wnt/ß-catenin signaling is essential for gastrointestinal development and homeostasis, and its dysregulation has been implicated in inflammation and colorectal cancer. Axin1 negatively regulates activated Wnt/ß-catenin signaling, but little is known regarding its role in regulating host-microbial interactions in health and disease. Here, we aim to demonstrate that intestinal Axin1 determines gut homeostasis and host response to inflammation. Axin1 expression was analyzed in human inflammatory bowel disease datasets. To explore the effects and mechanism of intestinal Axin1 in regulating intestinal homeostasis and colitis, we generated new mouse models with Axin1 conditional knockout in intestinal epithelial cell (IEC; Axin1 ΔIEC) and Paneth cell (PC; Axin1 ΔPC) to compare with control (Axin1 LoxP; LoxP: locus of X-over, P1) mice. We found increased Axin1 expression in the colonic epithelium of human inflammatory bowel disease (IBD). Axin1 ΔIEC mice exhibited altered goblet cell spatial distribution, PC morphology, reduced lysozyme expression, and enriched Akkermansia muciniphila (A. muciniphila). The absence of intestinal epithelial and PC Axin1 decreased susceptibility to dextran sulfate sodium (DSS)-induced colitis in vivo. Axin1 ΔIEC and Axin1 ΔPC mice became more susceptible to DSS-colitis after cohousing with control mice. Treatment with A. muciniphila reduced DSS-colitis severity. Antibiotic treatment did not change the IEC proliferation in the Axin1 Loxp mice. However, the intestinal proliferative cells in Axin1 ΔIEC mice with antibiotic treatment were reduced compared with those in Axin1 ΔIEC mice without treatment. These data suggest non-colitogenic effects driven by the gut microbiome. In conclusion, we found that the loss of intestinal Axin1 protects against colitis, likely driven by epithelial Axin1 and Axin1-associated A. muciniphila. Our study demonstrates a novel role of Axin1 in mediating intestinal homeostasis and the microbiota. Further mechanistic studies using specific Axin1 mutations elucidating how Axin1 modulates the microbiome and host inflammatory response will provide new therapeutic strategies for human IBD.

10.
Ecotoxicol Environ Saf ; 277: 116337, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38640798

RESUMEN

The intricate architecture of the intestinal epithelium, crucial for nutrient absorption, is constantly threatened by environmental factors. The epithelium undergoes rapid turnover, which is essential for maintaining homeostasis, under the control of intestinal stem cells (ISCs). The central regulator, Wnt/ß-catenin signaling plays a key role in intestinal integrity and turnover. Despite its significance, the impact of environmental factors on this pathway has been largely overlooked. This study, for the first time, investigates the influence of Cd on the intestinal Wnt signaling pathway using a mouse model. In this study, male BALB/c mice were administered an environmentally relevant Cd dose (0.98 mg/kg) through oral gavage to investigate the intestinal disruption and Wnt signaling pathway. Various studies, including histopathology, immunohistochemistry, RT-PCR, western blotting, ELISA, intestinal permeability assay, and flow cytometry, were conducted to study Cd-induced changes in the intestine. The canonical Wnt signaling pathway experienced significant downregulation as a result of sub-chronic Cd exposure, which caused extensive damage throughout the small intestine. Increased intestinal permeability and a skewed immune response were also observed. To confirm that Wnt signaling downregulation is the key driver of Cd-induced gastrointestinal toxicity, mice were co-exposed to LiCl (a recognized Wnt activator) and Cd. The results clearly showed that the harmful effects of Cd could be reversed, which is strong evidence that Cd mostly damages the intestine through the Wnt/ß-catenin signalling axis. In conclusion, this research advances the current understanding of the role of Wnt/ß catenin signaling in gastrointestinal toxicity caused by diverse environmental pollutants.


Asunto(s)
Cadmio , Mucosa Intestinal , Vía de Señalización Wnt , Animales , Masculino , Ratones , beta Catenina/metabolismo , Cadmio/toxicidad , Inflamación/inducido químicamente , Inflamación/patología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Intestinos/efectos de los fármacos , Intestinos/patología , Ratones Endogámicos BALB C , Vía de Señalización Wnt/efectos de los fármacos
11.
Exp Cell Res ; 437(1): 113965, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38378126

RESUMEN

Reactive oxygens species (ROS) are common byproducts of metabolic reactions and could be at the origin of many diseases of the elderly. Here we investigated the role of ROS in the renewal of the intestinal epithelium in mice lacking catalase (CAT) and/or nicotinamide nucleotide transhydrogenase (NNT) activities. Cat-/- mice have delayed intestinal epithelium renewal and were prone to develop necrotizing enterocolitis upon starvation. Interestingly, crypts lacking CAT showed fewer intestinal stem cells (ISC) and lower stem cell activity than wild-type. In contrast, crypts lacking NNT showed a similar number of ISCs as wild-type but increased stem cell activity, which was also impaired by the loss of CAT. No alteration in the number of Paneth cells (PCs) was observed in crypts of either Cat-/- or Nnt-/- mice, but they showed an evident decline in the amount of lysozyme. Cat deficiency caused fat accumulation in crypts, and a fall in the remarkable high amount of adipose triglyceride lipase (ATGL) in PCs. Notably, the low levels of ATGL in the intestine of Cat -/- mice increased after a treatment with the antioxidant N-acetyl-L-cysteine. Supporting a role of ATGL in the regulation of ISC activity, its inhibition halt intestinal organoid development. These data suggest that the reduction in the renewal capacity of intestine originates from fatty acid metabolic alterations caused by peroxisomal ROS.


Asunto(s)
Antioxidantes , Metabolismo de los Lípidos , Humanos , Ratones , Animales , Anciano , Metabolismo de los Lípidos/genética , Antioxidantes/farmacología , Antioxidantes/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Mucosa Intestinal/metabolismo , Homeostasis
12.
Transpl Immunol ; 82: 101977, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38184214

RESUMEN

Graft-versus-host disease (GVHD) is one of the most important cause of death in patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). The gastrointestinal tract is one of the most common sites affected by GVHD. However, there is no gold standard clinical practice for diagnosing gastrointestinal GVHD (GI-GVHD), and it is mainly diagnosed by the patient's clinical symptoms and related histological changes. Additionally, GI-GVHD causes intestinal immune system disorders, damages intestinal epithelial tissue such as intestinal epithelial cells((IEC), goblet, Paneth, and intestinal stem cells, and disrupts the intestinal epithelium's physical and chemical mucosal barriers. The use of antibiotics and diet alterations significantly reduces intestinal microbial diversity, further reducing bacterial metabolites such as short-chain fatty acids and indole, aggravating infection, and GI-GVHD. gut microbe diversity can be restored by fecal microbiota transplantation (FMT) to treat refractory GI-GVHD. This review article focuses on the clinical diagnosis of GI-GVHD and the effect of GVHD on intestinal flora and its metabolites.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Enfermedad Injerto contra Huésped/diagnóstico , Enfermedad Injerto contra Huésped/terapia , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Epiteliales/metabolismo , Antibacterianos
13.
World J Clin Cases ; 11(34): 8111-8125, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38130785

RESUMEN

Inflammatory bowel disease (IBD) is a disorder of the immune system and intestinal microecosystem caused by environmental factors in genetically susceptible people. Paneth cells (PCs) play a central role in IBD pathogenesis, especially in Crohn's disease development, and their morphology, number and function are regulated by susceptibility genes. In the intestine, PCs participate in the formation of the stem cell microenvironment by secreting antibacterial particles and play a role in helping maintain the intestinal microecology and intestinal mucosal homeostasis. Moreover, PC proliferation and maturation depend on symbiotic flora in the intestine. This paper describes the interactions among susceptibility genes, PCs and intestinal microecology and their effects on IBD occurrence and development.

14.
Gut Microbes ; 15(2): 2286674, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38010886

RESUMEN

Classically, Axin1 is considered a regulator of Wnt/ß-catenin signaling. However, Axin1's roles in host-microbial interactions have been unknown. Our recent study has demonstrated that deletion of intestinal epithelial Axin1 in epithelial cells and Paneth cells protects the host against colitis by enhancing Akkermansia muciniphila. Loss of intestinal epithelial or Paneth cell Axin1 results in increased Wnt/ß-catenin signaling, proliferation, and cell migration. This is associated with morphologically altered goblet and Paneth cells, including increased Muc2 and decreased lysozyme. Axin1 deletion specifically enriched Akkermansia muciniphila. Akkermansia muciniphila in Axin1 knockout mice is the driver of protection against DSS-induced inflammation. Here, we feature several significant conceptual changes, such as differences between Axin1 and Axin2, Axin1 in innate immunity and microbial homeostasis, and Axin1 reduction of Akkermansia muciniphila. We discuss an important trend in the field related to Paneth cells and tissue-specific Axin1 manipulation of microbiome in health and inflammation.


Asunto(s)
Proteína Axina , Colitis , Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Proteína Axina/genética , beta Catenina , Colitis/inducido químicamente , Colitis/genética , Inflamación , Células de Paneth
15.
J Biol Chem ; 299(12): 105356, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863265

RESUMEN

Adhesion G protein-coupled receptors (aGPCRs) feature large extracellular regions with modular domains that often resemble protein classes of various function. The pentraxin (PTX) domain, which is predicted by sequence homology within the extracellular region of four different aGPCR members, is well known to form pentamers and other oligomers. Oligomerization of GPCRs is frequently reported and mainly driven by interactions of the seven-transmembrane region and N or C termini. While the functional importance of dimers is well-established for some class C GPCRs, relatively little is known about aGPCR multimerization. Here, we showcase the example of ADGRG4, an orphan aGPCR that possesses a PTX-like domain at its very N-terminal tip, followed by an extremely long stalk containing serine-threonine repeats. Using X-ray crystallography and biophysical methods, we determined the structure of this unusual PTX-like domain and provide experimental evidence for a homodimer equilibrium of this domain which is Ca2+-independent and driven by intermolecular contacts that differ vastly from the known soluble PTXs. The formation of this dimer seems to be conserved in mammalian ADGRG4 indicating functional relevance. Our data alongside of theoretical considerations lead to the hypothesis that ADGRG4 acts as an in vivo sensor for shear forces in enterochromaffin and Paneth cells of the small intestine.


Asunto(s)
Fenómenos Biofísicos , Dominios Proteicos , Receptores Acoplados a Proteínas G , Transducción de Señal , Animales , Mamíferos/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Células Enterocromafines/metabolismo , Células de Paneth/metabolismo , Cristalografía por Rayos X , Fenómenos Biofísicos/fisiología , Modelos Moleculares , Estructura Terciaria de Proteína , Pliegue de Proteína , Alineación de Secuencia , Secuencia de Aminoácidos , Células HEK293 , Humanos
16.
Parasitol Res ; 122(12): 2795-2806, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37782335

RESUMEN

Oral infection of mice with several strains of Toxoplasma gondii results in intestinal pathological lesions, which contributes to the invasion of this parasite. However, the exact mechanism is unclear, and only a few strains have been explored. Here, T. gondii TgSheepCHn5 and TgRedpandaCHn1 strains from sheep and red panda were evaluated. The TgSheepCHn5 and TgRedpandaCHn1 strains induced intestinal lesions, loss of Paneth cells, and gut commensal bacteria dysbiosis in Swiss Webster mice. The lesions and loss of Paneth cells were dependent on IFN-γ and gut commensal bacteria during T. gondii infection. Deleting IFN-γ or gut commensal bacteria suppressed the Th1 immune response, alleviated the lesions and parasite loading, and upregulated the number of Paneth cells. Loss of IFN-γ production accelerated mice death, whereas the deletion of gut commensal bacteria enhanced the survival time of the host. The Th1 cell immune responses have positive and negative effects on toxoplasmosis, resistance to T. gondii infection, and acceleration intestine lesions. Adjustment of Th1 cell responses and gut commensal bacteria may be effective treatments for toxoplasmosis.


Asunto(s)
Toxoplasma , Toxoplasmosis Animal , Toxoplasmosis , Ratones , Animales , Ovinos , Bacterias , Interferón gamma , Inmunidad , Toxoplasmosis Animal/parasitología
18.
J Cell Physiol ; 238(10): 2304-2315, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37555566

RESUMEN

Gastrointestinal epithelial cells respond to milk-born molecules throughout breastfeeding, influencing growth, and development. The rapid renewal of the small intestine depends on the proliferation in the crypt that drives cell fates. We used early weaning model to investigate immediate and late effects of breastfeeding on proliferation, differentiation of jejunal epithelial cells. Wistar rats were either allowed to suckle (S) until 21 postnatal days or submitted to early weaning (EW) at 15 days. By comparing ages (18, 60, and 120 days), we found that EW decreased Ki67 indices and villi height at 18 and 60 days (p < 0.05), and at 120 days they were similar between diets. Proliferative reduction and augmented expression of Cdkn1b (p27 gene) were parallel. In the stem cell niche, EW increased the number and activity (Defa24) of Paneth cells at 18 and 60 days (p < 0.05), and Lgr5 and Ascl2 genes showed inverted responses between ages. Among target cells, EW decreased goblet cell number at 18 and 60 days (p < 0.05) and increased it at 120 days (p < 0.05), whereas enteroendocrine marker genes were differentially altered. EW reduced enterocytes density at 18 days (p < 0.05), and at 120 days this population was decreased (vs. 60 days). Among cell fate crypt-controlling genes, Notch and Atoh1 were the main targets of EW. Metabolically, intraperitoneal glucose tolerance was immediately reduced (18 days), being reverted until 120 days (p < 0.05). Currently, we showed that breastfeeding has a lifespan influence on intestinal mucosa and on its stem cell compartment. We suggest that, although jejunum absorptive function is granted after early weaning, the long lasting changes in gene expression might prime the mucosa with a different sensitivity to gut disorders that still have to be further explored.

19.
Emerg Microbes Infect ; 12(2): 2239937, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37483148

RESUMEN

Intestinal epithelial cell interactions with enteric pathogens have been incompletely elucidated owing to the lack of model systems that recapitulate the cellular diversity, architecture and functionality of the intestine. To analyze rotavirus (RV) infection and the subsequent innate immune response, we established cultures of differentiated porcine intestinal epithelial cells in three different variations: basolateral-out enteroids, apical-out enteroids and two-dimensional (2D) filter-grown intestinal epithelial cells. Application of specific antibodies for fluorescent staining indicated that enteroids and enteroid-derived cell cultures contain multiple intestinal epithelial cell types. Infection studies indicated that both apical-out enteroids and 2D intestinal epithelial cells are susceptible to porcine RV infection. However, 2D intestinal epithelial cells are more useful for a detailed characterization and comparison of apical and basolateral infection than apical-out enteroids. Virus-induced apoptosis was observed in apical-out enteroids at 24 h post infection but not at earlier time points after infection. RV infected not only enterocytes but also goblet cells and Paneth cells in apical-out enteroids and 2D intestinal epithelial cells. Interestingly, despite the lack of significant differences in the efficiency of infection after apical and basolateral infection of 2D intestinal epithelial cells, stronger innate immune and inflammatory responses were observed after basolateral infection as compared to infection via the apical route. Therefore, apical-out enteroids and 2D intestinal epithelial cells provide useful primary cell culture models that can be extended to analyze invasion and replication strategies of agents implicated in enteric diseases or to study immune and inflammatory responses of the host induced by enteric pathogens.


Asunto(s)
Rotavirus , Animales , Porcinos , Células Epiteliales , Intestino Delgado , Inmunidad Innata , Tropismo
20.
Front Cell Dev Biol ; 11: 1184159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37266449

RESUMEN

Paneth cells (PCs) are intestinal epithelial cells (IECs) that contain eosinophilic granules, which are located in Lieberkühn crypts. An increasing number of animal and human experiments have indicated that PCs are involved in the progression of a variety of intestinal as well as systemic inflammatory responses including necrotizing enterocolitis (NEC). NEC is an enteric acquired disease with high mortality that usually occurs in premature infants and neonates, however the underlying mechanisms remain unclear. In this review, we summarize the features of PCs, including their immune function, association with gut microbiota and intestinal stem cells, and their mechanism of regulating IEC death to explore the possible mechanisms by which PCs affect NEC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA