Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.199
Filtrar
1.
Neuroscience ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964450

RESUMEN

Neurological disorders are a diverse group of conditions that can significantly impact individuals' quality of life. The maintenance of neural microenvironment homeostasis is essential for optimal physiological cellular processes. Perturbations in this delicate balance underlie various pathological manifestations observed across various neurological disorders. Current treatments for neurological disorders face substantial challenges, primarily due to the formidable blood-brain barrier and the intricate nature of neural tissue structures. These obstacles have resulted in a paucity of effective therapies and inefficiencies in patient care. Exosomes, nanoscale vesicles that contain a complex repertoire of biomolecules, are identifiable in various bodily fluids. They hold substantial promise in numerous therapeutic interventions due to their unique attributes, including targeted drug delivery mechanisms and the ability to cross the BBB, thereby enhancing their therapeutic potential. In this review, we investigate the therapeutic potential of exosomes across a range of neurological disorders, including neurodegenerative disorders, traumatic brain injury, peripheral nerve injury, brain tumors, and stroke. Through both in vitro and in vivo studies, our findings underscore the beneficial influence of exosomes in enhancing the neural microenvironment following neurological diseases, offering promise for improved neural recovery and management in these conditions.

2.
J Plast Reconstr Aesthet Surg ; 95: 349-356, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38959621

RESUMEN

INTRODUCTION: This study analyzed the etiologies and treatment of iatrogenic occipital nerve injuries. METHODS: Patients with occipital neuralgia (ON) who were screened for occipital nerve decompression surgery were prospectively enrolled. Patients with iatrogenic occipital nerve injuries who underwent nerve decompression surgery were identified. Data included surgical history, pain characteristics, and surgical technique. Outcomes included pain frequency (days/month), duration (h/day), intensity (0-10), migraine headache index (MHI), and patient-reported percent-resolution of pain. RESULTS: Among the 416 patients with ON, who were screened for occipital nerve decompression surgery, 12 (2.9%) cases of iatrogenic occipital nerve injury were identified and underwent surgical treatment. Preoperative headache frequency was 30 (±0.0) days/month, duration was 19.4 (±6.9) h, and intensity was 9.2 (±0.9). Neuroma excision was performed in 5 cases followed by targeted muscle reinnervation in 3, nerve cap in 1, and muscle burial in 1. In patients without neuromas, greater occipital nerve decompression and/or lesser occipital nerve neurectomy were performed. At the median follow-up of 12 months (IQR 12-12 months), mean pain frequency was 4.0 (±6.6) pain days/month (p < 0.0001), duration was 6.3 (±8.9) h (p < 0.01), and intensity was 4.4 (±2.8) (p < 0.001). Median patient-reported resolution of pain was 85% (56.3%-97.5%) and success rate was (≥50% MHI improvement) 91.7%. CONCLUSIONS: Iatrogenic occipital nerve injuries can be caused by various surgical interventions, including craniotomies, cervical spine interventions, and scalp tumor resections. The associated pain can be severe and chronic. Iatrogenic ON should be considered in the differential diagnosis of post-operative headaches and can be treated with nerve decompression surgery or neuroma excision with reconstruction of the free nerve end.

4.
Hand Clin ; 40(3): 337-345, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972678

RESUMEN

Functional recovery after peripheral nerve injuries is disappointing despite surgical advances in nerve repair. This review summarizes the relatively short window of opportunity for successful nerve regeneration due to the decline in the expression of growth-associated genes and in turn, the decline in regenerative capacity of the injured neurons and the support provided by the denervated Schwann cells, and the atrophy of denervated muscles. Brief, low-frequency electrical stimulation and post-injury exercise regimes ameliorate these deficits in animal models and patients, but the misdirection of regenerating nerve fibers compromises functional recovery and remains an important area of future research.


Asunto(s)
Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Regeneración Nerviosa/fisiología , Humanos , Traumatismos de los Nervios Periféricos/fisiopatología , Traumatismos de los Nervios Periféricos/cirugía , Animales , Células de Schwann/fisiología , Recuperación de la Función
5.
Hand Clin ; 40(3): 369-377, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972681

RESUMEN

Modern end-to-side (ETS) nerve transfers have undergone several permutations since the early 1990's. Preclinical data have revealed important mechanisms and patterns of donor axon outgrowth into the recipient nerves and target reinnervation. The versatility of ETS nerve transfers can also potentially address several processes that limit functional recovery after nerve injury by babysitting motor end-plates and/or supporting the regenerative environment within the denervated nerve. Further clinical and basic science work is required to clarify the ideal clinical indications, contraindications, and mechanisms of action for these techniques in order to maximize their potential as reconstructive options.


Asunto(s)
Regeneración Nerviosa , Transferencia de Nervios , Humanos , Transferencia de Nervios/métodos , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/cirugía
6.
Hand Clin ; 40(3): 389-397, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972683

RESUMEN

Axons successfully repaired with polyethylene glycol (PEG) fusion tecnology restored axonal continuity thereby preventing their Wallerian degeneration and minimizing muscle atrophy. PEG fusion studies in animal models and preliminary clinical trials involving patients with digital nerve repair have shown promise for this therapeutic approach. PEG fusion is safe to perform, and given the enormous potential benefits, there is no reason not to explore its therapeutic potential.


Asunto(s)
Traumatismos de los Nervios Periféricos , Polietilenglicoles , Humanos , Polietilenglicoles/uso terapéutico , Polietilenglicoles/administración & dosificación , Traumatismos de los Nervios Periféricos/cirugía , Animales , Regeneración Nerviosa
7.
Hand Clin ; 40(3): 379-387, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972682

RESUMEN

Peripheral nerve injuries are prevalent and their treatments present significant challenges. Among the various reconstructive options, nerve conduits and wraps are popular choices. Advances in bioengineering and regenerative medicine have led to the development of new biocompatible materials and implant designs that offer the potential for enhanced neural recovery. Cost, nerve injury type, and implant size must be considered when deciding on the ideal reconstructive option.


Asunto(s)
Materiales Biocompatibles , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Humanos , Traumatismos de los Nervios Periféricos/cirugía , Andamios del Tejido , Bioingeniería , Regeneración Tisular Dirigida , Ingeniería de Tejidos , Prótesis e Implantes
8.
Hand Clin ; 40(3): 441-449, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972688

RESUMEN

Peripheral nerve injuries are common and remain a significant health challenge. Outcome measurements are used to evaluate injury, monitor recovery after nerve repair, and compare scientific advances. Clinical judgement is required to determine which available tools are most applicable, which requires a vast understanding of the available outcome measurements. In this article we discuss the highest yield tools available for clinical application.


Asunto(s)
Traumatismos de los Nervios Periféricos , Humanos , Traumatismos de los Nervios Periféricos/cirugía , Evaluación de Resultado en la Atención de Salud , Evaluación de la Discapacidad , Recuperación de la Función
9.
Hand Clin ; 40(3): 421-427, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972686

RESUMEN

Electrical stimulation (ES) enhances peripheral nerve inherent regeneration capacity by promoting accelerated axonal outgrowth and selectivity toward appropriate motor and sensory targets. These effects lead to significantly improved functional outcomes and shorter recovery time. Electrical stimulation can be applied intra-operatively or immediately post-operatively. Active clinical trials are looking into additional areas of application, length of stimulation, and functional outcomes.


Asunto(s)
Terapia por Estimulación Eléctrica , Humanos , Regeneración Nerviosa/fisiología , Nervios Periféricos , Traumatismos de los Nervios Periféricos/cirugía , Traumatismos de los Nervios Periféricos/terapia
10.
Hand Clin ; 40(3): 399-408, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972684

RESUMEN

Following nerve injury, growth factors (GFs) are transiently upregulated in injured neurons, proliferating Schwann cells, and denervated muscle and skin. They act on these same cells and tissues to promote nerve regeneration and end-organ reinnervation. Consequently, much attention has been focused on developing GF-based therapeutics. A major barrier to clinical translation of GFs is their short half-life. To provide sustained GF treatment to the affected nerve, muscle, and skin in a safe and practical manner, engineered drug delivery systems are needed. This review highlights recent advancements in GF-based therapeutics and discusses the remaining hurdles for clinical translation.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Regeneración Nerviosa , Regeneración Nerviosa/fisiología , Regeneración Nerviosa/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Péptidos y Proteínas de Señalización Intercelular/uso terapéutico , Traumatismos de los Nervios Periféricos/cirugía , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Traumatismos de los Nervios Periféricos/fisiopatología , Animales , Sistemas de Liberación de Medicamentos
11.
Int Immunopharmacol ; 138: 112452, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943972

RESUMEN

Peripheral nerve injury seriously endangers human life and health, but there is no clinical drug for the treatment of peripheral nerve injury, so it is imperative to develop drugs to promote the repair of peripheral nerve injury. Erythropoietin (EPO) not only has the traditional role of promoting erythropoiesis, but also has a tissue-protective effect. Over the past few decades, researchers have confirmed that EPO has neuroprotective effects. However, side effects caused by long-term use of EPO limited its clinical application. Therefore, EPO derivatives with low side effects have been explored. Among them, ARA290 has shown significant protective effects on the nervous system, but the biggest disadvantage of ARA290, its short half-life, limits its application. To address the short half-life issue, the researchers modified ARA290 with thioether cyclization to generate a thioether cyclized helical B peptide (CHBP). ARA290 and CHBP have promising applications as peptide drugs. The neuroprotective effects they exhibit have attracted continuous exploration of their mechanisms of action. This article will review the research on the role of EPO, ARA290 and CHBP in the nervous system around this developmental process, and provide a certain reference for the subsequent research.

12.
Front Neurol ; 15: 1421772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38938781

RESUMEN

Peripheral nerve injuries (PNI) represent one of the primary neuropathies leading to lifelong disability. Nerve regeneration and targeted muscle atrophy stand as the two most crucial factors influencing functional rehabilitation post peripheral nerve injury. Over time, traditional Chinese medicine (TCM) rehabilitation approaches such as acupuncture, Tuina, and microneedles serve as pivot means to activate the regeneration of injured nerve Schwann cells. By promoting axon regeneration, these approaches can accomplish nerve repair, reconstruction, and functional rehabilitation. Although TCM rehabilitation approaches have clinically demonstrated effectiveness in promoting the repair and regeneration of PNI, the related molecular mechanisms remain unclear. This significantly hampers the application and promotion of TCM rehabilitation in PNI recovery. Therefore, deeply delving into the cellular and molecular mechanisms of TCM rehabilitation technologies to foster nerve regeneration stands as the most pressing issue. On the other hand, in recent years, novel biomaterials represented by hydrogels, microfluidic platforms, and new chitosan scaffolds have showed their unique roles in treating various degrees of nerve injury. These methods exhibit immense potential in conducting high-throughput cell and organoid culture in vitro and synthesizing diverse tissue engineering scaffolds and drug carriers. We believe that the combination of TCM rehabilitation technology and novel biomaterials can more effectively address precise treatment issues such as identification of treatment target and dosage control. Therefore, this paper not only summarizes the molecular mechanisms of TCM rehabilitation technology and novel biomaterials in treating peripheral nerve injury individually, but also explores the research direction of precise treatment by integrating the two at both macro and micro levels. Such integration may facilitate the exploration of cellular and molecular mechanisms related to neurodegeneration and regeneration, providing a scientific and theoretical foundation for the precise functional rehabilitation of PNI in the future.

13.
Zhongguo Gu Shang ; 37(6): 6295-34, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38910389

RESUMEN

As one of the common traumatic diseases in clinical practice, peripheral nerve injury (PIN) often causes nerve pain, abnormal reflexes, autonomic disorders, and even sensorimotor disorders due to the slow regeneration rate after injury, which seriously affects body function. Even as the gold standard of treatment, autologous nerve transplantation has limitations such as limited donor area and donor injury, which greatly limits its clinical application effect. Therefore, the preparation of artificial nerve grafts suitable for clinical practice has become the future development trend of peripheral nerve injury treatment, and the repair of injury defects and the promotion of nerve regeneration have also become research hotspots in tissue engineering and regenerative medicine. In recent years, extensive research has been carried out on nerve guidance conduits (NGCs) in the field of nerve regeneration and repair, in which scaffold materials and internal fillers have also become the focus of research as the core elements of neural catheters, and a series of achievements have been made in the application of new materials, embedding stem cells/precursor cells, and developing trophic factors and drug-loaded sustained-release systems. Therefore, this paper focuses on the application progress of hydrogel and its related derivative materials in the field of peripheral nerve injury repair, and provides new ideas for promoting the related research of tissue engineering and clinical medicine.


Asunto(s)
Hidrogeles , Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/cirugía , Humanos , Regeneración Nerviosa/efectos de los fármacos , Animales , Ingeniería de Tejidos/métodos
14.
Artículo en Inglés | MEDLINE | ID: mdl-38832865

RESUMEN

Peripheral nerve regeneration after trauma poses a substantial clinical challenge that has already been investigated for many years. Infiltration of immune cells is a critical step in the response to nerve damage that creates a supportive microenvironment for regeneration. In this work, we focus on a special type of immune cell, macrophage, in addressing the problem of neuronal regeneration. We discuss the complex endogenous mechanisms of peripheral nerve injury and regrowth vis-à-vis macrophages, including their recruitment, polarization, and interplay with Schwann cells post-trauma. Furthermore, we elucidate the underlying mechanisms by which exogenous stimuli govern the above events. Finally, we summarize the necessary roles of macrophages in peripheral nerve lesions and reconstruction. There are many challenges in controlling macrophage functions to achieve complete neuronal regeneration, even though considerable progress has been made in understanding the connection between these cells and peripheral nerve damage.

15.
Childs Nerv Syst ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38886222

RESUMEN

PURPOSE: The objective of this study was to determine the incidence, necessity for neurosurgical intervention, and overall results of the treatment of pediatric peripheral nerve injuries associated with dislocated supracondylar fractures of the distal humerus. METHOD: A retrospective analysis of pediatric patients with supracondylar fractures treated from April 2019 to April 2022 with a minimum follow-up of 3 months was conducted. RESULTS: Of 453 included patients, there were 51 recorded peripheral nerve injuries. The ulnar nerve was the most frequently injured nerve. Nine patients required neurosurgical intervention, with the most common procedure being the release of entrapped nerves. The combination of a supracondylar fracture and arterial injury was identified as a significant risk factor for peripheral nerve injury (p < 0.001). Only one patient experienced an unsatisfactory outcome. CONCLUSION: Although the prognosis for peripheral nerve injuries in children with supracondylar fractures is generally favorable, these injuries must be properly identified. We recommend an active neurosurgical approach in children with persisting neurological deficits to minimize the risk of permanent neurological impairment.

16.
Glia ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38895764

RESUMEN

The velocity of axonal impulse propagation is facilitated by myelination and axonal diameters. Both parameters are frequently impaired in peripheral nerve disorders, but it is not known if the diameters of myelinated axons affect the liability to injury or the efficiency of functional recovery. Mice lacking the adaxonal myelin protein chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6 (CMTM6) specifically from Schwann cells (SCs) display appropriate myelination but increased diameters of peripheral axons. Here we subjected Cmtm6-cKo mice as a model of enlarged axonal diameters to a mild sciatic nerve compression injury that causes temporarily reduced axonal diameters but otherwise comparatively moderate pathology of the axon/myelin-unit. Notably, both of these pathological features were worsened in Cmtm6-cKo compared to genotype-control mice early post-injury. The increase of axonal diameters caused by CMTM6-deficiency thus does not override their injury-dependent decrease. Accordingly, we did not detect signs of improved regeneration or functional recovery after nerve compression in Cmtm6-cKo mice; depleting CMTM6 in SCs is thus not a promising strategy toward enhanced recovery after nerve injury. Conversely, the exacerbated axonal damage in Cmtm6-cKo nerves early post-injury coincided with both enhanced immune response including foamy macrophages and SCs and transiently reduced grip strength. Our observations support the concept that larger peripheral axons are particularly susceptible toward mechanical trauma.

17.
J Nanobiotechnology ; 22(1): 337, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886712

RESUMEN

BACKGROUND: Molybdenum disulfide (MoS2) has excellent physical and chemical properties. Further, chiral MoS2 (CMS) exhibits excellent chiroptical and enantioselective effects, and the enantioselective properties of CMS have been studied for the treatment of neurodegenerative diseases. Intriguingly, left- and right-handed materials have different effects on promoting the differentiation of neural stem cells into neurons. However, the effect of the enantioselectivity of chiral materials on peripheral nerve regeneration remains unclear. METHODS: In this study, CMS@bacterial cellulose (BC) scaffolds were fabricated using a hydrothermal approach. The CMS@BC films synthesized with L-2-amino-3-phenyl-1-propanol was defined as L-CMS. The CMS@BC films synthesized with D-2-amino-3-phenyl-1-propanol was defined as D-CMS. The biocompatibility of CMS@BC scaffolds and their effect on Schwann cells (SCs) were validated by cellular experiments. In addition, these scaffolds were implanted in rat sciatic nerve defect sites for three months. RESULTS: These chiral scaffolds displayed high hydrophilicity, good mechanical properties, and low cytotoxicity. Further, we found that the L-CMS scaffolds were superior to the D-CMS scaffolds in promoting SCs proliferation. After three months, the scaffolds showed good biocompatibility in vivo, and the nerve conducting velocities of the L-CMS and D-CMS scaffolds were 51.2 m/s and 26.8 m/s, respectively. The L-CMS scaffolds showed a better regenerative effect than the D-CMS scaffolds. Similarly, the sciatic nerve function index and effects on the motor and electrophysiological functions were higher for the L-CMS scaffolds than the D-CMS scaffolds. Finally, the axon diameter and myelin sheath thickness of the regenerated nerves were improved in the L-CMS group. CONCLUSION: We found that the CMS@BC can promote peripheral nerve regeneration, and in general, the L-CMS group exhibited superior repair performance. Overall, the findings of this study reveal that CMS@BC can be used as a chiral nanomaterial nerve scaffold for peripheral nerve repair.


Asunto(s)
Celulosa , Disulfuros , Molibdeno , Regeneración Nerviosa , Células de Schwann , Andamios del Tejido , Regeneración Nerviosa/efectos de los fármacos , Animales , Ratas , Andamios del Tejido/química , Disulfuros/química , Disulfuros/farmacología , Células de Schwann/efectos de los fármacos , Molibdeno/química , Molibdeno/farmacología , Celulosa/química , Celulosa/farmacología , Celulosa/análogos & derivados , Ratas Sprague-Dawley , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nervio Ciático/efectos de los fármacos , Nervio Ciático/fisiología , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Masculino , Traumatismos de los Nervios Periféricos , Estereoisomerismo
18.
Surg Neurol Int ; 15: 178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840615

RESUMEN

Background: Gunshot wounds (GSWs) can result in various peripheral nerve injuries (PNIs), ranging from direct nerve transection to neuropraxia caused by the ballistic shockwave mechanism. PNIs from GSWs can be treated with either early or delayed intervention, with the literature supporting both approaches and sparking a debate between early and delayed intervention for PNIs from GSWs. Here, we present a case that underwent delayed exploration of the right common peroneal nerve after GSW and a literature review comparing early versus delayed intervention for PNIs from GSWs. Case Description: A 29-year-old male underwent right common peroneal nerve exploration 2 months after he sustained a GSW to the right lower extremity at the level of the fibular head tracking to the lateral malleolus. Initially, after the injury, he was offered supportive care. On evaluation, 1 month later, he reported a right-sided foot drop and paresthesias in the right lower extremity. A partial-thickness injury of the right peroneal nerve was seen on ultrasound, and a bullet fragment in the distal right lower extremity was revealed on computed tomography. The surgical intervention consisted of the right common peroneal nerve decompression proximally to distally and removal of the bullet fragment. Postoperatively, the patient did well with improvements in his right ankle dorsiflexion and plantar flexion seen at his 1.5-month follow-up visit. Conclusion: Many factors must be considered when treating PNIs from GSWs. For each case, clinical judgment, injury mechanism, and risk-benefit analysis must be evaluated to determine each patient's optimal treatment strategy.

19.
J Hand Microsurg ; 16(2): 100028, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38855524

RESUMEN

Coronavirus disease 2019 (COVID-19) is the most dramatic pandemic of the new millennium and patients with serious infection can stay in intensive care unit (ICU) for weeks in a clinical scenario of systemic inflammatory response syndrome, likely related to the subsequent development of critical illness polyneuropathy (CIP). It is in fact now accepted that COVID-19 ICU surviving patients can develop CIP; moreover, prone positioning-related stretch may favor the onset of positioning-related peripheral nerve injuries (PNI). Therefore, the urgent need to test drug candidates for the treatment of these debilitating sequelae is emerged even more. For the first time in medical literature, we have successfully treated after informed consent a 71-year-old Italian man suffering from post-COVID-19 CIP burdened with positioning-related PNI of the left upper extremity by means of ultramicronized palmitoylethanolamide 400 mg plus ultramicronized luteolin 40 mg (Glìalia), two tablets a day 12 hours apart for 6 months. In the wake of our pilot study, a larger clinical trial to definitively ascertain the advantages of this neuroprotective, neurotrophic, and anti-inflammatory therapy is advocated.

20.
Neurosci Lett ; 836: 137879, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880353

RESUMEN

Peripheral nerves exhibit long-term residual motor dysfunction following injury. The length of the denervation period before nerve and muscle reconnection is an important factor in motor function recovery. We aimed to investigate whether repeated nerve crush injuries to the same site every 7 days would preserve the conditioning lesion (CL) response and to determine the number of nerve crush injuries required to create an experimental animal model that would prolong the denervation period while maintaining peripheral nerve continuity. Rats were grouped according to the number of sciatic nerve crushes. A significant decrease in the soleus muscle fiber cross-sectional area was observed with increased crushes. After a single crush, macrophage accumulation and macrophage chemotaxis factor CCL2 expression in dorsal root ganglia were markedly increased, which aligned with the gene expression of Ccl2 and its receptor Ccr2. Macrophage numbers, histological CCL2 expression, and Ccl2 and Ccr2 gene expression levels decreased, depending on the number of repeated crushes. Histological analysis and gene expression analysis in the group with four repeated crushes did not differ significantly when compared with uninjured animals. Our findings indicated that repeated nerve crushes at the same site every 7 days sustained innervation loss and caused a loss of the CL response. The experimental model did not require nerve stump suturing and is useful for exploring factors causing prolonged denervation-induced motor dysfunction. SIGNIFICANCE STATEMENT: This study elucidates the effects of repeated nerve crush injury to the same site on innervation and conditioning lesion responses and demonstrates the utility of an experimental animal model that recapitulates the persistent residual motor deficits owing to prolonged denervation without requiring nerve transection and transection suturing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA