Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Front Pharmacol ; 14: 1081334, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007030

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is common chronic metabolic liver disorder which is associated with fat accumulation in the liver. It causes a wide range of pathological effects such as insulin resistance, obesity, hypertension, diabetes, non-alcoholic steatohepatitis (NASH) and cirrhosis, cardiovascular diseases. The molecular mechanisms that cause the initiation and progression of NAFLD remain fully unclear. Inflammation is regarded as a significant mechanism which could result in cell death and tissue injury. Accumulation of leukocytes and hepatic inflammation are important contributors in NAFLD. Excessive inflammatory response can deteriorate the tissue injury in NAFLD. Thus, inhibition of inflammation improves NAFLD by reducing intrahepatic fat content, increasing ß-oxidation of fatty acids, inducing hepato-protective autophagy, overexpressing peroxisome proliferator-activated receptor- γ (PPAR-γ), as well as attenuating hepatocyte apoptosis and increasing insulin sensitivity. Therefore, understanding the molecules and signaling pathways suggests us valuable information about NAFLD progression. This review aimed to evaluate the inflammation in NAFLD and the molecular mechanism on NAFLD.

2.
Front Endocrinol (Lausanne) ; 13: 1057905, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36568082

RESUMEN

The widely used lipid-lowering drug niacin was reported to increase blood glucose in diabetes. How does niacin regulate ß Cell function in diabetic patients remains unclear. This study aimed to investigate the effect of niacin on ß cell lipotoxicity in vitro and in vivo. Niacin treatment sensitized the palmitate-induced cytotoxicity and apoptosis in INS-1 cells. In addition, palmitate significantly increased the niacin receptor GPR109A and PPARγ2 levels, which could be further boosted by niacin co-treatment, creating a vicious cycle. In contrast, knocking down of GPR109A could reverse both PPARγ2 expression and niacin toxicity in the INS-1 cells. Interestingly, we found that GLP-1 receptor agonist exendin-4 showed similar inhibitive effects on the GPR109A/PPARγ2 axis and was able to reverse niacin induced lipotoxicity in INS-1 cells. In diet-induced obesity (DIO) mouse model, niacin treatment resulted in elevated blood glucose, impaired glucose tolerance and insulin secretion, accompanied by the change of islets morphology and the decrease of ß cell mass. The combination of niacin and DPP-4 inhibitor sitagliptin can improve glucose tolerance, insulin secretion and islet morphology and ß cell mass, even better than sitagliptin alone. Our results show that niacin increased ß cell lipotoxicity partially through upregulation of GPR109A and PPARγ2, which can be alleviated by incretin drugs. We provide a new mechanism of niacin toxicity, and suggest that the combination of niacin and incretin may have better blood glucose and lipid control effect in clinical practice.


Asunto(s)
Incretinas , Niacina , Ratones , Animales , Niacina/farmacología , PPAR gamma/metabolismo , Regulación hacia Arriba , Ratones Obesos , Glucemia , Dieta , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Palmitatos , Fosfato de Sitagliptina/uso terapéutico
3.
Saudi Pharm J ; 30(9): 1252-1261, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36249937

RESUMEN

Methotrexate (MTX) is an immunosuppressant used for the treatment of cancer and autoimmune diseases. MTX has a major adverse effect, acute kidney injury, which limits its use. Mangiferin (MF) is a natural bioactive xanthonoid used as a traditional herbal supplement to boost the immune system due to its potent anti-inflammatory and antioxidant activity. The present study evaluates the protective effect of MF against MTX-induced kidney damage. Male Wistar rats received MTX to induce nephrotoxicity or were pretreated with MF for 10 constitutive days before MTX administration. MF dose-dependently improved renal functions of MTX-treated rats and this activity was correlated with increased renal expression of PPARγ, a well-known transcriptional regulator of the immune response. Pretreating rats with PPARγ inhibitor, BADGE, reduced the reno-protective activity of MF. Furthermore, MF treatment significantly reduced MTX-induced upregulation of the pro-inflammatory (NFκB, interleukin-1ß, TNF-α, and COX-2), oxidative stress (Nrf-2, hemoxygenase-1, glutathione, and malondialdehyde), and nitrosative stress (nitric oxide and iNOS) markers in the kidney. Importantly, BADGE treatment significantly reduced the anti-inflammatory and antioxidant activity of MF. Therefore, our data suggest that the reno-protective effect of MF against MTX-induced nephrotoxicity is due to inhibition of inflammation and oxidative stress in a PPAR-γ-dependent manner.

5.
Biochem Biophys Res Commun ; 578: 1-6, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34520979

RESUMEN

Developmentally regulated GTP-binding protein 2 (DRG2) participates in the regulation of proliferation and differentiation of multiple cells. However, whether DRG2 regulates adipocyte differentiation and related metabolic control remains elusive. This study revealed increases in body weight and adiposity in DRG2 transgenic (Tg) mice overexpressing DRG2. Consistent with these results, DRG2 Tg mice showed increased expression of genes involved in adipogenesis and lipid metabolism in the white adipose tissue. DRG2 was also identified to control adipogenesis by cooperating with peroxisome proliferator activated receptor-γ (PPAR-γ) in cultured adipocytes. Overall, the findings of the current study suggest that DRG2 plays an active role in regulating adipocyte differentiation, and thus participates in the development of obesity during exposure to a fat-rich diet.


Asunto(s)
Tejido Adiposo Blanco/citología , Proteínas de Unión al GTP/metabolismo , PPAR gamma/metabolismo , Adipogénesis , Tejido Adiposo Blanco/metabolismo , Animales , Peso Corporal , Diferenciación Celular , Modelos Animales de Enfermedad , Proteínas de Unión al GTP/genética , Metabolismo de los Lípidos , Ratones , Ratones Transgénicos
6.
Front Pharmacol ; 8: 783, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29180961

RESUMEN

Angiogenesis is the formation of new blood vessels from the existing vasculature, which is involved in multiple biological processes, including atherosclerosis, ischemic heart disease, and cancer. Ginsenoside-Rb1 (Rb1), the most abundant ginsenoside isolated form Panax ginseng, has been identified as a promising anti-angiogenic agent via the up-regulation of PEDF. However, the underlying molecular mechanisms still unknown. In the present study, human umbilical vein endothelial cells (HUVECs) were selected to perform in vitro assays. Rb1 (0-20 nM) treatment induced pigment epithelial-derived factor (PEDF) protein expression in concentration and time-dependent manners. Interestingly, it was also demonstrated that the exposure of Rb1 (10 nM) could increase PEDF protein expression without any alteration on mRNA level, suggesting the involvement of posttranscriptional regulation. Furthermore, bioinformatics predictions indicated the regulation of miR-33a on PEDF mRNA 3'-UTR, which was further confirmed by luciferase reporter gene assay and real-time PCR. Over-expression of pre-miR-33a was found to regress partly Rb1-mediated PEDF increment and anti-angiogenic effect in HUVECs. Additionally, Rb1-reduced miR-33a and increased PEDF expression was prevented by pre-incubation with peroxisome proliferator-activated receptor-γ (PPAR-γ) antagonist (GW9662) or transfection with PPAR-γ siRNA in HUVECs. Taken together, our findings demonstrated that Rb1 exerted anti-angiogenic effects through PPAR-γ signaling pathway via modulating miR-33a and PEDF expressions. Thus, Rb1 may have the potential of being developed as an anti-angiogenic agent, however, further appropriate studies are warranted to evaluate the effect in vivo.

7.
J Basic Clin Physiol Pharmacol ; 28(6): 593-600, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-28888088

RESUMEN

BACKGROUND: Sciatic nerve ligation causes neuropathic pain with chronic constriction injury (CCI). However, there is no published report on the effect of pioglitazone as an antidepressant in the treatment of depression induced by neuropathic pain with CCI in rats. The aim of this study was to evaluate the effect of pioglitazone as an antidepressant by targeting oxidative stress by the peripheral neuropathic pain model using the CCI of the sciatic nerve. METHODS: Behavioral studies were carried out to measure thermal hyperalgesia and cold allodynia as markers of neuropathic pain and force swim test for depression. These were followed by estimation of biochemical parameters which include lipid peroxidation (LPO), reduced glutathione, catalase, nitrite and superoxide dismutase (SOD) in the rat brains as a measure of oxidative stress. We administered two intraperitoneal doses of pioglitazone (4.5 and 9.0 mg/kg, i.p.) to the treated group for 28 consecutive days from the day of injury and behavioral as well as biochemical evaluations were performed. RESULTS: The results suggested that the administration of pioglitazone significantly countered the neuropathic pain induced depression as interpreted through elevated pain threshold of tactile allodynia and thermal hyperalgesia followed by decreased immobility time in the 9.0 mg/kg dose group. CONCLUSIONS: It may be concluded that the oxidative stress plays a critical role in the pathogenesis of neuropathic pain and depression as evidenced by the behavioral studies and the changes in the levels of lipid peroxidase, nitrite, catalase, and glutathione and SOD.


Asunto(s)
Depresión/tratamiento farmacológico , Depresión/metabolismo , Neuralgia/complicaciones , PPAR gamma/metabolismo , Tiazolidinedionas/uso terapéutico , Animales , Encéfalo/metabolismo , Catalasa/metabolismo , Depresión/etiología , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Pérdida de Tono Postural/efectos de los fármacos , Ligadura/efectos adversos , Peroxidación de Lípido/efectos de los fármacos , Masculino , Neuralgia/tratamiento farmacológico , Nitritos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Dimensión del Dolor/efectos de los fármacos , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/tratamiento farmacológico , Pioglitazona , Ratas , Nervio Ciático/lesiones , Nervio Ciático/cirugía , Superóxido Dismutasa/metabolismo
8.
Cell Physiol Biochem ; 41(1): 55-66, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28135705

RESUMEN

PURPOSE: Increasing evidence supported that semaphorin 3A (Sema3A), insulin-like growth factor (IGF)-1 and ß-catenin were involved in the development of osteoporosis and diabetes. This study is aimed to evaluate whether Sema3A/IGF-1/ß-catenin is directly involved in the alterations of bone microarchitecture and bone strength of diabetic rats. METHODS: Diabetic rats were induced by streptozotocin and high fat diet exposure. Bone microarchitecture and strength in the femurs were evaluated by micro-CT scanning, three-point bending examination and the stainings of HE, alizarin red S and safranin O/fast green, respectively. The alterations of lumbar spines microarchitecture were also determined by micro-CT scanning. Western blot and immunohistochemical analyses were used to examine the expression of Sema3A, ß-catenin, IGF-1, peroxisome proliferator-activated receptor γ (PPARγ) and cathepsin K in rat tibias. RESULTS: Diabetic rats exhibited decreased trabecular numbers and bone formation, but an increased trabecular separation in the femurs and lumbar spines. Moreover, the increased bone fragility and decreased bone stiffness were evident in the femurs of diabetic rats. Diabetic rats also exhibited a pronounced bone phenotype which manifested by decreased expression of Sema3A, IGF-1 and ß-catenin, as well as increased expression of cathepsin K and PPARγ. CONCLUSIONS: This study suggests that diabetes could perturb bone loss through the Sema3A/IGF-1/ß-catenin pathway. Sema3A deficiency in bone may contribute to upregulation of PPARγ and cathepsin K expression, which further disrupts bone remodeling in diabetic rats.


Asunto(s)
Huesos/fisiología , Diabetes Mellitus Experimental/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Semaforina-3A/metabolismo , beta Catenina/metabolismo , Animales , Glucemia/análisis , Huesos/diagnóstico por imagen , Huesos/ultraestructura , Diabetes Mellitus Experimental/metabolismo , Dieta Alta en Grasa , Femenino , Fémur/fisiología , Inmunohistoquímica , PPAR gamma/metabolismo , Ratas , Ratas Sprague-Dawley , Estreptozocina/toxicidad , Microtomografía por Rayos X
9.
Int J Clin Exp Pathol ; 10(10): 10197-10204, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31966353

RESUMEN

Rosiglitazone is a synthetic ligand of peroxisome proliferator-activated receptor γ (PPARγ), and it can induce apoptosis and autophagy in a variety of cancer cells. In the present study, we aimed to investigate the influence of rosiglitazone on the proliferation and apoptosis of the 5637 and T24 human bladder cancer cell lines. The results demonstrated that the level of growth inhibition rate was gradually increased by treating the 5637 and T24 cells with higher doses of rosiglitazone and longer incubation time. Rosiglitazone exerted a potent inhibiting effect on migration of the 5637 and T24 cell lines. Moreover, rosiglitazone exerted a antineoplastic activity by inducing apoptosis and cell cycle arrest. Furthermore, treatment with rosiglitazone led to decrease the anti-apoptotic protein Bcl-2 level and increase the pro-apoptotic protein caspase 3 level in 5637 and T24 cells. Importantly, the protein expression of PPAR γ was significantly increased in the present of rosiglitazone in 5637 and T24 cells as compared to control group. In conclusion, the present study demonstrates that rosiglitazone has a potential antineoplastic activity in human bladder cancer cell lines, and the underlying mechanism was mediated, at least partially, through regulation of apoptosis-related protein and PPAR γ expression.

10.
Oncotarget ; 8(64): 107409-107422, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29296174

RESUMEN

Type 2 diabetes (T2DM) has been associated with learning and memory impairment; however, drugs for diabetes could not prevent the development of cognitive decline in T2DM patients. In the present study, compounds derived from thiazolidinediones (TZD), a PPAR-γ agonist, were synthesized by conjuncting the alkyl-substituted benzimidazole group to TZD group (ATZDs). Based on the in vitro evaluation, the neuroprotection of ATZD2 was further investigated using a streptozotocin-induced T2DM rat model. Pharmacokinetic study showed that ATZD2 could pass the blood-brain barrier (BBB) while the rosiglitazone (RSG, the precursor compound of ATZD2) not. Administration of ATZD2 significantly promoted the survival rate and attenuated fasting blood glucose (FBG) levels as compared to RSG treatment in T2DM rats. Furthermore, ATZD2 treatment ameliorated the impairment of learning and memory by Morris water maze test. The beneficial effects of ATZD2 were associated with the down-regulation of hypoxia induced factor-1α, aldose reductase, and Bax expression which are related to T2DM pathology. ATZD2 treatment also attenuated the expression of inflammatory cytokines and restored the balance of redox in the diabetic hippocampus. These effects were more potent as compared with that of RSG at the same dose. The data indicate that ATZD2 may be a potent agent for the treatment of cognitive dysfunction in T2DM.

11.
J Clin Biochem Nutr ; 48(2): 170-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21373272

RESUMEN

The beneficial effects by peroxisome proliferator-activated receptor-γ (PPAR-γ) on gastric injury induced by ischemia-reperfusion have been confirmed, however, the precise mechanism of its cytoprotection is not elucidated thoroughly. The aim of the present study was to determine the gastric localization of PPAR-γ expression in the rat gastric mucosa, and to clarify the mechanism of its cytoprotective properties. The gastric expression of PPAR-γ was confirmed by RT-PCR and western blot, and localized on gastric epithelial cells. The protective effect of PPAR-γ ligands, pioglitazone or 15-deoxy-Δ(12,14)-prostaglandin J(2), on gastric ischemia-reperfusion injury was reversed by the co-administration with PPAR-γ antagonist. The gastric expression of tumor necrosis factor-α and cytokine-induced neutrophil chemoattractant-1 increased significantly in rats treated ischemia-reperfusion, and these increases were significantly inhibited by treatment with pioglitazone. Among the 1,032 probes, 18 probes were up-regulated at least 1.5-fold, 17 were down-regulated at least 1.5-fold by pioglitazone. The network including calnexin, endoplasmic reticulum stress protein, heat shock proteins, and proteasome genes was induced by pioglitazone treatment. In conclusion, activation of gastric epithelial PPAR-γ receptor by its ligands may represent a novel therapeutic approach for gastric inflammation via up-regulation of heat shock proteins and endoplasmic reticulum-related proteins.

12.
Int J Clin Exp Med ; 3(4): 283-92, 2010 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21072262

RESUMEN

Traumatic brain injury (TBI) represents a major health care problem and a significant socioeconomic challenge worldwide. No specific therapy for TBI is available. The peroxisome proliferator activated receptor-γ (PPAR-γ) belongs to the nuclear receptor superfamily. Although PPAR-γ was originally characterized in adipose tissue as a regulator of lipid and glucose metabolism, recent studies showed that PPAR-γ is present in most cell types and plays a central role in the regulation of adipogenesis, glucose homeostasis, cellular differentiation, apoptosis and inflammation. Here, we reviewed the current literature on the molecular mechanisms of PPAR-γ-related neuroprotection after TBI. Growing evidence has indicated that the beneficial effects of PPAR-γ activation in TBI appear to be mediated through downregulation of inflammatory responses, reduction of oxidative stress, inhibition of apoptosis, and promotion of neurogenesis. A thorough understanding of the PPAR-γ pathway will be critical to the development of therapeutic interventions for the treatment of patients with TBI.

13.
Hepatol Int ; 5(1): 575-80, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21442055

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a major cause of chronic liver disease globally and commonly associated with insulin resistance and metabolic syndrome (MS). Peroxisome proliferator-activated receptor-γ (PPARγ) is a transcription factor abundantly expressed in adipocytes and plays a key role in the regulation of adipocyte differentiation, lipid and glucose homeostasis. Pro12Ala variant has been earlier associated with obesity, type 2 diabetes and MS. AIM: The present study aimed to determine the genotype frequencies of the Pro12Ala variant in NAFLD patients and any further association with other phenotype in the patients. PATIENTS AND METHODS: Ninety-eight NAFLD patients and 280 matched controls were genotyped for presence of the Pro12Ala variant. Genomic DNA was extracted and polymerase chain reaction-restriction fragment length polymorphism using Bst-UI was performed for the detection of C-G change at codon 12 position of PPAR γ2 gene. Genotype and allele frequencies were compared between patients and controls. The Hardy-Weinberg equilibrium was tested by comparing expected/observed genotype frequencies by χ(2) test. RESULTS: The frequencies of Pro/Ala genotype were comparable between NAFLD patients and controls. In the controls, 213 (75.7%) were homozygous for the wild-type (Pro/Pro) genotype and 67 (23.9%) were heterozygous (Pro/Ala). In NAFLD patients, genotypic distribution of wild type, heterozygous and homozygous were 63 (64.3%), 34 (34.7%) and 1 (1%), respectively. Heterozygous genotype was found to be significantly higher in the patients (P = 0.01). We also analyzed related phenotypic association of the patients with Pro12Ala genotype. We observed that the Pro12Ala (heterozygous) genotype was significantly higher in the patients who had body mass index >25 kg/m(2) (P = 0.025). CONCLUSIONS: Pro12Ala variation of the PPAR γ2 gene is associated with NAFLD and might play a role in the pathogenesis of NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA