Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.729
Filtrar
1.
J Mass Spectrom ; 59(8): e5075, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38989744

RESUMEN

Prinsepia utilis Royle, native to the Himalayas, is esteemed in Chinese and Indian folk medicine for its diverse medicinal benefits, targeting arthritis, pain relief, bone disorders, and joint discomfort. This study examined the 25% aqueous methanol extract of P. utilis leaves using UPLC-Q-TOF-MS/MS, identifying 78 metabolites, 76 of which were reported for the first time in P. utilis. These included 64 phenolics represented by 56 flavonoids, 5 phenolic acids, 3 phenolic glycosides, 4 terpenoids, 2 lignan glycosides, and 8 other compounds, expanding the knowledge of its chemical composition. These findings lay a foundation for further research, providing insights into potential bioactive compounds and opening avenues for applications in natural product drug discovery, traditional medicine, and nutraceutical development, leveraging the plant's established traditional uses.


Asunto(s)
Flavonoides , Metabolómica , Extractos Vegetales , Hojas de la Planta , Espectrometría de Masas en Tándem , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Metabolómica/métodos , Extractos Vegetales/química , Espectrometría de Masas en Tándem/métodos , Flavonoides/análisis , Fenoles/análisis , Glicósidos/análisis , Glicósidos/metabolismo , Metaboloma , Terpenos/análisis , Terpenos/metabolismo , Lignanos/análisis , Lignanos/metabolismo , Hidroxibenzoatos
2.
Plant Physiol Biochem ; 214: 108884, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38945096

RESUMEN

The phytohormones cytokinins are essential mediators of developmental and environmental signaling, primarily during cell division and endophytic interactions, among other processes. Considering the limited understanding of the regulatory mechanisms that affect the growth and bioactivity of the medicinal plant Nepeta nuda (Lamiaceae), our study aimed to explore how cytokinins influence the plant's metabolic status. Exogenous administration of active cytokinin forms on in vitro N. nuda internodes stimulated intensive callus formation and de novo shoot regeneration, leading to a marked increase in biomass. This process involved an accumulation of oxidants, which were scavenged by peroxidases using phenolics as substrates. The callus tissue formed upon the addition of the cytokinin 6-benzylaminopurine (BAP) acted as a sink for sugars and phenolics during the allocation of nutrients between the culture medium and regenerated plants. In accordance, the cytokinin significantly enhanced the content of polar metabolites and their respective in vitro biological activities compared to untreated in vitro and wild-grown plants. The BAP-mediated accumulation of major phenolic metabolites, rosmarinic acid (RA) and caffeic acid (CA), corresponded with variations in the expression levels of genes involved in their biosynthesis. In contrast, the accumulation of iridoids and the expression of corresponding biosynthetic genes were not significantly affected. In conclusion, our study elucidated the mechanism of cytokinin action in N. nuda in vitro culture and demonstrated its potential in stimulating the production of bioactive compounds. This knowledge could serve as a basis for further investigations of the environmental impact on plant productivity.

3.
Food Chem ; 458: 140221, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38943963

RESUMEN

Germination is an environmentally friendly process with no use of additives, during which only water spraying is done to activate endogenous enzymes for modification. Furthermore, it could induce bioactive phenolics accumulation. Controlling endogenous enzymes' activity is essential to alleviate granular disruption, crystallinity loss, double helices' dissociation, and molecular degradation of cereal and pseudo-cereal starch. Post-treatments (e.g. thermal and high-pressure technology) make it possible for damaged starch to reassemble towards well-packed structure. These contribute to alleviated loss of solubility and pasting viscosity, improved swelling power, or enhanced resistant starch formation. Cereal or pseudo-cereal flour (except that with robust structure) modified by early germination is more applicable to produce products with desirable texture and taste. Besides shortening duration, germination under abiotic stress is promising to mitigate starch damage for better utilization in staple foods.

4.
Molecules ; 29(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38930844

RESUMEN

Organic phosphoester (OPE) antioxidants are currently required due to their contribution to enhancing the quality of polymers, including polypropylene (PP). In this research, an integral methodology is presented for the efficient extraction of bis(2,4-dicumylphenyl) pentaerythritol diphosphite from industrial wastewater. Upon employing the solid-phase extraction (SPE) technique, the recovered compound is subjected to a comprehensive analysis of the recovered compound using high-performance liquid chromatography (HPLC), mass spectrometry (MS), thermal analysis (TGA), Fourier transforms infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Subsequently, purified Bis(2,4-dicumylphenyl) pentaerythritol diphosphite was evaluated as a thermo-oxidative stabilizer after incorporation into PP resins. The relative standard deviation (RSD), Error (Er), linearity (R2), and percentage (%) recovery were less than 2.6, 2.5, more significant than 0.9995, and greater than 96%, respectively, for the inter-day and intra-day tests of the chromatographic method and the SPE. Except for chloroform, which was necessary due to the solubility properties of the investigated analyte, the use of environmentally friendly solvents, such as methanol and acetonitrile, was considered during the development of this research. The OPE extracted from industrial wastewater was characterized by FTIR, UV-Vis, DSC, TGA, and MS, allowing the elucidation of the structure of Bis(2,4-dicumylphenyl) pentaerythritol diphosphite (BDPD). The recovered OPE was mixed with PP resins, allowing it to improve its thermal properties and minimize its thermo-oxidative degradation. Organophosphorus flame retardant (OPE)' concentration in wastewater is alarming, ranging from 1179.0 to 4709.6 mg L-1. These exceed toxicity thresholds for aquatic organisms, emphasizing global environmental risks. Using a validated solid-phase extraction (SPE) technique with over 94% recovery, the study addresses concerns by removing organic contaminants and supporting circular economy principles. The high economic and environmental significance of recovering BDPD underscores the need for urgent global attention and intervention.

5.
Food Chem ; 455: 139899, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38823138

RESUMEN

In this study, gum arabic (GA) coating was employed to mitigate chilling injury in peach fruit, and it was observed that 10% GA coating exhibited the most favorable effect. GA coating significantly inhibited the decline of AsA content and enhanced antioxidant enzyme activity in peach fruit, thereby enhancing reactive oxygen species (ROS) scavenging rate while reducing its accumulation. Simultaneously, GA coating inhibited the activity of oxidative degradation enzymes for phenolics and enhanced synthase activity, thus maintaining higher levels of total phenolics and flavonoids in fruits. Additionally, compared to the control fruit, GA-coated fruits demonstrated higher concentrations of sucrose and sorbitol, accompanied more robust activity of sucrose synthase and sucrose phosphate synthase, as well as reduced activity of acid invertase and neutral invertase. Our study demonstrates that GA coating can effectively enhance the cold resistance of peach fruit by regulating ROS, phenolics, and sugar metabolism, maintaining high levels of phenolics and sucrose while enhancing antioxidant activity.


Asunto(s)
Frío , Frutas , Goma Arábiga , Fenoles , Prunus persica , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Fenoles/química , Fenoles/metabolismo , Frutas/química , Frutas/metabolismo , Prunus persica/química , Prunus persica/metabolismo , Goma Arábiga/química , Almacenamiento de Alimentos , Azúcares/metabolismo , Azúcares/química , Antioxidantes/química , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Conservación de Alimentos/métodos , Conservación de Alimentos/instrumentación
6.
J Appl Genet ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890243

RESUMEN

Water-Soluble Palm Fruit Extract (WSPFE) has been shown to confer anti-diabetic effects in the Nile rat (NR) (Arvicanthis niloticus). Liquid and powder WSPFE both deterred diabetes onset in NRs fed a high-carbohydrate (hiCHO) diet, but the liquid form provided better protection. In this study, NRs were fed either a hiCHO diet or the same diet added with liquid or powder WSPFE. Following feeding of the diets for 8 weeks, random blood glucose levels were measured to categorize NRs as either diabetes-resistant or diabetes-susceptible, based on a cut-off value of 75 mg/dL. Livers were then obtained for Illumina HiSeq 4000 paired end RNA-sequencing (RNA-Seq) and the data were mapped to the reference genome. Consistent with physiological and biochemical parameters, the gene expression data obtained indicated that WSPFE was associated with protection against diabetes. Among hepatic genes upregulated by WSPFE versus controls, were genes related to insulin-like growth factor binding protein, leptin receptor, and processes of hepatic metabolism maintenance, while those downregulated were related to antigen binding, immunoglobulin receptor, inflammation- and cancer-related processes. WSPFE supplementation thus helped inhibit diabetes progression in NRs by increasing insulin sensitivity and reducing both the inflammatory effects of a hiCHO diet and the related DNA-damage compensatory mechanisms contributing to liver disease progression. In addition, the genetic permissiveness of susceptible NRs to develop diabetes was potentially associated with dysregulated compensatory mechanisms involving insulin signaling and oxidative stress over time. Further studies on other NR organs associated with diabetes and its complications are warranted.

7.
Molecules ; 29(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893583

RESUMEN

The growing interest in fermented dairy products is due to their health-promoting properties. The use of milk kefir grains as a starter culture made it possible to obtain a product with a better nutritional and biological profile depending on the type of milk. Cow, buffalo, camel, donkey, goat, and sheep milk kefirs were prepared, and the changes in sugar, protein, and phenol content, fatty acid composition, including conjugated linoleic acids (CLAs), as well as antioxidant activity, determined by ABTS and FRAP assays, were evaluated and compared. The protein content of cow, buffalo, donkey, and sheep milk increased after 24 h of fermentation. The fatty acid profile showed a better concentration of saturated and unsaturated lipids in all fermented milks, except buffalo milk. The highest content of beneficial fatty acids, such as oleic, linoleic, and C18:2 conjugated linoleic acid, was found in the cow and sheep samples. All samples showed a better antioxidant capacity, goat milk having the highest value, with no correlation to the total phenolic content, which was highest in the buffalo sample (260.40 ± 5.50 µg GAE/mL). These findings suggested that microorganisms living symbiotically in kefir grains utilize nutrients from different types of milk with varying efficiency.


Asunto(s)
Antioxidantes , Búfalos , Ácidos Grasos , Cabras , Kéfir , Leche , Valor Nutritivo , Animales , Kéfir/microbiología , Kéfir/análisis , Leche/química , Antioxidantes/química , Antioxidantes/análisis , Antioxidantes/farmacología , Ácidos Grasos/análisis , Bovinos , Ovinos , Fermentación , Fenoles/análisis , Fenoles/química , Camelus , Equidae
8.
Talanta ; 277: 126425, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38897008

RESUMEN

This work reports the development of low-cost and rapid multiplexed colorimetric assay of antioxidants (total phenolics, antioxidant capacity, flavonoids and anthocyanins) in wines at daisy-shaped fluidic paper-based analytical devices (PADs). The desired fluidic patterns were formed on paper by pen drawing and colorimetric reagents were immobilized at the 6 peripheral test zones. The sample was added at the central sample zone, migrated to the test zones and reacted with the immobilized reagents producing characteristic colors that were captured and analyzed. The paper-based approach was applied to the analysis of several wine samples and the results were statistically correlated to standard solution-based colorimetric assays, indicating that it could be reliably used for ranking wines according to their antioxidants content. In addition, the paper-based analytical methodology is simple, instrument-free, portable, cost-effective, rapid and environment friendly.

9.
Molecules ; 29(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38893403

RESUMEN

Conversion of CO2 into organic chemicals offers a promising route for advancing the circularity of carbon capture, utilisation, and storage in line with the international 2050 Net Zero agenda. The widely known commercialised chemical fixation of CO2 into organic chemicals is the century-old Kolbe-Schmitt reaction, which carboxylates phenol (via sodium phenoxide) into salicylic acid. The carboxylation reaction is normally carried out between the gas-solid phases in a batch reactor. The mass and heat transfer limitations of such systems require rather long reaction times and a high pressure of CO2 and are often characterised by the low formation of undesirable side products. To address these drawbacks, a novel suspension-based carboxylation method has been designed and carried out in this present study, where sodium phenoxide is dispersed in toluene to react with CO2. Importantly, the addition of phenol played a critical role in promoting the stoichiometric conversion of phenoxide to salicylic acid. Under the optimal conditions of a phenol/phenoxide molar ratio of 2:1 in toluene, a reaction temperature of 225 °C, a CO2 pressure of 30 bar, a reaction time of 2 h, and stirring at 1000 rpm, an impressive salicylic acid molar yield of 92.68% has been achieved. The reaction mechanism behind this has been discussed. This development provides us with the potential to achieve a carboxylation reaction of phenoxide with CO2 more effectively in a continuous reactor. It can also facilitate the large-scale fixing of CO2 into hydroxy aromatic carboxylic acids, which can be used as green organic chemical feedstocks for making various products, including long-lived polymeric materials.

10.
Food Chem ; 457: 140092, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38901347

RESUMEN

The main bioavailable phenolics from of Gongju (GJ) and their mechanism for hepato-protection remain unclear. To select the GJ phenolics with high bioavailability, chrysanthemum digestion and Caco-2 cells were used and their hepato-protective potential were examined by using AML-12 cells. The digestive recovery and small intestinal transit rate of the main phenolic compounds ranged from 28.52 to 69.53% and 6.57% âˆ¼ 15.50%, respectively. Among them, chlorogenic acid, 3,5-dicaffeoylquinic acid, and 1,5-dicaffeoylquinic acid, showed higher small intestinal transit rates and digestive recoveries. Furthermore, we found that by increasing intracellular Catalase (CAT) and Superoxide dismutase (SOD) viability and lowering Malondialdehyde (MDA) level (P < 0.05), 3,5-dicaffeoylquinic acid significantly mitigated the oxidative damage of AML-12 liver cells more than the other two phenolics. Our results demonstrated that 3,5-dicaffeoylquninic acid was the primary phenolic compounds in GJ that effectively reduced liver damage, providing a theoretical basis for the development of GJ as a potentially useful resource for hepatoprotective diet.

11.
Foods ; 13(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38890845

RESUMEN

Mushrooms contain phenolic compounds that possess health-promoting properties, including antioxidant effects. However, the low solubility and form of phenolic compounds affect their bioactivity and bioaccessibility. To overcome this limitation, our study investigates the fermentation of mushrooms to increase their free phenolic content and enhance their bioactivity. Our research focused on the impact of fermentation on both free and bound phenolic fractions (FPs and BPs, respectively) in Lentinula edodes and Lactarius deliciosus, which were successively fermented with Lactiplantibacillus plantarum LMG 17673 for 72 h. We examined the total phenolic content (TPC), phenolic profile, and antioxidant activity of both FPs and BPs. Our results showed that the TPC of BPs was higher than that of FPs in both mushrooms, with strong antioxidant capabilities. Fermentation significantly increased the TPC of FPs in both mushrooms, particularly after 24 h of fermentation. The TPC of BPs in mushrooms decreased during fermentation, indicating their release from the matrix. Additionally, we identified 30 bioactive compounds using UPLC-Q-TOF-MS/MS. Our study demonstrates for the first time that lactic acid bacteria fermentation of mushrooms with high phenolic content leads to the liberation of bound phenolics, enhancing their bioactivity and bioaccessibility.

12.
Foods ; 13(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38890966

RESUMEN

People of all age groups consume cookies every day. Consumers' preferences for cookies supplemented with functional plant raw materials have recently increased. Therefore, this research aimed to investigate the influence of a mulberry leaf additive on the proximate and mineral compositions, total phenolic and total chlorophyll content, antioxidant activity, and the hardness and color properties of butter cookies. Wheat and rice flour butter cookies were prepared by replacing the flour with mulberry leaf powder at 0, 4, 8, and 12% (w/w). The results revealed that the investigated chemical and physical characteristics of butter cookies depend on the flour used (rice or wheat) and the addition of mulberry leaf powder. Wheat and rice flour cookies with 12% mulberry leaf powder had the significantly highest contents of fiber (20.34 and 20.23%, respectively), ash (1.73 and 1.75%, respectively), K (170.22 and 160.22 mg 100 g-1, respectively), and Ca (170.45 and 160.68 mg 100 g-1, respectively). The rice flour cookies enriched with 12% leaf powder had the greatest amounts of total phenolics (1.48 mg 100 g-1), Zn (12.25 mg kg-1), Mn (6.28 mg kg-1), Cu (1.95 mg kg-1), and antioxidant activity (67.98%). However, the wheat cookies without mulberry leaf powder contained the most B (9.12 mg kg-1), while the no-added rice cookies contained the most Fe (14.30 mg kg-1). Replacing flour with leaf powder increased the cookies' hardness and decreased their lightness. In conclusion, enriching butter cookies with freeze-dried mulberry leaves can improve their nutritional value and antioxidant activity.

13.
Plants (Basel) ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891319

RESUMEN

This study was conducted for the comparative analysis of antioxidant activity and untargeted metabolomics of dark- and light-colored sour cherry cultivars grown in Canada. Based on our previous study, we selected four cultivars-'Heimann R', 'Gorsemska', V70142, and 'Montmorency'-to determine the untargeted metabolites and their role in antioxidant activities. A total of 473 metabolites were identified from four sour cherry genotypes using UPLC-ToF-MS. Untargeted metabolomics revealed the dominant chemical groups present in sour cherries. PCA showed that the diversity in sour cherry metabolites was due to the genotype differences indicating iditol, malic acid, chlorobenzene, 2-mercaptobenzothiazole, and pyroglutamic acid as the predominant contributors. The variable importance in the projection (VIP > 1.0) in partial least-squares-discriminant analysis described 20 biomarker metabolites representing the cherry metabolome profiles. A heatmap of Pearson's correlation analysis between the 20 biomarker metabolites and antioxidant activities identified seven antioxidant determinants that displayed the highest correlations with different types of antioxidant activities. TPC and TAC were evaluated using the Folin-Ciocalteu method. The total antioxidant activity was performed using three different assays (ABTS, FRAP, and DPPH). This study of correlating metabolomics and antioxidant activities elucidated that the higher nutritional value and biological functions of sour cherry genotypes can be useful for the development of nutraceutical and functional foods.

14.
Plants (Basel) ; 13(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38891323

RESUMEN

Sprouts' consumption has become popular due to their wide availability, easy cultivation process, and proven biological activity. Moreover, stress factors, such as limited access to light or disturbed gravity during growth, may contribute to the increased activity and the synthesis of bioactive compounds. In this study, for the first time, the examination of the impact of darkness and simulated microgravity conditions on the white clover sprouts from the Fabaceae family was conducted. Among several species, used in the preliminary attempts, only white clover was satisfactory sprouting in the disturbed gravity conditions, and thus was chosen for further examination. A random positioning machine setup was used during the cultivation process to simulate microgravity conditions. Additionally, the sprouts were cultivated in total darkness. Simulated microgravity and/or darkness during the first few days of the sprouts' growth caused biomass reduction, the increased synthesis of bioactive compounds (isoflavones and phenolics), and changes in the level of abscisic acid and phenylalanine ammonia-lyase. Moreover, it increased the antioxidant properties of the sprouts, while the enhancement of their cytotoxic impact was observed only for androgen-dependent prostate cancer LNCaP cells. To conclude, the presented results are promising in searching for novel functional food candidates and further studies are necessary, directed at other plant families.

15.
Plants (Basel) ; 13(11)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38891330

RESUMEN

Membrane technology allows the separation of active compounds, providing an alternative to conventional methods such as column chromatography, liquid-liquid extraction, and solid-liquid extraction. The nanofiltration of a Muérdago (Tristerix tetrandus Mart.) fruit juice was realized to recover valuable metabolites using three different membranes (DL, NFW, and NDX (molecular weight cut-offs (MWCOs): 150~300, 300~500, and 500~700 Da, respectively)). The metabolites were identified by ESI-MS/MS. The results showed that the target compounds were effectively fractionated according to their different molecular weights (MWs). The tested membranes showed retention percentages (RPs) of up to 100% for several phenolics. However, lower RPs appeared in the case of coumaric acid (84.51 ± 6.43% (DL), 2.64 ± 2.21% (NFW), 51.95 ± 1.23% (NDX)) and some other phenolics. The RPs observed for the phenolics cryptochlorogenic acid and chlorogenic acid were 99.74 ± 0.21 and 99.91 ± 0.01% (DL membrane), 96.85 ± 0.83 and 99.20 ± 0.05% (NFW membrane), and 92.98 ± 2.34 and 98.65 ± 0.00% (NDX membrane), respectively. The phenolic quantification was realized by UHPLC-ESI-MS/MS. The DL membrane allowed the permeation of amino acids with the MW range of about 300~100 Da (aspartic acid, proline, tryptophan). This membrane allowed the highest permeate flux (22.10-27.73 L/m2h), followed by the membranes NDX (16.44-20.82 L/m2h) and NFW (12.40-14.45 L/m2h). Moreover, the DL membrane allowed the highest recovery of total compounds in the permeate during the concentration process (19.33%), followed by the membranes NFW (16.28%) and NDX (14.02%). Permeate fractions containing phenolics and amino acids were identified in the membrane permeates DL (10 metabolites identified), NFW (13 metabolites identified), and NDX (10 metabolites identified). Particularly, tryptophan was identified only in the DL permeate fractions obtained. Leucine and isoleucine were identified only in the NFW permeate fractions, whereas methionine and arginine were identified only in the NDX ones. Liquid permeates of great interest to the food and pharmaceutical industries were obtained from plant resources and are suitable for future process optimization and scale-up.

16.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893322

RESUMEN

The Mediterranean diet well known for its beneficial health effects, including mood enhancement, is characterised by the relatively high consumption of extra virgin olive oil (EVOO), which is rich in bioactive phenolic compounds. Over 200 phenolic compounds have been associated with Olea europaea, and of these, only a relatively small fraction have been characterised. Utilising the OliveNetTM library, phenolic compounds were investigated as potential inhibitors of the epigenetic modifier lysine-specific demethylase 1 (LSD1). Furthermore, the compounds were screened for inhibition of the structurally similar monoamine oxidases (MAOs) which are directly implicated in the pathophysiology of depression. Molecular docking highlighted that olive phenolics interact with the active site of LSD1 and MAOs. Protein-peptide docking was also performed to evaluate the interaction of the histone H3 peptide with LSD1, in the presence of ligands bound to the substrate-binding cavity. To validate the in silico studies, the inhibitory activity of phenolic compounds was compared to the clinically approved inhibitor tranylcypromine. Our findings indicate that olive phenolics inhibit LSD1 and the MAOs in vitro. Using a cell culture model system with corticosteroid-stimulated human BJ fibroblast cells, the results demonstrate the attenuation of dexamethasone- and hydrocortisone-induced MAO activity by phenolic compounds. The findings were further corroborated using human embryonic stem cell (hESC)-derived neurons stimulated with all-trans retinoic acid. Overall, the results indicate the inhibition of flavin adenine dinucleotide (FAD)-dependent amine oxidases by olive phenolics. More generally, our findings further support at least a partial mechanism accounting for the antidepressant effects associated with EVOO and the Mediterranean diet.


Asunto(s)
Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa , Monoaminooxidasa , Olea , Fenoles , Humanos , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Monoaminooxidasa/química , Olea/química , Fenoles/farmacología , Fenoles/química , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Depresión/tratamiento farmacológico , Aceite de Oliva/química , Simulación por Computador
17.
Food Chem ; 457: 140124, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38908239

RESUMEN

Phenolics in bound form extensively exist in cereal dietary fiber, especially insoluble fiber, while their release profile in gastrointestinal tract and contribution to the potential positive effects of dietary fiber in modulating gut microbiota still needs to be disclosed. In this work, the composition of bound phenolics (BPs) in triticale insoluble dietary fiber (TIDF) was studied, and in vitro gastrointestinal digestion as well as colonic fermentation were performed to investigate BPs liberation and their role in regulating intestinal flora of TIDF. It turned out that most BPs were unaccessible in digestion but partly released continuously during fermentation. 16 s rRNA sequencing demonstrated that TIDF possessed prebiotic effects by promoting anti-inflammatory while inhibiting proinflammatory bacteria alongside boosting SCFAs production and antioxidative BPs contributed a lot to these effects. Results indicated that TIDF held capabilities to regulate intestinal flora and BPs were important functional components to the health benefits of cereal dietary fiber.

18.
BMC Plant Biol ; 24(1): 574, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890583

RESUMEN

BACKGROUND: Fruit cracking impacts the quality of sweet cherry, significantly affecting its marketability due to increased susceptibility to injury, aesthetic flaws, and susceptibility to pathogens. The effect of 1% biofilm (Parka™) application regimes on fruit cracking and other quality parameters in the '0900 Ziraat' cherry cultivar was investigated in this study. Fruit sprayed with water were served as control (U1). Fruit treated only once with biofilm three, two and one week before the commercial harvest were considered as U2, U3 and U4, respectively. Fruit treated with biofilm three, two, and one week before harvest were considered as U5; three and two week before harvest as U6; two and one week before harvest as U7; and fruit treated three and one week before harvest as U8. RESULTS: In both measurement periods, the lower cracking index was obtained in biofilm-treated sweet cherry fruit. However, the firmness of biofilm-treated fruit was higher than that of the control fruit. The lowest respiration rate was observed in U7, while the highest weight was recorded in U4 and U5 than the control. The biofilm application decreased fruit coloration. The biofilm application also increased the soluble solids content of the fruit. The U2, U3 and U4 applications at harvest showed higher titratable acidity than the control. In both measurement periods, the vitamin C content of the U2, U5, U6, U7 and U8 applications was found to be higher than that of the control. The total monomeric anthocyanin of the U3 and U8 applications was higher than that of the control. Furthermore, the antioxidant activity of the U2, U3 and U5 in the DPPH, and the U7 and U8 in FRAP were measured higher thanthat of the control. CONCLUSIONS: The application of biofilms has the potential to mitigate fruit cracking, prolong postharvest life of sweet cherries, and enhance fruit firmness.


Asunto(s)
Biopelículas , Frutas , Prunus avium , Frutas/microbiología , Frutas/fisiología , Biopelículas/efectos de los fármacos , Prunus avium/fisiología , Prunus avium/efectos de los fármacos , Ácido Ascórbico/metabolismo
19.
BMC Complement Med Ther ; 24(1): 217, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844985

RESUMEN

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory condition characterized by the accumulation of reactive oxygen species and the expression of inflammatory factors. Regarding its anti-atopic activity, numerous traditional medicinal materials and secondary metabolic products play pivotal roles in modulating the associated mechanisms. METHODS: This study aimed to utilize Salvia miltiorrhiza Bunge (SMB) as an anti-AD source. In-vitro activity assessments and qualitative and quantitative analyses using UPLC-TQ-MS/MS and HPLC-DAD were conducted in two cultivars ('Dasan' and 'Kosan'). Statistical analysis indicated that the profiles of their secondary metabolites contribute significantly to their pharmacological properties. Consequently, bio-guided fractionation was undertaken to figure out the distinct roles of the secondary metabolites present in SMB. RESULTS: Comparative study of two cultivars indicated that 'Dasan', having higher salvianolic acid A and B, exhibited stronger antioxidant and anti-inflammatory activities. Meanwhile, 'Kosan', containing higher tanshinones, showed higher alleviating activities on anti-AD related genes in mRNA levels. Additionally, performed bio-guided fractionation re-confirmed that the hydrophilic compounds of SMB can prevent AD by inhibiting accumulation of ROS and suppressing inflammatory factors and the lipophilic components can directly inhibit AD. CONCLUSIONS: SMB was revealed as a good source for anti-AD activity. Several bioactive compounds were identified from the UPLC-TQ-MS/MS and different compounds content was linked to biological activities. Characterization of these compounds may be helpful to understand differential role of secondary metabolites from SMB on alleviation of AD.


Asunto(s)
Antiinflamatorios , Dermatitis Atópica , Extractos Vegetales , Salvia miltiorrhiza , Salvia miltiorrhiza/química , Dermatitis Atópica/tratamiento farmacológico , Extractos Vegetales/farmacología , Humanos , Antiinflamatorios/farmacología , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Antioxidantes/farmacología , Especies Reactivas de Oxígeno/metabolismo
20.
Heliyon ; 10(11): e31127, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38845971

RESUMEN

In recent years, Albania has seen a significant increase in wine production, which can be attributed to the growing interest in the diversity of native grape varieties. Among the most popular grape varieties are Kallmet, Shesh i zi (ShiZ), Shesh i bardhë (ShiB), and Cerruje, which are known for their distinctive wines as well as the planted area. A study was conducted to investigate the influence of the territory and vintage on phenolic compounds of single-variety wines from these grape varieties. Liquid chromatography identified and quantified thirty-one phenolic compounds, sub-grouped into flavonoids and non-flavonoids, with diode-array detection coupled to electrospray ionization tandem mass spectrometry (LC-DAD-ESI/MSn). Within the red wines group, the ShiZ variety wine presented the highest phenolic content (1037 mg/L), followed by Kallmet cv. (539 mg/L); conversely, in the white wine group, the ShiB wines (699 mg/L) were distinguished from the Cerruje variety. Gallic acid was the main phenolic compound, followed by procyanidin B3. ShiB and ShiZ had the highest levels, at 215 and 136 mg/L, respectively. Among flavanols, (+)-catechin was found in the highest levels, with the maximum in Kallmet cv. red wine (58.9 mg/L), followed by (-)-epicatechin (29.1 mg/L). The ShiB wine had the highest content of flavonols, with quercetin-3-O-glucuronide and quercetin-3-O-glucoside as the main contributors. The highest quantity of stilbenoids belonged to Kallmet red wine (1.59 mg/L). Applying Principal Component Analysis (PCA) in red and white wine groups made a good separation possible according to variety and region. However, a separation according to vintage year was not successful.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA