Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(47): 54732-54742, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37964465

RESUMEN

We successfully tune ultralong organic room-temperature phosphorescence (UORTP) by a simple strategy of precisely modifying nitrogen atoms on Phosphorescence Units, and colorful ultralong phosphorescence can be achieved. We for the first time investigate the structure-function relationship between phosphorescence properties and molecular structures of Phosphorescence Units. With BCz and BCz-1 as comparison, eight new Phosphorescence Units were synthesized by introducing one or two nitrogen atoms to the naphthalene moiety. For all the 10 Phosphorescence Units, their room-temperature ultralong phosphorescence in the PMMA film should be assigned to monomer phosphorescence from intrinsic T1 decay. For Phosphorescence Units series I (BCz, NBCz-1, NBCz-2, NBCz-3, NBCz-4, NBCz-5, and NBCz-6), introducing one nitrogen atom to the naphthalene moiety can significantly affect the phosphorescence properties of Phosphorescence Units, and the effect is quite complicated. For modification on the inner ring, the T1 energy level of NBCz-1 decreases, and the red shift of UORTP occurs while the T1 energy level of NBCz-2 increases and the blue shift of UORTP happens. For modification on the outer ring, no phosphorescence color change is observed for NBCz-3 and NBCz-4, but their phosphorescence lifetimes vary notably due to different intersystem crossing efficiencies; as the modification site approaches the central five-member ring, the T1 energy levels of NBCz-5 and NBCz-6 decrease, and their UORTP red shifts dramatically. For Phosphorescence Units series II (BCz, 2NBCz, BCz-1, and 2NBCz-1), introducing two nitrogen atoms to the outer six-member ring reduces energy level of T1 excitons and leads to incredible red shift of UORTP for BCz and 2NBCz while surprisingly energy levels of T1 excitons rise and UORTP blue shifts for BCz-1 and 2NBCz-1. Under the condition of proper modification sites, it is true that the more the additional nitrogen atoms, the more red-shifted the ultralong phosphorescence. This study may expand our knowledge of organic phosphorescence and lay the foundation for its future applications.

2.
ACS Appl Mater Interfaces ; 15(25): 30804-30814, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37327087

RESUMEN

How matrixes influence room temperature ultralong organic phosphorescence (RTUOP) in the doping systems is a fundamental question. In this study, we construct guest-matrix doping phosphorescence systems by using the derivatives (ISO2N-2, ISO2BCz-1, and ISO2BCz-2) of three phosphorescence units (N-2, BCz-1, and BCz-2) and two matrixes (ISO2Cz and DMAP) and systematically investigate their RTUOP properties. Firstly, the intrinsic phosphorescence properties of three guest molecules were studied in solution, in the pure powder state, and in PMMA film. Then, the guest molecules were doped into the two matrixes with increasing weight ratio. To our surprise, all of the doping systems in DMAP feature a longer lifetime but weaker phosphorescence intensity, while all of the doping systems in ISO2Cz exhibit a shorter lifetime but higher phosphorescence intensity. According to the single-crystal analysis of the two matrixes, resemblant chemical structures of the guests and ISO2Cz enable them to approach each other and interact with each other via a variety of interactions, thus facilitating the occurrence of charge separation (CS) and charge recombination (CR). The HOMO-LUMO energy levels of the guests match well with the ones of ISO2Cz, which also significantly promotes the efficiency of the CS and CR process. To our best knowledge, this work is a systematic study on how matrixes influence the RTUOP of guest-matrix doping systems and may give deep insight into the development of organic phosphorescence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA