RESUMEN
Cells save their energy during nitrogen starvation by selective autophagy of ribosomes and degradation of RNA to ribonucleotides and nucleosides. Nucleosides are hydrolyzed by nucleoside N-ribohydrolases (nucleosidases, NRHs). Subclass I of NRHs preferentially hydrolyzes the purine ribosides while subclass II is more active towards uridine and xanthosine. Here, we performed a crystallographic and kinetic study to shed light on nucleoside preferences among plant NRHs followed by in vivo metabolomic and phenotyping analyses to reveal the consequences of enhanced nucleoside breakdown. We report the crystal structure of Zea mays NRH2b (subclass II) and NRH3 (subclass I) in complexes with the substrate analog forodesine. Purine and pyrimidine catabolism are inseparable because nucleobase binding in the active site of ZmNRH is mediated via a water network and is thus unspecific. Dexamethasone-inducible ZmNRH overexpressor lines of Arabidopsis thaliana, as well as double nrh knockout lines of moss Physcomitrium patents, reveal a fine control of adenosine in contrast to other ribosides. ZmNRH overexpressor lines display an accelerated early vegetative phase including faster root and rosette growth upon nitrogen starvation or osmotic stress. Moreover, the lines enter the bolting and flowering phase much earlier. We observe changes in the pathways related to nitrogen-containing compounds such as ß-alanine and several polyamines, which allow plants to reprogram their metabolism to escape stress. Taken together, crop plant breeding targeting enhanced NRH-mediated nitrogen recycling could therefore be a strategy to enhance plant growth tolerance and productivity under adverse growth conditions.
Asunto(s)
Arabidopsis , Nucleósidos , Nucleósidos/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Plantas/metabolismo , Uridina/metabolismo , Arabidopsis/genéticaRESUMEN
The autophagy-defective mutants (atg5 and atg7) of Physcomitrium patens exhibit strong desiccation tolerance. Here, we examined the effects of H2O2 on wild-type (WT) and autophagy-defective mutants of P. patens, considering that desiccation induces reactive oxygen species (ROS). We found that atg mutants can survive a 30-min treatment with 100 mM H2O2, whereas WT cannot, implying that autophagy promotes cell death induced by H2O2. Concomitant with cell death, vacuole collapse occurred. Intracellular H2O2 levels in both WT and atg5 increased immediately after H2O2 treatment and subsequently reached plateaus, which were higher in WT than in atg5. The ROS scavenger N-acetylcysteine lowered the plateau levels in WT and blocked cell death, suggesting that higher H2O2 plateau caused cell death. The uncoupler of electron transport chain (ETC) carbonyl cyanide m-chlorophenylhydrazone also lowered the H2O2 plateaus, showing that ROS produced in the ETC in mitochondria and/or chloroplasts elevated the H2O2 plateau. The autophagy inhibitor 3-methyladenine lowered the H2O2 plateau and the cell death rate in WT, suggesting that autophagy occurring after H2O2 treatment is involved in the production of ROS. Conversely, the addition of bovine serum albumin, which is endocytosed and supplies amino acids instead of autophagy, elevated the H2O2 plateau in atg5 cells, suggesting that amino acids produced through autophagy promote H2O2 generation. These results clearly show that autophagy causes cell death under certain stress conditions. We propose that autophagy-derived amino acids are catabolized using ETCs in mitochondria and/or chloroplasts and produce H2O2, which in turn promotes the cell death accompanying vacuole collapse.
Asunto(s)
Aminoácidos , Peróxido de Hidrógeno , Peróxido de Hidrógeno/farmacología , Especies Reactivas de Oxígeno/metabolismo , Muerte Celular , Aminoácidos/metabolismo , Autofagia/fisiología , Estrés Oxidativo/fisiologíaRESUMEN
BACKGROUND: S1-like nucleases are widespread enzymes commonly used in biotechnology and molecular biology. Although it is commonly believed that they are mainly Zn2+-dependent acidic enzymes, we have found that numerous members of this family deviate from this rule. Therefore, in this work, we decided to check how broad is the range of nonzinc-dependent S1-like nucleases and what is the molecular basis of their activities. METHODS: S1-like nucleases chosen for analysis were achieved through heterologous expression in appropriate eukaryotic hosts. To characterize nucleases' active-site properties, point mutations were introduced in selected positions. The enzymatic activities of wild-type and mutant nucleases were tested by in-gel nuclease activity assay. RESULTS: We discovered that S1-like nucleases encoded by non-vascular plants and single-celled protozoa, like their higher plant homologues, exhibit a large variety of catalytic properties. We have shown that these individual properties are determined by specific non-conserved active site residues. CONCLUSIONS: Our findings demonstrate that mutations that occur during evolution can significantly alter the catalytic properties of S1-like nucleases. As a result, different ions can compete for particular S1-type nucleases' active sites. This phenomenon undermines the existing classification of S1-like nucleases. GENERAL SIGNIFICANCE: Our findings have numerous implications for applications and understanding the S1-like nucleases' biological functions. For example, new biotechnological applications should take into account their unexpected catalytic properties. Moreover, these results demonstrate that the trinuclear zinc-based model commonly used to characterize the catalytic activities of S1-like nucleases is insufficient to explain the actions of nonzinc-dependent members of this family.
Asunto(s)
Endonucleasas , Plantas , Dominio Catalítico , Endonucleasas/química , Plantas/genética , Plantas/metabolismo , Células Eucariotas , CatálisisRESUMEN
The precise control of cell growth and proliferation underpins the development of plants and animals. These factors affect the development and size of organs and the body. In plants, the growth and proliferation of cells are regulated by environmental stimuli and intrinsic signaling, allowing different cell types to have specific growth and proliferation characteristics. An increasing number of factors that control cell division and growth have been identified. However, the mechanisms underlying cell type-specific cell growth and proliferation characteristics in the normal developmental context are poorly understood. Here, we analyzed the rice mutant osmo25a1, which is defective in the progression of embryogenesis. The osmo25a1 mutant embryo developed incomplete embryonic organs, such as the shoot and root apical meristems. It showed a delayed progression of embryogenesis, associated with the reduced mitotic activity. The causal gene of this mutation encodes a member of the Mouse protein-25A (MO25A) family of proteins that have pivotal functions in a signaling pathway that governs cell proliferation and polarity in animals, yeasts and filamentous fungi. To elucidate the function of plant MO25A at the cellular level, we performed a functional analysis of MO25A in the moss Physcomitrium patens. Physcomitrium patens MO25A was uniformly distributed in the cytoplasm and functioned in cell tip growth and the initiation of cell division in stem cells. Overall, we demonstrated that MO25A proteins are conserved factors that control cell proliferation and growth.
Asunto(s)
Bryopsida , Proteínas de Plantas , Animales , Ratones , Proteínas de Plantas/metabolismo , Células Vegetales/metabolismo , Plantas/metabolismo , Proliferación Celular , Morfogénesis , Bryopsida/metabolismo , Mamíferos/metabolismoRESUMEN
Plant cells form microtubule arrays, called `cortical microtubules', beneath the plasma membrane which are critical for cell-wall organization and directional cell growth. Cortical microtubules are nucleated independently of centrosomes. Spiral2 is a land-plant-specific microtubule minus-end-targeting protein that stabilizes the minus ends by inhibiting depolymerization of the filament. Spiral2 possesses an N-terminal microtubule-binding domain and a conserved C-terminal domain whose function is unknown. In this study, the crystal structure of the conserved C-terminal domain of Spiral2 was determined using the single-wavelength anomalous dispersion method. Refinement of the model to a resolution of 2.2â Å revealed a helix-turn-helix fold with seven α-helices. The protein crystallized as a dimer, but SEC-MALS analysis showed the protein to be monomeric. A structural homology search revealed that the protein has similarity to the C-terminal domain of the katanin regulatory subunit p80. The structure presented here suggests that the C-terminal domain of Spiral2 represents a new class of microtubule dynamics modulator across the kingdom.
Asunto(s)
Proteínas Asociadas a Microtúbulos , Microtúbulos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Cristalografía por Rayos X , Microtúbulos/metabolismo , Katanina/química , Katanina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information about their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity was enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.
Asunto(s)
Bryopsida , Porinas , Animales , Secuencia de Aminoácidos , Bryopsida/genética , Bryopsida/metabolismo , Venenos de Cnidarios/química , Citotoxinas , Porinas/genética , Porinas/metabolismo , Anémonas de Mar/químicaRESUMEN
RNase H1s are associated with growth and development in both plants and animals, while the roles of RNase H1s in bryophytes have been rarely reported. Our previous data found that PpRNH1A, a member of the RNase H1 family, could regulate the development of Physcomitrium (Physcomitrella) patens by regulating the auxin. In this study, we further investigated the biological functions of PpRNH1A and found PpRNH1A may participate in response to heat stress by affecting the numbers and the mobilization of lipid droplets and regulating the expression of heat-related genes. The expression level of PpRNH1A was induced by heat stress (HS), and we found that the PpRNH1A overexpression plants (A-OE) were more sensitive to HS. At the same time, A-OE plants have a higher number of lipid droplets but with less mobility in cells. Consistent with the HS sensitivity phenotype in A-OE plants, transcriptomic analysis results indicated that PpRNH1A is involved in the regulation of expression of heat-related genes such as DNAJ and DNAJC. Taken together, these results provide novel insight into the functions of RNase H1s.
Asunto(s)
Bryopsida , Bryopsida/genética , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque Térmico/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ribonucleasas/metabolismoRESUMEN
In multi-step phosphorelay (MSP) signaling, upon reception of various environmental signals, histidine kinases (HKs) induce autophosphorylation and subsequent phosphotransfer to partner histidine-containing phosphotransfer proteins (HPts). Recently, we reported that (i) two Per-Arnt-Sim (PAS) domain-containing HKs (PHK1 and PHK2) of the moss Physcomitrium (Physcomitrella) patens suppressed red light-induced branching of protonema tissue, and (ii) they interacted with partner HPts (HPt1 and HPt2) in the nucleus in the dark while cytoplasmic interactions also occurred under red light. Here we demonstrate that PHK1 is diurnally regulated, i.e., it is localized and interacts with HPt1 and HPt2 in the nucleus at night whereas these activities reversibly expand and become nucleocytoplasmic in the day. In the dark, PHK1 interacts with HPts only in the nucleus, even in subjective daytime, indicating that endogenous regulation by the circadian clock is not involved. These results suggest that PHK1 is a regulator of moss' adaptation to a light environment on a daily timescale. We discuss a possible regulatory mechanism for the branching of protonema.
Asunto(s)
Bryopsida , Bryopsida/metabolismo , Histidina/metabolismo , Histidina Quinasa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismoRESUMEN
In bryophytes (i.e., mosses, liverworts, and hornworts), extant representatives of early land plants, plasmodesmata have been described in a wide range of tissues. Although their contribution to bryophyte morphogenesis remains largely unexplored, several recent studies have suggested that the deposition of callose around plasmodesmata might regulate developmental and physiological responses in mosses. In this chapter, we provide a protocol to image and quantify callose levels in the filamentous body of the model moss Physcomitrium (Physcomitrella) patens and discuss possible alternatives and pitfalls. More generally, this protocol establishes a framework to explore the distribution of callose in other bryophytes.
Asunto(s)
Briófitas , Bryopsida , Glucanos , Filogenia , PlasmodesmosRESUMEN
Protoplast production with the moss Physcomitrium (Physcomitrella) patens has a long and successful history. As a tool, it has not only been the base of reverse genetic studies covering research fields as diverse as development, metabolism, or gene network regulation but also allowed its development as a bioengineering platform for protein production. We present here a standardized protocol for protoplast production from Physcomitrium (Physcomitrella) patens protonemata. Additionally, we detail procedures for their transfection, their plating for optimal regeneration, and three alternative selection approaches. To improve the consistency of protoplast regeneration, we describe a new option for protoplast embedding. The use of an alginate matrix to regenerate moss protoplast alleviates the use of warm agarized medium. Thus, it optimizes transformed protoplast survival without any morphological detrimental effect or impact on transfection efficiency.
Asunto(s)
Bryopsida , Bryopsida/genética , Protoplastos/fisiología , TransfecciónRESUMEN
Land colonization is a major event in plant evolution. Little is known about the evolutionary characteristics of lipids during this process. Here, we proved that Physcomitrella patens, a bryophyte that appeared in the early evolution of terrestrial plants, has short-term desiccation resistance. The maintenance of membrane integrity is related to its specific glycerolipid composition and key genes for lipid metabolism. We analyzed 414 types of lipid molecules, and found that phospholipids accounted for 61.7%, mainly PC and PI; glycolipids accounted for only 26.5%, with a special MGDG molecular map. The most abundant MDGD, that is, MGDG34:6, contained rare 15- and 19-carbon acyl chains; the level of neutral lipids was higher. This was consistent with the results observed by TEM, with fewer lamellae and obvious lipid droplets. Slight dehydration accumulated a large number of TAG molecules, and severe dehydration degraded phospholipids and caused membrane leakage, but PA and MGDG fluctuated less. The key genes of lipid metabolism, DGAT and PAP, were actively transcribed, suggesting that PA was one of the main DAG sources for TAG synthesis. This work proves that Physcomitrella patens adopts high-constitutive PC and PI similar to plant seeds, abundant TAG, and its own specific MGDG to resist extreme dehydration. This result provides a new insight into the lipid evolution of early terrestrial plants against unfavorable terrestrial environments.
Asunto(s)
Bryopsida , Membrana Celular/química , Desecación , Fosfolípidos/química , Bryopsida/química , SemillasRESUMEN
Plant oxylipins are a class of lipid-derived signaling molecules being involved in the regulation of various biotic and abiotic stress responses. A major class of oxylipins are the circular derivatives to which 12-oxo-phytodienoic acid (OPDA) and its metabolite jasmonic acid (JA) belong. While OPDA and its shorter chain homologue dinor-OPDA (dnOPDA) seem to be ubiquitously found in land plants ranging from bryophytes to angiosperms, the occurrence of JA and its derivatives is still under discussion. The bryophyte Physcomitrium patens has received increased scientific interest as a non-vascular plant model organism over the last decade. Therefore, we followed the metabolism upon wounding by metabolite fingerprinting with the aim to identify jasmonates as well as novel oxylipins in P. patens. A non-targeted metabolomics approach was used to reconstruct the metabolic pathways for the synthesis of oxylipins, derived from roughanic, linoleic, α-linolenic, and arachidonic acid in wild type, the oxylipin-deficient mutants of Ppaos1 and Ppaos2, the mutants of Ppdes being deficient in all fatty acids harboring a Δ6-double bond and the C20-fatty acid-deficient mutants of Ppelo. Beside of OPDA, iso-OPDA, dnOPDA, and iso-dnOPDA, three additional C18-compounds and a metabolite being isobaric to JA were identified to accumulate after wounding. These findings can now serve as foundation for future research in determining, which compound(s) will serve as native ligand(s) for the oxylipin-receptor COI1 in P. patens.
RESUMEN
Photosynthetic organisms have evolved photoprotective mechanisms to acclimate to light intensity fluctuations in their natural growth environments. Photosystem (PS) II subunit S (PsbS) and light-harvesting complex (LHC) stress-related proteins (LhcSR) are essential for triggering photoprotection in vascular plants and green algae, respectively. The activity of both proteins is strongly enhanced in the moss Physcomitrella patens under high-light conditions. However, their role in regulating photosynthesis acclimation in P. patens under fluctuating light (FL) conditions is still unknown. Here, we compare the responses of wild-type (WT) P. patens and mutants lacking PsbS (psbs KO) or LhcSR1 and 2 (lhcsr KO) to FL conditions in which the low-light phases were periodically interrupted with high-light pulses. lhcsr KO mutant showed a strong reduction in growth with respect to WT and psbs KO under FL conditions. The lack of LhcSR not only decreased the level of non-photochemical quenching, resulting in an over-reduced plastoquinone pool, but also significantly increased the PSI acceptor limitation values with respect to WT and psbs KO under FL conditions. Moreover, in lhcsr KO mutant, the abundance of PSI core and PSI-LHCI complex decreased greatly under FL conditions compared with the WT and psbs KO. We proposed that LhcSR in P. patens play a crucial role in moss acclimation to dynamic light changes.
Asunto(s)
Bryopsida , Aclimatación , Bryopsida/genética , Proteínas de Choque Térmico , Luz , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismoRESUMEN
Specialized photosynthetic organs have appeared several times independently during the evolution of land plants. Phyllids, the leaf-like organs of bryophytes such as mosses or leafy liverworts, display a simple morphology, with a small number of cells and cell types and lack typical vascular tissue which contrasts greatly with flowering plants. Despite this, the leaf structures of these two plant types share many morphological characteristics. In this review, we summarize the current understanding of leaf morphogenesis in the model moss Physcomitrium patens, focusing on the underlying cellular patterns and molecular regulatory mechanisms. We discuss this knowledge in an evolutionary context and identify parallels between moss and flowering plant leaf development. Finally, we propose potential research directions that may help to answer fundamental questions in plant development using moss leaves as a model system.
RESUMEN
In the last few years, next-generation sequencing techniques have started to be used to identify new viruses infecting plants. This has allowed to rapidly increase our knowledge on viruses other than those causing symptoms in economically important crops. Here we used this approach to identify a virus infecting Physcomitrium patens that has the typical structure of the double-stranded RNA endogenous viruses of the Amalgaviridae family, which we named Physcomitrium patens amalgavirus 1, or PHPAV1. PHPAV1 is present only in certain accessions of P. patens, where its RNA can be detected throughout the cell cycle of the plant. Our analysis demonstrates that PHPAV1 can be vertically transmitted through both paternal and maternal germlines, in crosses between accessions that contain the virus with accessions that do not contain it. This work suggests that PHPAV1 can replicate in genomic backgrounds different from those that actually contain the virus and opens the door for future studies on virus-host coevolution.
Asunto(s)
Bryopsida/virología , Enfermedades de las Plantas/virología , Virus de Plantas/patogenicidad , Virus ARN/patogenicidad , Transmisión Vertical de Enfermedad Infecciosa , Filogenia , Virus de Plantas/genética , Virus de Plantas/fisiología , Virus ARN/genética , Virus ARN/fisiología , Replicación ViralRESUMEN
Plant cell walls are highly dynamic structures that are composed predominately of polysaccharides. As such, endogenous carbohydrate active enzymes (CAZymes) are central to the synthesis and subsequent modification of plant cells during morphogenesis. The endo-glucanase 16 (EG16) members constitute a distinct group of plant CAZymes, angiosperm orthologs of which were recently shown to have dual ß-glucan/xyloglucan hydrolase activity. Molecular phylogeny indicates that EG16 members comprise a sister clade with a deep evolutionary relationship to the widely studied apoplastic xyloglucan endo-transglycosylases/hydrolases (XTH). A cross-genome survey indicated that EG16 members occur as a single ortholog across species and are widespread in early diverging plants, including the non-vascular bryophytes, for which functional data were previously lacking. Remarkably, enzymological characterization of an EG16 ortholog from the model moss Physcomitrella patens (PpEG16) revealed that EG16 activity and sequence/structure are highly conserved across 500 million years of plant evolution, vis-à-vis orthologs from grapevine and poplar. Ex vivo biomechanical assays demonstrated that the application of EG16 gene products caused abrupt breakage of etiolated hypocotyls rather than slow extension, thereby indicating a mode-of-action distinct from endogenous expansins and microbial endo-glucanases. The biochemical data presented here will inform future genomic, genetic, and physiological studies of EG16 enzymes.
Asunto(s)
Bryopsida/genética , Celulasa/genética , Proteínas de Plantas/genética , Plantas/genética , Secuencia de Aminoácidos , Biocatálisis , Bryopsida/enzimología , Celulasa/química , Celulasa/metabolismo , Evolución Molecular , Glucanos/metabolismo , Cinética , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/clasificación , Plantas/enzimología , Conformación Proteica , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Xilanos/metabolismo , beta-Glucanos/metabolismoRESUMEN
Anthracnose caused by the hemibiotroph fungus Colletotrichum gloeosporioides is a devastating plant disease with an extensive impact on plant productivity. The process of colonization and disease progression of C. gloeosporioides has been studied in a number of angiosperm crops. To better understand the evolution of the plant response to pathogens, the study of this complex interaction has been extended to bryophytes. The model moss Physcomitrium patens Hedw. B&S (former Physcomitrella patens) is sensitive to known bacterial and fungal phytopathogens, including C. gloeosporioides, which cause infection and cell death. P. patens responses to these microorganisms resemble that of the angiosperms. However, the molecular events during the interaction of P. patens and C. gloeosporioides have not been explored. In this work, we present a comprehensive approach using microscopy, phenomics and RNA-seq analysis to explore the defense response of P. patens to C. gloeosporioides. Microscopy analysis showed that appressoria are already formed at 24 h after inoculation (hai) and tissue colonization and cell death occur at 24 hai and is massive at 48 hai. Consequently, the phenomics analysis showed progressing browning of moss tissues and impaired photosynthesis from 24 to 48 hai. The transcriptomic analysis revealed that more than 1200 P. patens genes were differentially expressed in response to Colletotrichum infection. The analysis of differentially expressed gene function showed that the C. gloeosporioides infection led to a transcription reprogramming in P. patens that upregulated the genes related to pathogen recognition, secondary metabolism, cell wall reinforcement and regulation of gene expression. In accordance with the observed phenomics results, some photosynthesis and chloroplast-related genes were repressed, indicating that, under attack, P. patens changes its transcription from primary metabolism to defend itself from the pathogen.
RESUMEN
The moss Physcomitrium (Physcomitrella) patens is a bryophyte that provides genetic information about the adaptation to the life on land by early Embryophytes and is a reference organism for comparative evolutionary studies in plants. Copper is an essential micronutrient for every living organism, its transport across the plasma membrane is achieved by the copper transport protein family COPT/CTR. Two genes related to the COPT family were identified in Physcomitrella patens, PpaCOPT1 and PpaCOPT2. Homology modelling of both proteins showed the presence of three putative transmembrane domains (TMD) and the Mx3M motif, constituting a potential Cu + selectivity filter present in other members of this family. Functional characterization of PpaCOPT1 and PpaCOPT2 in the yeast mutant ctr1Δctr3Δ restored its growth on medium with non-fermentable carbon sources at micromolar Cu concentrations, providing support that these two moss proteins function as high affinity Cu + transporters. Localization of PpaCOPT1 and PpaCOPT2 in yeast cells was observed at the tonoplast and plasma membrane, respectively. The heterologous expression of PpaCOPT2 in tobacco epidermal cells co-localized with the plasma membrane marker. Finally, only PpaCOPT1 was expressed in seven-day old protonema and was influenced by extracellular copper levels. This evidence suggests different roles of PpaCOPT1 and PpaCOPT2 in copper homeostasis in Physcomitrella patens.
Asunto(s)
Bryopsida , Secuencia de Aminoácidos , Bryopsida/genética , Bryopsida/metabolismo , Cobre/metabolismo , Proteínas Transportadoras de Cobre , HomeostasisRESUMEN
Multi-step phosphorelay (MSP) is a broadly distributed signaling system in organisms. In MSP, histidine kinases (HKs) receive various environmental signals and transmit them by autophosphorylation followed by phosphotransfer to partner histidine-containing phosphotransfer proteins (HPts). Previously, we reported that Per-Arnt-Sim (PAS) domain-containing HK1 (PHK1) and PHK2 of the moss Physcomitrium (Physcomitrella) patens repressed red light-induced protonema branching, a critical step in the moss life cycle. In plants, PHK homolog-encoding genes are conserved only in early-diverging lineages such as bryophytes and lycophytes. PHKs-mediated signaling machineries attract attention especially from an evolutionary viewpoint, but they remain uninvestigated. Here, we studied the P. patens PHKs focusing on their subcellular patterns of localization and interaction with HPts. Yeast two-hybrid analysis, a localization assay with a green fluorescent protein, and a bimolecular fluorescence complementation analysis together showed that PHKs are localized and interact with partner HPts mostly in the nucleus, as unprecedented features for plant HKs. Additionally, red light triggered the interactions between PHKs and HPts in the cytoplasm, and light co-repressed the expression of PHK1 and PHK2 as well as genes encoding their partner HPts. Our results emphasize the uniqueness of PHKs-mediated signaling machineries, and functional implications of this uniqueness are discussed.
Asunto(s)
Bryopsida/metabolismo , Histidina Quinasa/metabolismo , Luz , Transducción de Señal , Bryopsida/efectos de la radiación , Núcleo Celular/metabolismo , Fosforilación , Unión ProteicaRESUMEN
As a bryophyte and model plant, the moss Physcomitrium (Physcomitrella) patens (P. patens) is particularly well adapted to hormone evolution studies. Gene targeting through homologous recombination or CRISPR-Cas9 system, genome sequencing, and numerous transcriptomic datasets has allowed for molecular genetics studies and much progress in Evo-Devo knowledge. As to strigolactones, like for other hormones, both phenotypical and transcriptional responses can be studied, in both WT and mutant plants. However, as in any plant species, medium- to large-scale phenotype characterization is necessary, owing to the general high phenotypic variability. Therefore, many biological replicates are required. This may translate to large amount of the investigated compounds, particularly expensive (or difficult to synthesize) in the case of strigolactones. These issues prompted us to improve existing methods to limit the use of scarce/expensive compounds, as well as to simplify subsequent measures/sampling of P. patens. We hence scaled up well-tried experiments, in order to increment the number of tested genotypes in one given experiment.In this chapter, we will describe three methods we set up to study the response to strigolactones and related compounds in P. patens.