Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.378
Filtrar
1.
Phytother Res ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246209

RESUMEN

SARS-CoV-2 infection causes disruptions in inflammatory pathways, which fundamentally contribute to COVID-19 pathophysiology. The present review critically evaluates the gaps in scientific literature and presents the current status regarding the inflammatory signaling pathways in COVID-19. We propose that phytoconstituents can be used to treat COVID-19 associated inflammation, several already formulated in traditional medications. For this purpose, extensive literature analysis was conducted in the PubMed database to collect relevant in vitro, in vivo, and human patient studies where inflammation pathways were shown to be upregulated in COVID-19. Parallelly, scientific literature was screened for phytoconstituents with known cellular mechanisms implicated for inflammation or COVID-19 associated inflammation. Studies with insufficient evidence on cellular pathways for autophagy and mitophagy were considered out of scope and excluded from the study. The final analysis was visualized in figures and evaluated for accuracy. Our findings demonstrate the frequent participation of NF-κB, a transcription factor, in inflammatory signaling pathways linked to COVID-19. Moreover, the MAPK signaling pathway is also implicated in producing inflammatory molecules. Furthermore, it was also analyzed that the phytoconstituents with flavonoid and phenolic backbones could inhibit either the TLR4 receptor or its consecutive signaling molecules, thereby, decreasing NF-κB activity and suppressing cytokine production. Although, allopathy has treated the early phase of COVID-19, anti-inflammatory phytoconstituents and existing ayurvedic formulations may act on the COVID-19 associated inflammatory pathways and provide an additional treatment strategy. Therefore, we recommend the usage of flavonoids and phenolic phytoconstituents for the treatment of inflammation associated with COVID-19 infection and similar viral ailments.

2.
Nutrients ; 16(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39125425

RESUMEN

Male infertility represents a significant public health concern. There is a negative impact of inflammatory bowel diseases (IBDs) on the male reproductive system. The aim of this study was to investigate whether oat beta-glucan (OBG) with different molar mass can modulate parameters of antioxidant defense and inflammatory response in the testes of adult Sprague-Dawley rats with TNBS-induced colitis and whether the OBG intervention can modulate the inflammatory response in association with the RAS system. Results: higher testicular superoxide dismutase (SOD), glutathione reductase (GR) activities and glutathione (GSH) concentration, and lower testosterone (T) level and glutathione peroxidase (GPx) activity, were observed in rats with colitis than in healthy control ones. TNBS-induced colitis resulted in decreased the angiotensin 1-7 (ANG 1-7) level in the testes of rats fed with low-molar mass OBG compared to control animals. Conclusions: although colitis induced moderate pro-oxidant changes in the gonads, it seems plausible that dietary intervention with different fractions of oat beta-glucans mass may support the maintenance of reproductive homeostasis via the stimulation of the local antioxidant defense system.


Asunto(s)
Antioxidantes , Avena , Colitis , Ratas Sprague-Dawley , Testículo , beta-Glucanos , Animales , Masculino , beta-Glucanos/farmacología , beta-Glucanos/administración & dosificación , Testículo/metabolismo , Testículo/efectos de los fármacos , Antioxidantes/metabolismo , Avena/química , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/dietoterapia , Ratas , Angiotensina I/metabolismo , Ácido Trinitrobencenosulfónico , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa/metabolismo , Fragmentos de Péptidos/metabolismo , Glutatión/metabolismo , Testosterona/sangre , Glutatión Peroxidasa/metabolismo , Glutatión Reductasa/metabolismo
3.
Inflammopharmacology ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141151

RESUMEN

Endothelial dysfunction is considered one of the main causes of atherosclerosis and elevated blood pressure. Atherosclerosis (AS) formation is enhanced by different mechanisms including cytokine generation, vascular smooth muscle cell proliferation, and migration. One of the recent treatment toward endothelial dysfunction is vinpocetine (VPN). VPN is an ethyl apovincaminate used in the management of different cerebrovascular disorders and endothelial dysfunction through inhibition of atherosclerosis formation. VPN is a potent inhibitor of phosphodiesterase enzyme 1 (PDE1) as well it has anti-inflammatory and antioxidant effects through inhibition of the expression of nuclear factor kappa B (NF-κB). VPN has been shown to be effective against development and progression of AS. However, the underlying molecular mechanism was not fully clarified. Consequently, objective of the present narrative review was to clarify the mechanistic role of VPN in AS. Most of pro-inflammatory cytokines released from macrophages are inhibited by the action of VPN via NF-κB-dependent mechanism. VPN blocks monocyte adhesion and migration by inhibiting the expression of pro-inflammatory cytokines. As well, VPN is effective in reducing oxidative stress, a cornerstone in the pathogenesis of AS, through inhibition of NF-κB and PDE1. VPN promotes plaque stability and prevent erosion and rupture of atherosclerotic plaque. In conclusion, VPN through mitigation of inflammatory and oxidative stress with plaque stability effects could be effective agent in the management of endothelial dysfunction through inhibition of atherosclerosis mediators.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39190267

RESUMEN

A gastric ulcer is a stomach lining or nearby intestine disruption caused by acid and pepsin. Helicobacter pylori (H. pylori) and NSAIDs are the primary culprits behind stomach infections that can lead to gastric ulcers and other digestive disorders. Additionally, lifestyle choices such as alcohol consumption and cigarette smoking, stress, and exposure to cold environments can also contribute to non-infectious gastric ulcers. Various treatments are available for gastric ulcers, including antibiotics, anticholinergics, and antacids. However, potential concerns include antibiotic resistance, side effects, and treatment failure. Considering this, there is a need for an alternative approach to manage it. Fortunately, probiotics, typically Lactobacillus and Bifidobacterium, show potential for healing gastric ulcers, offering a non-invasive alternative to conventional treatments. A notable concern arises from applying probiotic bacteria stemming from the propensity of pathogenic bacteria to develop antimicrobial resistance in response to antibiotic therapies. Therefore, the use of yeast becomes more imperative due to its natural resistance to antibacterial antibiotics for antibacterial-treated patients. Probiotic bacteria and yeasts could heal gastric ulcers by regulating the immune response, reducing inflammation, and restoring the balance between defensive and aggressive factors of the gastric layer. This comprehensive review provides an in-depth analysis of the benefits of probiotics and their potential as a therapeutic treatment for non-infectious gastric ulcers, along with other probiotic options. In particular, this review provides a succinct summary of multiple literature studies on probiotics, emphasising the distinctive properties of yeast probiotics, as well as their (bacteria and yeasts) application in the management of non-infectious gastric ulcers.

5.
Infect Dis Ther ; 13(9): 2089-2101, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39154299

RESUMEN

INTRODUCTION: The release of pro-inflammatory cytokines in critically ill patients with sepsis leads to endothelial dysfunction resulting in cardiocirculatory insufficiency. Their extracorporeal elimination using the cytokine adsorber CytoSorb® (CS) (adsorption of especially hydrophobic molecules < 60 kDa) might be promising, but data about the adsorption capacity as well as a potential harmful adsorption of anti-inflammatory cytokines are missing so far. METHODS: The prospective Cyto-SOLVE-study included 15 patients with sepsis or other hyperinflammatory conditions (interleukin 6 > 500 pg/ml), continuous kidney replacement therapy, and the application of CS. Various cytokines and chemokines were measured pre- and post-CS as well as in patients' blood at predefined timepoints. Significant changes in the concentrations were detected with the Wilcoxon test with associated samples. Clearance of the adsorber (ml/min) was calculated with: b l o o d f l o w ∗ c o n c e n t r a t i o n p r e - p o s t c o n c e n t r a t i o n pre . RESULTS: Most of the inflammatory mediators showed a high initial extracorporeal clearance of 70-100 ml/min after CS installation, which dropped quickly to 10-30 ml/min after 6 h of treatment. No difference in clearance was observed between pro- and anti-inflammatory cytokines. Despite extracorporeal adsorption, a significant (p < 0.05) decrease in the blood concentration after 6 h was only observed for the pro-inflammatory cytokines tumor necrosis factorα (TNF-α) (median 284 vs. 230 pg/ml), vascular endothelial growth factor (VEGF) (median 294 vs. 252 pg/ml), macrophage inflammatory protein 1a (MIP-1a) (median 11.1 vs. 9.0 pg/ml), and regulated upon activation, normal T cell expressed and secreted (RANTES) (median 811 vs. 487 pg/ml) as well as the anti-inflammatory cytokines interleukin 4 (median 9.3 vs. 6.4 pg/ml), interleukin 10 (median 88 vs. 56 pg/ml), and platelet-derived growth factor (PDGF) (median 177 vs. 104 pg/ml). A significant (p < 0.05) decrease in patients' blood after 12 h was only detected for interleukin 10. CONCLUSIONS: CS can adsorb pro- as well as anti-inflammatory mediators with no relevant difference regarding the adsorption rate. A fast saturation of the adsorber resulted in a rapid decrease of the clearance. The potential clinical benefit or harm of this unspecific cytokine adsorption needs to be evaluated in the future. TRIAL REGISTRATION: ClinicalTrials.gov NCT04913298, registration date June 4, 2021.

6.
Neuropeptides ; 107: 102462, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39197274

RESUMEN

OBJECTIVE: In this study, we explored the neuroprotective effect of melittin (MEL) after brain ischemia using a rat model. METHODS: The rats underwent middle cerebral artery occlusion (MCAO) for 60 min and were randomly divided into the control group, saline group, and MEL group. Rats in each group were injected intraperitoneally with MEL one day before MCAO until sacrificed. Morris water maze and rotation test were used to assess locomotor function and cognitive ability. The 9.4 Tesla MRI was used to scan and assess the infarct volume of the rat brains. Immunohistochemistry was used to detect the sites of action of MEL on microglia. Western blot and ELISA were used to measure the effect of MEL on the production of pro-inflammatory cytokines. The effect of MEL on neuronal cell apoptosis was observed by flow cytometry. RESULTS: Compared with the saline group, MEL treatment significantly increased the density of neurons in the cerebral cortical and reduced the cerebral infarct size after MCAO (33.9 ± 8.8% vs. 15.8 ± 3.9%, P < 0.05). Meanwhile, the time for MEL-treated rats to complete the water maze task on the 11th day after MCAO was significantly shorter than that of rats in the saline group (P < 0.05). MEL treatment also prolonged the rotarod retention time on day 14 after MCAO. Immunohistochemistry analysis showed that MEL inhibited the activation of microglia and suppressed the expression of TNF-α, IL-6, and IL-1ß in the brain after ischemia. MEL treatment resulted in a significant decrease in TLR4, MyD88, and NF-κB p65 levels in extracts from the ischemic cerebral cortex. Finally, MEL reduced neuronal apoptosis induced by ischemic stroke (P < 0.05). CONCLUSION: MEL treatment promotes neurological function recovery after cerebral ischemia in rats. These effects are potentially mediated through anti-inflammatory and anti-apoptotic mechanisms.

7.
Mucosal Immunol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39127259

RESUMEN

Respiratory syncytial virus (RSV) can cause severe lower respiratory tract infections. Understanding why some individuals get more serious disease may help with diagnosis and treatment. One possible risk factor underlying severe disease is bacterial exposure before RSV infection. Bacterial exposure has been associated with increased respiratory viral-induced disease severity but the mechanism remains unknown. Respiratory bacterial infections or exposure to their pathogen associated molecular patterns (PAMPs) trigger innate immune inflammation, characterised by neutrophil and inflammatory monocyte recruitment and the production of inflammatory cytokines. We hypothesise that these changes to the lung environment alter the immune response and disease severity during subsequent RSV infection. To test this, we intranasally exposed mice to LPS, LTA or Acinetobacter baumannii (an airway bacterial pathogen) before RSV infection and observed an early induction of disease, measured by weight loss, at days 1-3 after infection. Neutrophils or inflammatory monocytes were not responsible for driving this exacerbated weight loss. Instead, exacerbated disease was associated with increased IL-1α and TNF-α, which orchestrated the recruitment of innate immune cells into the lung. This study shows that exposure to bacterial PAMPs prior to RSV infection increases the expression of IL-1α and TNF-α, which dysregulate the immune response resulting in exacerbated disease.

8.
In Vivo ; 38(5): 2179-2189, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39187362

RESUMEN

BACKGROUND/AIM: Silibinin, has been investigated for its potential benefits and mechanisms in addressing vanadium pentoxide (V2O5)-induced pulmonary inflammation. This study explored the anti-inflammatory activity of silibinin and elucidate the mechanisms by which it operates in a mouse model of vanadium-induced lung injury. MATERIALS AND METHODS: Eight-week-old male BALB/c mice were exposed to V2O5 to induce lung injury. Mice were pretreated with silibinin at doses of 50 mg/kg and 100 mg/kg. Histological analyses were performed to assess cell viability and infiltration of inflammatory cells. The expression of pro-inflammatory cytokines (TNF-α, IL-6, IL-1ß) and activation of the MAPK and NF-[Formula: see text]B signaling pathways, as well as the NLRP3 inflammasome, were evaluated using real-time PCR, western blot analysis, and immunohistochemistry. Whole blood analysis was conducted to measure white blood cell counts. RESULTS: Silibinin treatment significantly improved cell viability, reduced inflammatory cell infiltration, and decreased the expression of pro-inflammatory cytokines in V2O5-induced lung injury. It also notably suppressed the activation of the MAPK and NF-[Formula: see text]B signaling pathways, along with a marked reduction in NLRP3 inflammasome expression levels in lung tissues. Additionally, silibinin-treated groups exhibited a significant decrease in white blood cell counts, including neutrophils, lymphocytes, and eosinophils. CONCLUSION: These findings underscore the potent anti-inflammatory effects of silibinin in mice with V2O5-induced lung inflammation, highlighting its therapeutic potential. The study not only confirms the efficacy of silibinin in mitigating inflammatory responses but also provides a foundational understanding of its role in modulating key inflammatory pathways, paving the way for future therapeutic strategies against pulmonary inflammation induced by environmental pollutants.


Asunto(s)
Citocinas , Lesión Pulmonar , FN-kappa B , Transducción de Señal , Silibina , Receptor Toll-Like 4 , Animales , Silibina/farmacología , Ratones , FN-kappa B/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/etiología , Citocinas/metabolismo , Receptor Toll-Like 4/metabolismo , Modelos Animales de Enfermedad , Vanadio/farmacología , Ratones Endogámicos BALB C , Antiinflamatorios/farmacología , Silimarina/farmacología , Mediadores de Inflamación/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo
9.
Adv Neurobiol ; 37: 405-422, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39207705

RESUMEN

Ischemic stroke is a complex brain pathology caused by an interruption of blood supply to the brain. It results in neurological deficits which that reflect the localization and the size of the compromised brain area and are the manifestation of complex pathogenic events triggered by energy depletion. Inflammation plays a prominent role, worsening the injury in the early phase and influencing poststroke recovery in the late phase. Activated microglia are one of the most important cellular components of poststroke inflammation, appearing from the first few hours and persisting for days and weeks after stroke injury. In this chapter, we will discuss the nature of the inflammatory response in brain ischemia, the contribution of microglia to injury and regeneration after stroke, and finally, how ischemic stroke directly affects microglia functions and survival.


Asunto(s)
Microglía , Accidente Cerebrovascular , Microglía/metabolismo , Microglía/patología , Humanos , Animales , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/metabolismo , Inflamación/inmunología , Inflamación/patología , Inflamación/metabolismo , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Encéfalo/inmunología
10.
Front Immunol ; 15: 1457636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139558

RESUMEN

The liver is vulnerable to various hepatotoxins, including carbon tetrachloride (CCl4), which induces oxidative stress and apoptosis by producing reactive oxygen species (ROS) and activating the mitogen-activated protein kinase (MAPK) pathway. Cereblon (CRBN), a multifunctional protein implicated in various cellular processes, functions in the pathogenesis of various diseases; however, its function in liver injury remains unknown. We established a CRBN-knockout (KO) HepG2 cell line and examined its effect on CCl4-induced hepatocellular damage. CRBN-KO cells exhibited reduced sensitivity to CCl4-induced cytotoxicity, as evidenced by decreased levels of apoptosis markers, such as cleaved caspase-3, and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities. CRBN deficiency enhanced antioxidant defense, with increased superoxide dismutase activity and glutathione ratios (GSH/GSSG), as well as reduced pro-inflammatory cytokine expression. Mechanistically, the protective effects of CRBN deficiency appeared to involve the attenuation of the MAPK-mediated pathways, particularly through decreased phosphorylation of JNK and ERK. Overall, these results suggest the crucial role of CRBN in mediating the hepatocellular response to oxidative stress and inflammation triggered by CCl4 exposure, offering potential clinical implications for liver injury in a wide range of liver diseases.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Apoptosis , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas , Estrés Oxidativo , Humanos , Apoptosis/efectos de los fármacos , Células Hep G2 , Tetracloruro de Carbono/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Estrés Oxidativo/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/deficiencia , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Inflammopharmacology ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126572

RESUMEN

Apigenin is a flavone-kind of flavonoid present in fruits and vegetables. Apigenin exhibits biological activities including neuropharmacological effects against different neurological disorders. In this study, we summarize and discuss the molecular mechanisms of the anti-neuroinflammatory effects of apigenin in neurological disorders. A systematic review was conducted by searching Google Scholar, Web of Science, Scopus and PubMed. A total of 461 records were retrieved from the search. After screening of the records based on the inclusion criteria, 16 articles were selected and discussed in this study. The results from the selected studies showed that apigenin exhibited anti-neuroinflammatory effect in preclinical studies. The anti-neuroinflammatory mechanisms exhibited by apigenin include inhibition of overproduction of pro-inflammatory cytokines, attenuation of microglia activation via reduction of CD-11b-positive cells, inhibition of ROCK-1 expression and upregulation of miR-15a, p-ERK1/2, p-CREB, and BDNF, downregulation of NLRP3 inflammasome, iNOS and COX-2 expression, reduction of Toll-like receptor-4 expression and inhibition of nuclear factor-kappa B (NF-kB) activation. Overall, apigenin inhibited neuroinflammation which suggests it confers neuroprotective effect against neuronal degeneration in some neurodegenerative conditions. This review provides important neuropharmacological information on the neuroprotective mechanisms of apigenin against neuroinflammation which may be useful for future preclinical and clinical studies.

12.
J Inflamm Res ; 17: 5365-5374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39161676

RESUMEN

Purpose: Chlamydia trachomatis (C. trachomatis) is associated with several gynecological tumors; yet its prognostic role in breast cancer remains unclear. Thus, we investigated the prognostic role of anti-C. trachomatis immunoglobulin G (IgG) in breast cancer patients and the modification effects of pro-inflammatory cytokines. Methods: The serum levels of C. trachomatis IgG and four pro-inflammatory cytokines were measured. Cox regression was used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs), including product terms to assess the modification effects of pro-inflammatory cytokines on the association between C. trachomatis IgG and breast cancer prognosis. Results: From 2008 to 2018, 1121 breast cancer patients were recruited and followed up until December 31, 2021, with a median follow-up time of 63.91 months (interquartile range: 39.16-90.08 months). Patients positive for C. trachomatis IgG showed HRs of 1.09 (95% CI, 0.67-1.78) for overall survival (OS) and 1.24 (0.87-1.78) for progression-free survival (PFS), compared to those who were negative. These associations became statistically significant in women aged 50 years or younger (HR=1.43, 95% CI=0.79-2.58 for OS; HR=1.79, 95% CI=1.16-2.77 for PFS). Positive C. trachomatis IgG serology was associated with adverse prognostic effects among patients with higher levels of pro-inflammatory cytokines (IL-6, TNF-α, IL-8, and IL-1ß), but with favorable prognostic effects for those with low levels. These interactions were particularly significant in those aged 50 years or younger. Conclusion: In breast cancer patients younger than 50 years of age or with higher levels of pro-inflammatory cytokines, C. trachomatis infection appeared to have a negative prognostic impact. These findings highlight the significance of C. trachomatis in predicting prognosis and personalized therapy for breast cancer patients.

13.
Nutr Neurosci ; : 1-15, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953237

RESUMEN

OBJECTIVES: Alzheimer's disease (AD) is a progressive neurodegenerative disorder affecting approximately 55 million individuals globally. Diagnosis typically occurs in advanced stages, and there are limited options for reversing symptoms. Preventive strategies are, therefore, crucial. Time Restricted Eating (TRE) or Time Restricted Feeding (TRF) is one such strategy. Here we review recent research on AD and TRE/TRF in addition to AD biomarkers and gut microbiota. METHODS: A comprehensive review of recent studies was conducted to assess the impact of TRE/TRF on AD-related outcomes. This includes the analysis of how TRE/TRF influences circadian rhythms, beta-amyloid 42 (Aß42), pro-inflammatory cytokines levels, and gut microbiota composition. RESULTS: TRE/TRF impacts circadian rhythms and can influence cognitive performance as observed in AD. It lowers beta-amyloid 42 deposition in the brain, a key AD biomarker, and reduces pro-ininflammatory cytokines. The gut microbiome has emerged as a modifiable factor in AD treatment. TRE/TRF changes the structure and composition of the gut microbiota, leading to increased diversity and a decrease in harmful bacteria. DISCUSSION: These findings underscore the potential of TRE/TRF as a preventive strategy for AD. By reducing Aß42 plaques, modulating pro-inflammatory cytokines, and altering gut microbiota composition, TRE/TRF may slow the progression of AD. Further research is needed to confirm these effects and to understand the mechanisms involved. This review highlights TRE/TRF as a promising non-pharmacological intervention in the fight against AD.

14.
J Inflamm Res ; 17: 4443-4452, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006492

RESUMEN

Objective: Pro-inflammatory cytokines mediate the course of rosacea, anxiety, and depression through various means such as immunity and inflammation. This study aims to further explore the relationship between rosacea, anxiety, and depression through changes in the levels of pro-inflammatory cytokines. Methods: 280 rosacea patients were included in the rosacea group, divided into: rosacea without mental disorders, rosacea with anxiety, rosacea with depression, and rosacea with combined anxiety and depression. The mental control group included 210 anxiety and depression patients, divided into: anxiety, depression, and combined anxiety and depression. The healthy control group consisted of 70 healthy individuals. Serum specimens were collected and ELISA was used to detect major pro-inflammatory cytokines. CEA, IGA, GFSS, RosaQoL, HAMA, and HAMD-24 were used for the diagnosis and severity assessment of rosacea and anxiety and depression. Results: This study primarily used the Chi-Square test, Kruskal-Wallis H-test, generalized linear model, and binary logistic regression to evaluate the data. IL-1ß, IL-17, and IL-8 levels in rosacea patients and anxiety/depression patients were higher than those in the healthy population (P<0.001), and TNF-α levels in rosacea patients were higher than those in the healthy population (P<0.001). There was an interaction between rosacea, anxiety, and depression in terms of IL-1ß, IL-17, and IL-8 levels (P<0.001). Elevated levels of IL-1ß, IL-17, and IL-8 are positively correlated with anxiety and depression in rosacea (all P<=0.05). Conclusion: It was confirmed that the elevated levels of IL-1ß, IL-17, and IL-8 are positively correlated with the onset of anxiety and depression in rosacea. The interaction of the above inflammatory factors suggests a possible common inflammatory mechanism in the coexistence of rosacea and mental disorders. TNF-α only increased in patients with rosacea, combined with the skin-to-mental irreversible phenomenon, indicating that this cytokine may be a key and potential therapeutic target for the onset of rosacea.

15.
Noncoding RNA Res ; 9(4): 1249-1256, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39036602

RESUMEN

Background: Type I diabetes mellitus (T1DM) is one of the most common chronic autoimmune diseases worldwide. miRNAs are a class of small non-coding RNA molecules that have been linked to immune system functions, ß-cell metabolism, proliferation, and death, all of which contribute to pathogenesis of TIDM. Dysregulated miRNAs have been identified in Egyptian TIDM patients. Aim: Several miRNAs were profiled in Egyptian TIDM patients to determine whether they can be used as molecular biomarkers for T1DM. The relationship between the investigated miRNAs and pro-inflammatory cytokines (TNF-α and IL-6) has also been evaluated in the development of TIDM, in addition to the creation of a proposed model for TIDM prediction. Patients & methods: Case-control study included 177 Egyptian patients with confirmed type I diabetes mellitus and 177 healthy individuals. MiRNA-34 and miRNA-146 were detected in serum samples using real-time PCR, whereas TNF-α and IL-6 levels were assessed using ELIZA. Results: Patients with TIDM showed a significant decrease in the expression of miRNA-146, with a cut-off value ≤ 3.3, 48 % specificity, and 92.1 % sensitivity, whereas miRNA-34 had the highest sensitivity (95.5 %) and specificity (97.2 %) for differentiating diabetic patients from controls. Furthermore, other diagnostic proinflammatory markers showed lower sensitivity and specificity. Conclusion: Serum levels of miRNA-34a, miRNA-146, IL-6, and TNF-α provide new insights into T1DM pathogenesis and could be used for screening and diagnosis purposes. They can be also a potential therapeutic target, as well as allowing for more strategies to improve T1DM disease outcomes.

16.
Mol Biol Rep ; 51(1): 814, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008163

RESUMEN

Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.


Asunto(s)
Neoplasias de la Boca , Periodontitis , Humanos , Periodontitis/complicaciones , Periodontitis/microbiología , Neoplasias de la Boca/microbiología , Neoplasias de la Boca/genética , Animales , Inflamación/complicaciones , Porphyromonas gingivalis/patogenicidad
17.
Animal Model Exp Med ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021318

RESUMEN

BACKGROUND: Fever is characterized by an upregulation of the thermoregulatory set-point after the body encounters any pathological challenge. It is accompanied by uncomfortable sickness behaviors and may be harmful in patients with other comorbidities. We have explored the impact of an Ayurvedic medicine, Fevogrit, in an endotoxin (lipopolysaccharide)-induced fever model in Wistar rats. METHODS: Active phytoconstituents of Fevogrit were identified and quantified using ultra-high-performance liquid chromatography (UHPLC) platform. For the in-vivo study, fever was induced in male Wistar rats by the intraperitoneal administration of lipopolysaccharide (LPS), obtained from Escherichia coli. The animals were allocated to normal control, disease control, Paracetamol treated and Fevogrit treated groups. The rectal temperature of animals was recorded at different time points using a digital thermometer. At the 6-h time point, levels of TNF-α, IL-1ß and IL-6 cytokines were analyzed in serum. Additionally, the mRNA expression of these cytokines was determined in hypothalamus, 24 h post-LPS administration. RESULTS: UHPLC analysis of Fevogrit revealed the presence of picroside I, picroside II, vanillic acid, cinnamic acid, magnoflorine and cordifolioside A, as bioactive constituents with known anti-inflammatory properties. Fevogrit treatment efficiently reduces the LPS-induced rise in the rectal temperature of animals. The levels and gene expression of TNF-α, IL-1ß and IL-6 in serum and hypothalamus, respectively, was also significantly reduced by Fevogrit treatment. CONCLUSION: The findings of the study demonstrated that Fevogrit can suppress LPS-induced fever by inhibiting peripheral or central inflammatory signaling pathways and could well be a viable treatment for infection-induced increase in body temperatures.

18.
PeerJ ; 12: e17539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952964

RESUMEN

The association between sleep and the immune-endocrine system is well recognized, but the nature of that relationship is not well understood. Sleep fragmentation induces a pro-inflammatory response in peripheral tissues and brain, but it also activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing glucocorticoids (GCs) (cortisol in humans and corticosterone in mice). It is unclear whether this rapid release of glucocorticoids acts to potentiate or dampen the inflammatory response in the short term. The purpose of this study was to determine whether blocking or suppressing glucocorticoid activity will affect the inflammatory response from acute sleep fragmentation (ASF). Male C57BL/6J mice were injected i.p. with either 0.9% NaCl (vehicle 1), metyrapone (a glucocorticoid synthesis inhibitor, dissolved in vehicle 1), 2% ethanol in polyethylene glycol (vehicle 2), or mifepristone (a glucocorticoid receptor antagonist, dissolved in vehicle 2) 10 min before the start of ASF or no sleep fragmentation (NSF). After 24 h, samples were collected from brain (prefrontal cortex, hypothalamus, hippocampus) and periphery (liver, spleen, heart, and epididymal white adipose tissue (EWAT)). Proinflammatory gene expression (TNF-α and IL-1ß) was measured, followed by gene expression analysis. Metyrapone treatment affected pro-inflammatory cytokine gene expression during ASF in some peripheral tissues, but not in the brain. More specifically, metyrapone treatment suppressed IL-1ß expression in EWAT during ASF, which implies a pro-inflammatory effect of GCs. However, in cardiac tissue, metyrapone treatment increased TNF-α expression in ASF mice, suggesting an anti-inflammatory effect of GCs. Mifepristone treatment yielded more significant results than metyrapone, reducing TNF-α expression in liver (only NSF mice) and cardiac tissue during ASF, indicating a pro-inflammatory role. Conversely, in the spleen of ASF-mice, mifepristone increased pro-inflammatory cytokines (TNF-α and IL-1ß), demonstrating an anti-inflammatory role. Furthermore, irrespective of sleep fragmentation, mifepristone increased pro-inflammatory cytokine gene expression in heart (IL-1ß), pre-frontal cortex (IL-1ß), and hypothalamus (IL-1ß). The results provide mixed evidence for pro- and anti-inflammatory functions of corticosterone to regulate inflammatory responses to acute sleep loss.


Asunto(s)
Glucocorticoides , Metirapona , Ratones Endogámicos C57BL , Mifepristona , Privación de Sueño , Animales , Masculino , Metirapona/farmacología , Privación de Sueño/metabolismo , Privación de Sueño/tratamiento farmacológico , Ratones , Mifepristona/farmacología , Glucocorticoides/farmacología , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Corticosterona/sangre , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Sistema Hipotálamo-Hipofisario/metabolismo , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/antagonistas & inhibidores , Receptores de Glucocorticoides/genética
19.
Biogerontology ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970715

RESUMEN

The intestinal barrier weakens and chronic gut inflammation occurs in old age, causing age-related illnesses. Recent research shows that low-molecular-weight heparin (LMWH), besides anticoagulation, also has anti-inflammatory and anti-apoptotic effects, protecting the intestinal barrier. This study aims to analyze the effect of LMWH on the intestinal barrier of old male rodents. This study assigned Sprague-Dawley male rats to four groups: young (3 months), young + LMWH, old (20 months), and old + LMWH. The LMWH groups received 1 mg/kg LMWH via subcutaneous injection for 7 days. Optical and transmission electron microscopy (TEM) were used to examine morphological changes in intestinal mucosa due to aging. Intestinal permeability was measured using fluorescein isothiocyanate (FITC)-dextran. ELISA kits were used to measure serum levels of IL-6 and IL-1ß, while Quantitative RT-PCR detected their mRNA levels in intestinal tissues. Western blotting and immunohistochemistry (IHC) evaluated the tight junction (TJ) protein levels such as occludin, zonula occludens-1 (ZO-1), and claudin-2. Western blotting assessed the expression of the apoptosis marker cleaved caspase 3, while IHC was used to detect LGR5+ intestinal stem cells. The intestinal permeability of aged rats was significantly higher than that of young rats, indicating significant differences. With age, the protein levels of occludin and ZO-1 decreased significantly, while the level of claudin-2 increased significantly. Meanwhile, our study found that the levels of IL-1ß and IL-6 increased significantly with age. LMWH intervention effectively alleviated age-related intestinal barrier dysfunction. In aged rats treated with LMWH, the expression of occludin and ZO-1 proteins in the intestine increased, while the expression of claudin-2 decreased. Furthermore, LMWH administration in aged rats resulted in a decrease in IL-1ß and IL-6 levels. LMWH also reduced age-related cleaved caspase3 expression, but IHC showed no difference in LGR5+ intestinal stem cells between groups. Research suggests that LMWH could potentially be a favorable therapeutic choice for age-related diseases associated with intestinal barrier dysfunction, by protecting TJ proteins, reducing inflammation, and apoptosis.

20.
Front Pharmacol ; 15: 1270970, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070782

RESUMEN

Introduction: Shed snake skin (SSS) is commonly used empirically in ethnomedicine to treat psoriasis, acne, warts, eczema, scabies, open wounds, hemorrhoids, and glaucoma. Although a few studies exist, SSS extracts' in vitro immunological effects have yet to be well described. Therefore, we aimed to investigate the immunomodulatory effects of SSS extract on murine lymphocytes and T cells. Methods: Hexane, methanol, and chloroform extractions were conducted in collected SSS samples. Protein concentrations in the SSS extract were measured. The cytotoxic and anticancer activities were measured using L929 Fibroblast and SK MEL 30 Cell Lines via MTT assay as described in TS EN ISO 10993-5. Immunomodulatory activities of SSS extract on total lymphocytes or enriched CD4+ T cell cultures, their cell-specific pro-inflammatory cytokines (IL-6, IL-1ß. IL-12p40, IL-23p19, TNF-α, IL-17A, IFN-γ, IL-10, TGFß1) levels were measured via FACS ARIA III analysis and related gene expression with Real-Time Quantitative Polymerase Chain Reaction (Rt-qPCR). Results: Hexane, methanol, and chloroform-extracted SSS were tested on SK-MEL-30 cells via MTT and revealed a superior anti-proliferative effect for hexane extract of SSS at low concentrations. SSS treatment of murine lymphocytes augmented Tnf-α and IFN-γ levels produced by CD3+ T cells when lymphocytes were activated with anti-CD3/CD28 or LPS stimulation. This effect required the presence of non-T cells, possibly antigen-presenting cells, and was not observed on purified CD4+ T cells. Additionally, SSS significantly blocked suppressive cytokine Tgfb gene expression (but not Il10) without altering in vitro Treg generation/or expansion. Discussion: This is the first in vitro study investigating SSS's anti-tumor and immunomodulatory effects. Our data provide evidence for SSS's anti-proliferative activity on SK-MEL-30 cells and its pro-inflammatory role on murine lymphocytes, which warrants further investigation of the potential use of SSS extract with in vivo disease models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA