Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Food Chem ; 462: 140926, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39208741

RESUMEN

Sturgeon, with 4 times higher lipid content than silver carp (ubiquitously applied for surimi production in China), affects surimi gelling properties. However, how the flesh lipids affect gelling properties remains unclear. This study investigated how flesh lipids impact surimi gelling properties and elucidated the interaction mechanism between lipids and proteins. Results revealed yellow meat contains 7 times higher lipids than white meat. Stronger ionic protein-protein interactions were replaced by weaker hydrophobic forces and hydrogen bonds in protein-lipid interaction. Protein-lipid interaction zones encapsulated lipid particles, changing protein structure from α-helix to ß-sheet structure thereby gel structure becomes flexible and disordered, significantly diminishing surimi gel strength. Docking analysis validated fatty acid mainly binding at Ala577, Ile461, Arg231, Phe165, His665, and His663 of myosin. This study first reported the weakened surimi gelling properties from the perspective of free fatty acids and myosin interactions, offering a theoretical basis for sturgeon surimi production.


Asunto(s)
Proteínas de Peces , Peces , Geles , Lípidos , Animales , Geles/química , Lípidos/química , Proteínas de Peces/química , Proteínas de Peces/metabolismo , Productos Pesqueros/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Enlace de Hidrógeno , Miosinas/química , Miosinas/metabolismo , Simulación del Acoplamiento Molecular , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Carpas/metabolismo , Unión Proteica
2.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999985

RESUMEN

Advancements in medicine and pharmacology have led to the development of systems that deliver biologically active molecules inside cells, increasing drug concentrations at target sites. This improves effectiveness and duration of action and reduces side effects on healthy tissues. Cell-penetrating peptides (CPPs) show promise in this area. While traditional medicinal chemistry methods have been used to develop CPPs, machine learning techniques can speed up and reduce costs in the search for new peptides. A predictive algorithm based on machine learning models was created to identify novel CPP sequences using molecular descriptors using a combination of algorithms like k-nearest neighbors, gradient boosting, and random forest. Some potential CPPs were found and tested for cytotoxicity and penetrating ability. A new low-toxicity CPP was discovered from the Rhopilema esculentum venom proteome through this study.


Asunto(s)
Algoritmos , Péptidos de Penetración Celular , Aprendizaje Automático , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/metabolismo , Humanos , Animales , Secuencia de Aminoácidos , Venenos de Avispas/química , Proteoma
3.
J Lipid Res ; 65(7): 100570, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795858

RESUMEN

Glycosphingolipids (GSLs) are abundant glycolipids on cells and essential for cell recognition, adhesion, signal transduction, and so on. However, their lipid anchors are not long enough to cross the membrane bilayer. To transduce transmembrane signals, GSLs must interact with other membrane components, whereas such interactions are difficult to investigate. To overcome this difficulty, bifunctional derivatives of II3-ß-N-acetyl-D-galactosamine-GA2 (GalNAc-GA2) and ß-N-acetyl-D-glucosamine-ceramide (GlcNAc-Cer) were synthesized as probes to explore GSL-interacting membrane proteins in live cells. Both probes contain photoreactive diazirine in the lipid moiety, which can crosslink with proximal membrane proteins upon photoactivation, and clickable alkyne in the glycan to facilitate affinity tag addition for crosslinked protein pull-down and characterization. The synthesis is highlighted by the efficient assembly of simple glycolipid precursors followed by on-site lipid remodeling. These probes were employed to profile GSL-interacting membrane proteins in HEK293 cells. The GalNAc-GA2 probe revealed 312 distinct proteins, with GlcNAc-Cer probe-crosslinked proteins as controls, suggesting the potential influence of the glycan on GSL functions. Many of the proteins identified with the GalNAc-GA2 probe are associated with GSLs, and some have been validated as being specific to this probe. The versatile probe design and experimental protocols are anticipated to be widely applicable to GSL research.


Asunto(s)
Membrana Celular , Glicoesfingolípidos , Proteínas de la Membrana , Humanos , Glicoesfingolípidos/metabolismo , Glicoesfingolípidos/química , Células HEK293 , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Diazometano/química , Diazometano/metabolismo , Acetilgalactosamina/metabolismo , Acetilgalactosamina/química
4.
Cell Signal ; 118: 111138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38467243

RESUMEN

Heterotrimeric G proteins are responsible for signal transduction from G-protein-coupled receptors (GPCRs) to intracellular effectors. This process is only possible when G proteins are located on the inner side of the cell membrane due to the specific localization of GPCR receptors. The Gα subunit is directed to the cell membrane through several signals, including modification by fatty acid moieties, interaction with the Gßγ complex, and, as observed in some Gα proteins, the presence of basic amino acid residues in the N-terminal region. In this work, we focused on investigating the influence of the polybasic region on the localization and function of a representative member of the Gαi family, Gαi3. Through the use of confocal microscopy and fluorescence lifetime microscopy, we showed that, in the case of this protein, neutralizing the positive charge does not significantly affect its abundance in the cell membrane. However, it does affect its spatial arrangement concerning the dopamine D2 receptor and influences inhibitory effect of Gαi3 on intracellular cAMP production triggered by D2 receptor stimulation. Moreover, in this work, we have shown, for the first time, that nonlipidated Gαi3 binds to negatively charged lipids through electrostatic interactions, and membrane fluidity plays a significant role in this interaction.


Asunto(s)
Proteínas de Unión al GTP Heterotriméricas , Transducción de Señal , Transducción de Señal/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Membrana Celular/metabolismo
5.
Int J Mol Sci ; 25(4)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38396846

RESUMEN

Vacuolar ATPases (V-ATPases), proton pumps composed of 16 subunits, are necessary for a variety of cellular functions. Subunit "a" has four isoforms, a1-a4, each with a distinct cellular location. We identified a phosphoinositide (PIP) interaction motif, KXnK(R)IK(R), conserved in all four isoforms, and hypothesize that a/PIP interactions regulate V-ATPase recruitment/retention to different organelles. Among the four isoforms, a2 is enriched on Golgi with a2 mutations in the PIP motif resulting in cutis laxa. We hypothesize that the hydrophilic N-terminal (NT) domain of a2 contains a lipid-binding domain, and mutations in this domain prevent interaction with Golgi-enriched PIPs, resulting in cutis laxa. We recreated the cutis laxa-causing mutation K237_V238del, and a double mutation in the PIP-binding motif, K237A/V238A. Circular dichroism confirmed that there were no protein structure alterations. Pull-down assays with PIP-enriched liposomes revealed that wildtype a2NT preferentially binds phosphatidylinositol 4-phosphate (PI(4)P), while mutants decreased binding to PI(4)P. In HEK293 cells, wildtype a2NT was localized to Golgi and co-purified with microsomal membranes. Mutants reduced Golgi localization and membrane association. Rapamycin depletion of PI(4)P diminished a2NT-Golgi localization. We conclude that a2NT is sufficient for Golgi retention, suggesting the lipid-binding motif is involved in V-ATPase targeting and/or retention. Mutational analyses suggest a molecular mechanism underlying how a2 mutations result in cutis laxa.


Asunto(s)
Cutis Laxo , ATPasas de Translocación de Protón Vacuolares , Humanos , Cutis Laxo/genética , Cutis Laxo/metabolismo , Células HEK293 , Isoformas de Proteínas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Mutación
6.
Biophys Chem ; 308: 107204, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38412762

RESUMEN

Boundary lipids surrounding membrane proteins play an essential role in protein function and structure. These protein-lipid interactions are mainly divided into electrostatic interactions between the polar amino acids of proteins and polar heads of phospholipids, and hydrophobic interactions between protein transmembrane sites and phospholipid acyl chains. Our previous report (Kawatake et al., Biochim. Biophys. Acta 1858 [2016] 2106-2115) covered a method for selectively analyzing boundary lipid interactions and showed differences in membrane protein-peripheral lipid interactions due to differences in their head group. Interactions in the hydrophobic acyl chains of phospholipids are relatively consistent among proteins, but the details of these interactions have not been elucidated. In this study, we reconstituted bacteriorhodopsin as a model protein into phospholipid membranes labeled with 2H and 13C for solid-state NMR measurement to investigate the depth-dependent effect of the head group structure on the lipid bilayer. The results showed that the position of the phospholipid near the carbonyl carbon was affected by the head group in terms of selectivity for protein surfaces, whereas in the deep interior of the bilayer near the leaflet interface, there was little difference between the head groups, indicating that the dependence of their interactions on the head group was much reduced.


Asunto(s)
Bacteriorodopsinas , Fosfolípidos , Fosfolípidos/química , Bacteriorodopsinas/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/metabolismo , Espectroscopía de Resonancia Magnética
7.
J Biol Chem ; 300(3): 105757, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364889

RESUMEN

Phosphoinositides are amphipathic lipid molecules derived from phosphatidylinositol that represent low abundance components of biological membranes. Rather than serving as mere structural elements of lipid bilayers, they represent molecular switches for a broad range of biological processes, including cell signaling, membrane dynamics and remodeling, and many other functions. Here, we focus on the molecular mechanisms that turn phosphoinositides into molecular switches and how the dysregulation of these processes can lead to disease.


Asunto(s)
Enfermedad , Fosfatidilinositoles , Transducción de Señal , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Humanos
8.
Elife ; 122024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252473

RESUMEN

Fibroblast growth factor 2 (FGF2) exits cells by direct translocation across the plasma membrane, a type I pathway of unconventional protein secretion. This process is initiated by phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent formation of highly dynamic FGF2 oligomers at the inner plasma membrane leaflet, inducing the formation of lipidic membrane pores. Cell surface heparan sulfate chains linked to glypican-1 (GPC1) capture FGF2 at the outer plasma membrane leaflet, completing FGF2 membrane translocation into the extracellular space. While the basic steps of this pathway are well understood, the molecular mechanism by which FGF2 oligomerizes on membrane surfaces remains unclear. In the current study, we demonstrate the initial step of this process to depend on C95-C95 disulfide-bridge-mediated FGF2 dimerization on membrane surfaces, producing the building blocks for higher FGF2 oligomers that drive the formation of membrane pores. We find FGF2 with a C95A substitution to be defective in oligomerization, pore formation, and membrane translocation. Consistently, we demonstrate a C95A variant of FGF2 to be characterized by a severe secretion phenotype. By contrast, while also important for efficient FGF2 secretion from cells, a second cysteine residue on the molecular surface of FGF2 (C77) is not involved in FGF2 oligomerization. Rather, we find C77 to be part of the interaction interface through which FGF2 binds to the α1 subunit of the Na,K-ATPase, the landing platform for FGF2 at the inner plasma membrane leaflet. Using cross-linking mass spectrometry, atomistic molecular dynamics simulations combined with a machine learning analysis and cryo-electron tomography, we propose a mechanism by which disulfide-bridged FGF2 dimers bind with high avidity to PI(4,5)P2 on membrane surfaces. We further propose a tight coupling between FGF2 secretion and the formation of ternary signaling complexes on cell surfaces, hypothesizing that C95-C95-bridged FGF2 dimers are functioning as the molecular units triggering autocrine and paracrine FGF2 signaling.


Asunto(s)
Espacio Extracelular , Factor 2 de Crecimiento de Fibroblastos , Dimerización , ATPasa Intercambiadora de Sodio-Potasio , Disulfuros
9.
BMC Med Genomics ; 16(1): 320, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066485

RESUMEN

BACKGROUND: TMC1, which encodes transmembrane channel-like protein 1, forms the mechanoelectrical transduction (MET) channel in auditory hair cells, necessary for auditory function. TMC1 variants are known to cause autosomal dominant (DFNA36) and autosomal recessive (DFNB7/11) non-syndromic hearing loss, but only a handful of TMC1 variants underlying DFNA36 have been reported, hampering analysis of genotype-phenotype correlations. METHODS: In this study, we retrospectively reviewed 338 probands in an in-house database of genetic hearing loss, evaluating the clinical phenotypes and genotypes of novel TMC1 variants associated with DFNA36. To analyze the structural impact of these variants, we generated two structural models of human TMC1, utilizing the Cryo-EM structure of C. elegans TMC1 as a template and AlphaFold protein structure database. Specifically, the lipid bilayer-embedded protein database was used to construct membrane-embedded models of TMC1. We then examined the effect of TMC1 variants on intramolecular interactions and predicted their potential pathogenicity. RESULTS: We identified two novel TMC1 variants related to DFNA36 (c.1256T > C:p.Phe419Ser and c.1444T > C:p.Trp482Arg). The affected subjects had bilateral, moderate, late-onset, progressive sensorineural hearing loss with a down-sloping configuration. The Phe419 residue located in the transmembrane domain 4 of TMC1 faces outward towards the channel pore and is in close proximity to the hydrophobic tail of the lipid bilayer. The non-polar-to-polar variant (p.Phe419Ser) alters the hydrophobicity in the membrane, compromising protein-lipid interactions. On the other hand, the Trp482 residue located in the extracellular linker region between transmembrane domains 5 and 6 is anchored to the membrane interfaces via its aromatic rings, mediating several molecular interactions that stabilize the structure of TMC1. This type of aromatic ring-based anchoring is also observed in homologous transmembrane proteins such as OSCA1.2. Conversely, the substitution of Trp with Arg (Trp482Arg) disrupts the cation-π interaction with phospholipids located in the outer leaflet of the phospholipid bilayer, destabilizing protein-lipid interactions. Additionally, Trp482Arg collapses the CH-π interaction between Trp482 and Pro511, possibly reducing the overall stability of the protein. In parallel with the molecular modeling, the two mutants degraded significantly faster compared to the wild-type protein, compromising protein stability. CONCLUSIONS: This results expand the genetic spectrum of disease-causing TMC1 variants related to DFNA36 and provide insight into TMC1 transmembrane protein-lipid interactions.


Asunto(s)
Pérdida Auditiva Sensorineural , Proteínas de la Membrana , Animales , Humanos , Caenorhabditis elegans , Pérdida Auditiva Sensorineural/genética , Membrana Dobles de Lípidos , Proteínas de la Membrana/genética , Estudios Retrospectivos
10.
Bio Protoc ; 22(13): e4887, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38026763

RESUMEN

The lipid bilayers of the cell are composed of various lipid classes and species. These engage in cell signaling and regulation by recruiting cytosolic proteins to the membrane and interacting with membrane-embedded proteins to alternate their activity and stability. Like lipids, membrane proteins are amphipathic and are stabilized by the hydrophobic forces of the lipid bilayer. Membrane protein-lipid interactions are difficult to investigate since membrane proteins need to be reconstituted in a lipid-mimicking environment. A common and well-established approach is the detergent-based solubilization of the membrane proteins in detergent micelles. Nowadays, nanodiscs and liposomes are used to mimic the lipid bilayer and enable the work with membrane proteins in a more natural environment. However, these protocols need optimization and are labor intensive. The present protocol describes straightforward instructions on how the preparation of lipids is performed and how the lipid detergent mixture is integrated with the membrane protein MARCH5. The lipidation protocol was performed prior to an activity assay specific to membrane-bound E3 ubiquitin ligases and a stability assay that could be used for any membrane protein of choice.

11.
J Photochem Photobiol B ; 246: 112758, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37531665

RESUMEN

In plants, the major light-harvesting antenna complex (LHCII) is vital for both light harvesting and photoprotection in photosystem II. Previously, we proposed that the thylakoid membrane itself could switch LHCII into the photoprotective state, qE, via a process known as hydrophobic mismatch. The decrease in the membrane thickness that followed the formation of ΔpH was a key fact that prompted this idea. To test this, we made proteoliposomes from lipids with altered acyl chain length (ACL). Here, we show that ACL regulates the average chlorophyll fluorescence lifetime of LHCII. For liposomes made of lipids with an ACL of 18 carbons, the lifetime was ∼2 ns, like that for the thylakoid membrane. Furthermore, LHCII appears to be quenched in proteoliposomes with an ACL both shorter and longer than 18 carbons. The proteoliposomes made of short ACL lipids display structural heterogeneity revealing two quenched conformations of LHCII, each having characteristic 77 K fluorescence spectra. One conformation spectrally resembles isolated LHCII aggregates, whilst the other resembles LHCII immobilized in polyacrylamide gels. Overall, the decrease in the ACL appears to produce quenched conformations of LHCII, which renders plausible the idea that the trigger of qE is the hydrophobic mismatch.


Asunto(s)
Complejos de Proteína Captadores de Luz , Tilacoides , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema II/química , Proteolípidos/química , Clorofila
12.
Food Chem ; 426: 136500, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37329797

RESUMEN

The effects of prior interaction between ß-lactoglobulin (ßLG) and lauric acid (LA) on their formation of ternary complexes with wheat starch (WS) was studied. Firstly, the interaction between ßLG and LA after they were heated at different temperatures between 55 and 95 °C was characterized by fluorescence spectroscopy and molecular dynamics simulation. This showed that a greater degree of ßLG-LA interaction occurred after heating at higher temperatures. The WS-LA-ßLG complexes formed subsequently were analyzed by differential scanning calorimetry, X-ray diffraction, Raman and FTIR spectroscopy, which showed that as interaction of ßLG and LA increased there was an inhibitory action on the formation of ternary complex with WS. Hence, we conclude that there is competition in the ternary systems between the protein and starch to interact with the lipid, and that stronger interaction of the protein and lipid may hinder the formation of ternary complexes with starch.


Asunto(s)
Simulación de Dinámica Molecular , Almidón , Almidón/química , Unión Proteica , Lactoglobulinas/química , Rastreo Diferencial de Calorimetría
13.
Cell Biochem Funct ; 41(4): 399-412, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37158622

RESUMEN

High salinity in agricultural lands is one of the predominant issues limiting agricultural yields. Plants have developed several mechanisms to withstand salinity stress, but the mechanisms are not effective enough for most crops to prevent and persist the salinity stress. Plant salt tolerance pathways involve membrane proteins that have a crucial role in sensing and mitigating salinity stress. Due to a strategic location interfacing two distinct cellular environments, membrane proteins can be considered checkpoints to the salt tolerance pathways in plants. Related membrane proteins functions include ion homeostasis, osmosensing or ion sensing, signal transduction, redox homeostasis, and small molecule transport. Therefore, modulating plant membrane proteins' function, expression, and distribution can improve plant salt tolerance. This review discusses the membrane protein-protein and protein-lipid interactions related to plant salinity stress. It will also highlight the finding of membrane protein-lipid interactions from the context of recent structural evidence. Finally, the importance of membrane protein-protein and protein-lipid interaction is discussed, and a future perspective on studying the membrane protein-protein and protein-lipid interactions to develop strategies for improving salinity tolerance is proposed.


Asunto(s)
Lípidos de la Membrana , Proteínas de la Membrana , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Plantas/metabolismo , Estrés Salino , Tolerancia a la Sal , Estrés Fisiológico , Proteínas de Plantas/metabolismo
14.
Molecules ; 28(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37241931

RESUMEN

The aggregation of human Islet Amyloid Polypeptide (hIAPP) on cell membranes is linked to amyloid diseases. However, the physio-chemical mechanisms of how these hIAPP aggregates trigger membrane damage are unclear. Using coarse-grained and all-atom molecular dynamics simulations, we investigated the role of lipid nanodomains in the presence or absence of anionic lipids, phosphatidylserine (PS), and a ganglioside (GM1), in the membrane disruption and protein folding behaviors of hIAPP aggregates on phase-separated raft membranes. Our raft membranes contain liquid-ordered (Lo), liquid-disordered (Ld), mixed Lo/Ld (Lod), PS-cluster, and GM1-cluster nanosized domains. We observed that hIAPP aggregates bound to the Lod domain in the absence of anionic lipids, but also to the GM1-cluster- and PS-cluster-containing domains, with stronger affinity in the presence of anionic lipids. We discovered that L16 and I26 are the lipid anchoring residues of hIAPP binding to the Lod and PS-cluster domains. Finally, significant lipid acyl chain order disruption in the annular lipid shells surrounding the membrane-bound hIAPP aggregates and protein folding, particularly beta-sheet formation, in larger protein aggregates were evident. We propose that the interactions of hIAPP and both non-anionic and anionic lipid nanodomains represent key molecular events of membrane damage associated with the pathogenesis of amyloid diseases.


Asunto(s)
Polipéptido Amiloide de los Islotes Pancreáticos , Simulación de Dinámica Molecular , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos/química , Gangliósido G(M1) , Membrana Celular/metabolismo , Pliegue de Proteína , Amiloide/química
15.
Chem Phys Lipids ; 254: 105306, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156322

RESUMEN

The spermadhesin AQN-3 is a major component of porcine seminal plasma. While various studies suggest that this protein binds to boar sperm cells, its attachment to the cells is poorly understood. Therefore, the capacity of AQN-3 to interact with lipids was investigated. For that purpose, AQN-3 was recombinantly expressed in E. coli and purified via the included His-tag. Characterizing the quaternary structure by size exclusion chromatography revealed that recombinant AQN-3 (recAQN-3) is largely present as multimer and/or aggregate. To determine the lipid specificity of recAQN-3, a lipid stripe method and a multilamellar vesicle (MLV)-based binding assay were used. Both assays show that recAQN-3 selectively interacts with negatively charged lipids, like phosphatidic acid, phosphatidylinositol phosphates, and cardiolipin. No interaction was observed with phosphatidylcholine, sphingomyelin, phosphatidylethanolamine, or cholesterol. The affinity to negatively charged lipids can be explained by electrostatic interactions because binding is partly reversed under high-salt condition. However, more factors have to be assumed like hydrogen bonds and/or hydrophobic forces because the majority of bound molecules was not released by high salt. To confirm the observed binding behavior for the native protein, porcine seminal plasma was incubated with MLVs comprising phosphatidic acid or phosphatidyl-4,5-bisphosphate. Attached proteins were isolated, digested, and analyzed by mass spectrometry. Native AQN-3 was detected in all samples analyzed and was - besides AWN - the most abundant protein. It remains to be investigated whether AQN-3, together with other sperm associated seminal plasma proteins, acts as decapacitation factor by targeting negative lipids with signaling or other functional roles in fertilization.


Asunto(s)
Fosfolípidos , Semen , Porcinos , Masculino , Animales , Semen/química , Semen/metabolismo , Fosfolípidos/metabolismo , Proteínas Portadoras/metabolismo , Escherichia coli/metabolismo , Espermatozoides/química , Proteínas de Plasma Seminal/análisis , Proteínas de Plasma Seminal/metabolismo
16.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36902293

RESUMEN

Vacuolar ATPases (V-ATPases) are multi-subunit ATP-dependent proton pumps necessary for cellular functions, including pH regulation and membrane fusion. The evidence suggests that the V-ATPase a-subunit's interaction with the membrane signaling lipid phosphatidylinositol (PIPs) regulates the recruitment of V-ATPase complexes to specific membranes. We generated a homology model of the N-terminal domain of the human a4 isoform (a4NT) using Phyre2.0 and propose a lipid binding domain within the distal lobe of the a4NT. We identified a basic motif, K234IKK237, critical for interaction with phosphoinositides (PIP), and found similar basic residue motifs in all four mammalian and both yeast a-isoforms. We tested PIP binding of wildtype and mutant a4NT in vitro. In protein lipid overlay assays, the double mutation K234A/K237A and the autosomal recessive distal renal tubular-causing mutation K237del reduced both PIP binding and association with liposomes enriched with PI(4,5)P2, a PIP enriched within plasma membranes. Circular dichroism spectra of the mutant protein were comparable to wildtype, indicating that mutations affected lipid binding, not protein structure. When expressed in HEK293, wildtype a4NT localized to the plasma membrane in fluorescence microscopy and co-purified with the microsomal membrane fraction in cellular fractionation experiments. a4NT mutants showed reduced membrane association and decreased plasma membrane localization. Depletion of PI(4,5)P2 by ionomycin caused reduced membrane association of the WT a4NT protein. Our data suggest that information contained within the soluble a4NT is sufficient for membrane association and that PI(4,5)P2 binding capacity is involved in a4 V-ATPase plasma membrane retention.


Asunto(s)
ATPasas de Translocación de Protón Vacuolares , Animales , Humanos , Células HEK293 , ATPasas de Translocación de Protón Vacuolares/metabolismo , Saccharomyces cerevisiae/metabolismo , Isoformas de Proteínas/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Sitios de Unión , Mamíferos/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(11): e2213886120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36893262

RESUMEN

Lysosomes are catabolic organelles involved in macromolecular digestion, and their dysfunction is associated with pathologies ranging from lysosomal storage disorders to common neurodegenerative diseases, many of which have lipid accumulation phenotypes. The mechanism of lipid efflux from lysosomes is well understood for cholesterol, while the export of other lipids, particularly sphingosine, is less well studied. To overcome this knowledge gap, we have developed functionalized sphingosine and cholesterol probes that allow us to follow their metabolism, protein interactions, and their subcellular localization. These probes feature a modified cage group for lysosomal targeting and controlled release of the active lipids with high temporal precision. An additional photocrosslinkable group allowed for the discovery of lysosomal interactors for both sphingosine and cholesterol. In this way, we found that two lysosomal cholesterol transporters, NPC1 and to a lesser extent LIMP-2/SCARB2, bind to sphingosine and showed that their absence leads to lysosomal sphingosine accumulation which hints at a sphingosine transport role of both proteins. Furthermore, artificial elevation of lysosomal sphingosine levels impaired cholesterol efflux, consistent with sphingosine and cholesterol sharing a common export mechanism.


Asunto(s)
Proteínas Portadoras , Esfingosina , Proteínas Portadoras/metabolismo , Esfingosina/metabolismo , Esteroles/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteína Niemann-Pick C1/metabolismo , Colesterol/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Lisosomas/metabolismo
18.
J Thromb Haemost ; 21(4): 917-932, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36696201

RESUMEN

BACKGROUND: Tissue factor (TF), a transmembrane glycoprotein, plays a profound role in the formation of the tissue factor-factor VIIa (TF-FVIIa) complex that initiates factor Xa (FXa) generation followed by thrombin activation and clot formation. Previous reports suggest that TF-FVIIa coagulant activity at the cell surface may be affected by various processes, including changes in cholesterol content and posttranslational modifications of TF. Numerous studies were conducted but yielded inconclusive results about the effect of cholesterol on TF expression. OBJECTIVE: The present study aimed to understand how cholesterol affects structural modulations on the tissue factor-factor VIIa-factor Xa ternary complex (TF-FVIIa-FXa). Additionally, we aimed to illustrate the effect of palmitoylation on the Cys245 residue of TF and understand its structural implications on the TF-FVIIa-FXa. METHODS: We set up the following 4 systems in different lipid environments: TF-FVIIa-FXa in POPC:POPS (CS), TF-FVIIa-FXa in POPC:POPS:CHOL (CSL), Palmitoylated TF-FVIIa-FXa in POPC:POPS:CHOL (CSLP), and Palmitoylated TF-FVIIa-FXa in POPC:CHOL (CLP), respectively, and subjected them to molecular dynamics simulation. RESULTS: Hydrogen-bond and contact probability analysis were performed between various important domains of TF-FVIIa-FXa and notable novel interactions: Asn93FVIIa:L-Lys48TF, Arg178FVIIa:H-Asp95FXa:B, Lys20FVIIa:H-Glu193FXa:A, Arg178FVIIa:H-Asp97FXa:B, and Arg153FVIIa:H-Gln135FXa:B have been reported. The protein stability study implies that the CS and CLP systems are thermodynamically less stable than CSL and CSLP systems. CONCLUSION: Analysis of molecular dynamic simulation data suggests that the presence of cholesterol and palmitoylation may contribute to structural rigidity, stability, and compactness of key domains of TF-FVIIa-FXa by augmenting protein-protein and protein-lipid interactions.


Asunto(s)
Factor Xa , Tromboplastina , Humanos , Factor VIIa/química , Factor VIIa/metabolismo , Factor Xa/química , Factor Xa/metabolismo , Lípidos/química , Lipoilación , Simulación de Dinámica Molecular , Tromboplastina/química , Tromboplastina/metabolismo , Colesterol/química , Colesterol/metabolismo
19.
Biophys Chem ; 294: 106959, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36709544

RESUMEN

Bacteriorhodopsin (bR), a transmembrane protein with seven α-helices, is highly expressed in the purple membrane (PM) of archaea such as Halobacterium salinarum. It is well known that bR forms two-dimensional crystals with acidic lipids such as phosphatidylglycerol phosphate methyl ester (PGP-Me)-a major component of PM lipids bearing unique chemical structures-methyl-branched alkyl chains, ether linkages, and divalent anionic head groups with two phosphodiester groups. Therefore, we aimed to determine which functional groups of PGP-Me are essential for the boundary lipids of bR and how these functionalities interact with bR. To this end, we compared various well-known phospholipids (PLs) that carry one of the structural features of PGP-Me, and evaluated the affinity of PLs to bR using the centerband-only analysis of rotor-unsynchronized spin echo (COARSE) method in solid-state NMR measurements and thermal shift assays. The results clearly showed that the branched methyl groups of alkyl chains and double negative charges in the head groups are important for PL interactions with bR. We then examined the effect of phospholipids on the monomer-trimer exchange of bR using circular dichroism (CD) spectra. The results indicated that the divalent negative charge in a head group stabilizes the trimer structure, while the branched methyl chains significantly enhance the PLs' affinity for bR, thus dispersing bR trimers in the PM even at high concentrations. Finally, we investigated the effects of PL on the proton-pumping activity of bR based on the decay rate constant of the M intermediate of a bR photocycle. The findings showed that bR activities decreased to 20% in 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), and in 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers as compared to that in PM. Meanwhile, 1,2-Diphytanoyl-sn-glycero-3-phosphate (DPhPA) bilayers bearing both negative charges and branched methyl groups preserved over 80% of the activity. These results strongly suggest that the head groups and alkyl chains of phospholipids are essential for boundary lipids and greatly influence the biological function of bR.


Asunto(s)
Bacteriorodopsinas , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Fosfolípidos/química , Lípidos de la Membrana/química , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Fosfatos/metabolismo
20.
Crit Rev Biotechnol ; : 1-14, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36170980

RESUMEN

Protein-lipid interactions are crucial for various cellular biological processes like intracellular signaling, membrane transport, and cytoskeletal dynamics. Therefore, studying these interactions is essential to understand and unravel their specific functions. Nevertheless, the interacting proteins of many lipids are poorly understood and still require systematic study. Liposomes are the most well-known and familiar biomimetic systems used to study protein-lipid interactions. Although liposomes have been widely used for studying protein-lipid interactions in classical methods such as the co-flotation assay (CFA), co-sedimentation assay (CSA), and flow cytometric assay (FCA), an overview of their current applications and developments in high-throughput methods is not yet available. Here, we summarize the liposome development in low and high-throughput methods to study protein-lipid interactions. Besides, a constructive comment for each platform is presented to stimulate the advancement of these technologies in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA