Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Angew Chem Int Ed Engl ; : e202414872, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320976

RESUMEN

Ring-opening metathesis polymerization (ROMP) is an effective method for synthesizing functional polymers, but since the technique typically relies on high ring strain cyclic olefins, the most common monomers are norbornene derivatives. The reliance on one class of monomer limits the obtainable properties of ROMP polymers. In this work, we investigate new bicyclic monomers synthesized via epoxidation of commercial dienes. DFT estimates of these monomers' ring strains suggests a significant increase in strain for cyclic olefins containing allylic epoxides. We found that the eight-membered (3,4-COO) and five-membered (CPO) cyclic olefins were particularly effective for ROMP. CPO was of especially intriguing due to its excellent polymerizability when compared to the limited reactivity of other five-membered rings. Unlike polynorbornenes, the resulting polymers of both monomers displayed glass transition temperatures well below room temperature. Interestingly, poly(3,4-COO) showed both high stereo- and regioregularity while poly(CPO) showed little regularity. Both polymers could be readily modified via post-polymerization ring-opening of the reactive allylic epoxides. With a high epoxide density in poly(CPO), CPO is an exciting new ROMP monomer that is easily synthesized, can be polymerized to high conversion at room temperature, and may be facilely modified to yield a wide range of functional materials.

2.
ACS Appl Mater Interfaces ; 16(35): 46133-46144, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39166441

RESUMEN

Selective imaging of specific subcellular structures provides valuable information about the cellular microenvironment. Materials exhibiting thermally activated delayed fluorescence (TADF) are rapidly emerging as metal-free probes with long-lived emission for intracellular time-gated imaging applications. Polymers incorporating TADF emitters can self-assemble into luminescent nanoparticles, termed polymer dots (Pdots), and this strategy enables them to circumvent the limitations of commercial organelle trackers and small molecule TADF emitters. In this study, diblock copolymers comprised of a hydrophilic block containing organelle-targeting monomers and a hydrophobic TADF-active block were synthesized by ring-opening metathesis polymerization (ROMP). Oxanorbornene-based monomers incorporating morpholine and triphenylphosphonium groups for lysosome and mitochondria targeting, respectively, were also synthesized. ROMP by sequential addition yielded well-defined diblock copolymers with dispersities <1.28. To analyze the effect of tuning the hydrophilic corona on cellular viability and uptake, we prepared Pdots with poly(ethylene glycol) (PEG) and bis-guanidinium (BGN) coronas, resulting in limited and efficient cellular uptake, respectively. Red-emissive Pdots with BGN-based coronas and organelle-targeting functionality were obtained with quantum yields up to 12% in water under air. Colocalization analysis confirmed that lysosome and mitochondria labeling in live HeLa cells was accomplished within 2 h of incubation, affording Pearson's correlation coefficients of 0.37 and 0.70, respectively. The potential application of these Pdots for time-resolved imaging is highlighted by a proof of concept using time-gated spectroscopy, which effectively separates the delayed emission of the TADF Pdots from the background autofluorescence of biological serum.


Asunto(s)
Polímeros , Humanos , Células HeLa , Polímeros/química , Mitocondrias/metabolismo , Imagen Óptica , Lisosomas/metabolismo , Lisosomas/química , Orgánulos/química , Orgánulos/metabolismo , Puntos Cuánticos/química , Colorantes Fluorescentes/química , Nanopartículas/química , Temperatura , Polietilenglicoles/química , Fluorescencia
3.
Angew Chem Int Ed Engl ; 63(40): e202409781, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38979659

RESUMEN

Most metathesis polymers based on norbornene derivatives carry a vinyl end group. Here we show that these vinyl end groups readily undergo a degenerative exchange of the terminal methylene unit in the presence of sub-stoichiometric amounts of a propagating metathesis polymer carrying a Grubbs ruthenium complex. We show that this degenerative exchange can be exploited in synthesizing ROMP polymers in a catalytic living fashion. Chain transfer agents based on styrene, or monosubstituted conjugated 1,3 diene derivatives are used as initiating sites for the catalytic living polymerization. Suitable derivatives of these chain transfer agents not only allow the linear living growth of polymers but also the synthesis of block copolymers from macro-initiators or star polymers from multi-functional chain transfer agents. This reversible exchange mechanism offers a cheaper, greener, and more sustainable alternative for the synthesis of living ROMP polymers compared to the classical synthetic route.

4.
ACS Appl Mater Interfaces ; 16(20): 26743-26756, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38733403

RESUMEN

In this work, we explore the use of ring-opening metathesis polymerization (ROMP) facilitated by a second-generation Grubbs catalyst (G2) for the development of advanced polymer membranes aimed at CO2 separation. By employing a novel copolymer blend incorporating 4,4'-oxidianiline (ODA), 1,6-hexanediamine (HDA), 1-adamantylamine (AA), and 3,6,9-trioxaundecylamine (TA), along with a CO2-selective poly(ethylene glycol)/poly(propylene glycol) copolymer (Jeffamine2003) and polydimethylsiloxane (PDMS) units, we have synthesized membranes under ambient conditions with exceptional CO2 separation capabilities. The strategic inclusion of PDMS, up to a 20% composition within the PEG/PPG matrix, has resulted in copolymer membranes that not only surpass the 2008 upper limit for CO2/N2 separation but also meet the commercial targets for CO2/H2 separation. Comprehensive analysis reveals that these membranes adhere to the mixing rule and exhibit percolation behavior across the entire range of compositions (0-100%), maintaining robust antiplasticization performance even under pressures up to 20 atm. Our findings underscore the potential of ROMP in creating precisely engineered membranes for efficient CO2 separation, paving the way for their application in large-scale environmental and industrial processes.

5.
ACS Appl Mater Interfaces ; 16(13): 16754-16766, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38517314

RESUMEN

We report a highly controlled technique for the synthesis of polymer films atop a substrate by combining spin coating with ring-opening metathesis polymerization (ROMP), herein termed spin coating ROMP (scROMP). The scROMP approach combines polymer synthesis and deposition into one process, fabricating films of up to 36 cm2 in under 3 min with orders-of-magnitude reduction in solvent usage. This method can convert numerous norbornene-type molecules into homopolymers and random copolymers as uniform films on both porous and nonporous substrates. Film thickness can be varied from a few hundred nanometers to a few tens of micrometers based on spin speed and monomer concentration. The resulting polymers possess high MW (>100 kDa) and low polydispersity (PDI) (<1.2) values that are similar to ROMP polymers made in solution. We also devise a model to investigate the balance between convective monomer spin-off and polymer growth from the surface, which allows the determination of critical kinetic parameters for scROMP. Finally, translation of scROMP to porous supports enables the synthesis of thin film composite membranes that demonstrate the ability to dehydrate ethanol by pervaporation.

6.
Phys Eng Sci Med ; 47(3): 1259-1265, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38421582

RESUMEN

Workforce modelling for Radiation Oncology Medical Physicists (ROMPs) is evolving and challenging, prompting the development of the 2021 Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) ROMP Workforce (ARW) Model. In the exploration of this model at Sir Charles Gairdner Hospital, a comprehensive productivity exercise was conducted to obtain a detailed breakdown of ROMP time at a granular level. The results provide valuable insights into ROMP activities and enabled an evaluation of ARW Model calculations. The findings also capture the changing ROMP role as evidenced by an increasing involvement in consultation and advisory tasks with other professionals in the field. They also suggest that CyberKnife QA time requirements in the data utilised by the model may need to be revised. This study emphasises features inherent in the model, that need to be understood if the model is to be applied correctly.


Asunto(s)
Oncología por Radiación , Humanos , Modelos Teóricos , Física Sanitaria , Recursos Humanos
7.
Macromol Biosci ; 24(2): e2300255, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37688508

RESUMEN

PEGylation is the gold standard in protein-polymer conjugation, improving circulation half-life of biologics while mitigating the immune response to a foreign substance. However, preexisting anti-PEG antibodies in healthy humans are becoming increasingly prevalent and elicitation of anti-PEG antibodies when patients are administered with PEGylated therapeutics challenges their safety profile. In the current study, two distinct amine-reactive poly(oxanorbornene) (PONB) imide-based water-soluble block co-polymers are synthesized using ring-opening metathesis polymerization (ROMP). The synthesized block-copolymers include PEG-based PONB-PEG and sulfobetaine-based PONB-Zwit. The polymers are then covalently conjugated to amine residues of lysozyme (Lyz) and urate oxidase (UO) using a grafting-to bioconjugation technique. Both Lyz-PONB and UO-PONB conjugates retained significant bioactivities after bioconjugation. Immune recognition studies of UO-PONB conjugates indicated a comparable lowering of protein immunogenicity when compared to PEGylated UO. PEG-specific immune recognition is negligible for UO-PONB-Zwit conjugates, as expected. These polymers provide a new alternative for PEG-based systems that retain high levels of activity for the biologic while showing improved immune recognition profiles.


Asunto(s)
Polietilenglicoles , Proteínas , Humanos , Polietilenglicoles/química , Polimerizacion , Proteínas/química , Polímeros/química , Aminas
8.
ACS Appl Mater Interfaces ; 16(1): 1502-1510, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38147587

RESUMEN

Development of rapid detection strategies that target potentially pathogenic bacteria has gained increasing attention due to the increasing awareness for better health and safety. In this study, we evaluate an intrinsically antimicrobial polymer, 2Gdm, which is a poly(norbornene)-based functional polymer featuring guanidinium groups as side chains, for bacterial detection by the means of triboelectric nanogenerators (TENGs) and triboelectric nanosensors (TENSs). Attachment of bacteria to the sensing layer is anticipated to alter the overall triboelectric properties of the underlying polymer layer. The positively charged guanidinium functional groups can interact with the negatively charged phospholipid bilayer of bacteria and lead to bacterial death, which can then be detected by optical microscopy, X-ray photoelectron microscopy, and more advanced self-powered sensing techniques such as TENGs and TENSs. The double bonds present along the poly(norbornene) backbone allow for thermally induced cross-linking to obtain X-2Gdm and thus rendering materials remain stable in water. By monitoring the change in voltage output after immersion in various concentrations of Gram-negative Escherichia coli (E. coli) and Gram-positive Streptococcus pneumoniae (S. pneumoniae), we have demonstrated the utility of X-2Gdm as a new polymer dielectric for autonomous bacterial detection. As the bacterial concentration increases, the amount of adsorbed bacteria also increases, resulting in a decrease in the surface potential of the X-2Gdm thin film; this reduction in surface potential can cause a decrease in the triboelectric output for both TENGs and TENSs, which serves as a key working mechanism for facile bacterial detection. TENG and TENS systems are capable of detecting E. coli and S. pneumoniae within a range of 4 × 105 to 4 × 108 CFU/mL with a limit of detection of 106 CFU/mL. This report highlights the promising prospects of employing TENGs and TENSs as innovative sensing technologies for rapid bacterial detection by leveraging the electrostatic interactions between bacterial cell membranes and cationic groups present on polymer surfaces.


Asunto(s)
Bacterias , Escherichia coli , Guanidina , Norbornanos , Poli A , Polímeros , Streptococcus pneumoniae
9.
Proc Natl Acad Sci U S A ; 120(51): e2311396120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079554

RESUMEN

Cationic polymers have been identified as a promising type of antibacterial molecules, whose bioactivity can be tuned through structural modulation. Recent studies suggest that the placement of the cationic groups close to the core of the polymeric architecture rather than on appended side chains might improve both their bioactivity and selectivity for bacterial cells over mammalian cells. However, antibacterial main-chain cationic polymers are typically synthesized via polycondensations, which do not afford precise and uniform molecular design. Therefore, accessing main-chain cationic polymers with high degrees of molecular tunability hinges upon the development of controlled polymerizations tolerating cationic motifs (or cation progenitors) near the propagating species. Herein, we report the synthesis and ring-opening metathesis polymerization (ROMP) of N-methylpyridinium-fused norbornene monomers. The identification of reaction conditions leading to a well-controlled ROMP enabled structural diversification of the main-chain cationic polymers and a study of their bioactivity. This family of polyelectrolytes was found to be active against both Gram-negative (Escherichia coli) and Gram-positive (Methicillin-resistant Staphylococcus aureus) bacteria with minimal inhibitory concentrations as low as 25 µg/mL. Additionally, the molar mass of the polymers was found to impact their hemolytic activity with cationic polymers of smaller degrees of polymerization showing increased selectivity for bacteria over human red blood cells.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Polímeros , Animales , Humanos , Polímeros/química , Polimerizacion , Antibacterianos/farmacología , Antibacterianos/química , Norbornanos/química , Cationes , Mamíferos
10.
Adv Sci (Weinh) ; 10(27): e2302932, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37455678

RESUMEN

This present study illustrates the synthesis and preparation of polyoxanorbornene-based bottlebrush polymers with poly(ethylene oxide) (PEO) side chains by ring-opening metathesis polymerization for solid polymer electrolytes (SPE). In addition to the conductive PEO side chains, the polyoxanorbornene backbones may act as another ion conductor to further promote Li-ion movement within the SPE matrix. These results suggest that these bottlebrush polymer electrolytes provide impressively high ionic conductivity of 7.12 × 10-4 S cm-1 at room temperature and excellent electrochemical performance, including high-rate capabilities and cycling stability when paired with a Li metal anode and a LiFePO4 cathode. The new design paradigm, which has dual ionic conductive pathways, provides an unexplored avenue for inventing new SPEs and emphasizes the importance of molecular engineering to develop highly stable and conductive polymer electrolytes for lithium-metal batteries (LMB).

11.
J Med Microbiol ; 72(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37367949

RESUMEN

Introduction. Brucellosis is an important bacterial zoonosis, re-emerging as a serious public health concern in developing countries. Two major species, Brucella melitensis and Brucella abortus, cause recurrent facile infection in human. Therefore, rapid and accurate diagnosis for early disease control and prevention is needed in areas with low disease burden.Hypothesis. This study evaluated the sandwich enzyme-linked immunosorbent assay (ELISA) (S-ELISA) immunoassay for potential use of whole-cell (WC) and recombinant outer-membrane protein (rOmp28)-derived IgG polyclonals in sensitive detection of Brucella.Aim. Immunoassay-based WC detection of Brucella species in important sub-clinical matrices at lower limits of detection.Methodology. We purified recombinant rOmp28 with Ni-NTA gel affinity chromatography and produced IgG polyclonal antibodies (pAbs) using BALB/c mice and New Zealand white female rabbits against different antigens (Ags) of Brucella. Checkerboard sandwich ELISA and P/N ratio (optical density of 'P' positive test sample to 'N' negative control) were used for evaluation and optimization of the study. The pAbs were characterized using Western blot analysis and different matrices were spiked with WC Ag of Brucella.Results. Double-antibody S-ELISA was developed using WC Ag-derived rabbit IgG (capture antibody at 10 µg ml-1) and rOmp28-derived mice IgG (detection antibody at 100 µg ml-1) with a detection range of 102 to 108 cells ml-1 and a limit of detection at 102 cells ml-1. A P/N ratio of 1.1 was obtained with WC pAbs as compared to 0.6 and 0.9 ratios with rOmp28-derived pAbs for detecting B. melitensis 16M and B. abortus S99, respectively. An increased P/N ratio of 4.4 was obtained with WC Ag-derived rabbit IgG as compared to 4.2>4.1>2.4 ratios obtained with rabbit IgGs derived against cell envelope (CE), rOmp28 and sonicated antigen (SA) of Brucella with high affinity for rOmp28 Ag analysed on immunoblots. The rOmp28-derived mice IgG revealed two Brucella species at P/N ratios of 11.8 and 6.3, respectively. Upon validation, S-ELISA detected Brucella WCs in human whole blood and sera samples with no cross-reactivity to other related bacteria.Conclusion. The developed S-ELISA is specific and sensitive in early detection of Brucella from different matrices of clinical and non-clinical disease presentation.


Asunto(s)
Brucella melitensis , Brucelosis , Femenino , Animales , Ratones , Conejos , Humanos , Anticuerpos Antibacterianos , Brucella abortus , Brucelosis/diagnóstico , Inmunoensayo , Ensayo de Inmunoadsorción Enzimática/métodos , Proteínas Recombinantes , Inmunoglobulina G , Antígenos Bacterianos
12.
ACS Appl Mater Interfaces ; 15(16): 20410-20420, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37042624

RESUMEN

Dielectric elastomer actuators (DEAs) generate motion resembling natural muscles in reliability, adaptability, elongation, and frequency of operation. They are highly attractive in implantable soft robots or artificial organs. However, many applications of such devices are hindered by the high driving voltage required for operation, which exceeds the safety threshold for the human body. Although the driving voltage can be reduced by decreasing the thickness and the elastic modulus, soft materials are prone to electromechanical instability (EMI), which causes dielectric breakdown. The elastomers made by cross-linking bottlebrush polymers are promising for achieving DEAs that suppress EMI. In previous work, they were chemically cross-linked using an in situ free-radical UV-induced polymerization, which is oxygen-sensitive and does not allow the formation of thin films. Therefore, the respective actuators were operated at voltages above 4000 V. Herein, macromonomers that can be polymerized by ring-opening metathesis polymerization and subsequently cross-linked via a UV-induced thiol-ene click reaction are developed. They allow us to fast cross-link defect-free thin films with a thickness below 100 µm. The dielectric films give up to 12% lateral actuation at 1000 V and survive more than 10,000 cycles at frequencies up to 10 Hz. The easy and efficient preparation approach of the defect-free thin films under air provides easy accessibility to bottlebrush polymeric materials for future research. Additionally, the desired properties, actuation under low voltage, and long lifetime revealed the potential of the developed materials in soft robotic implantable devices. Furthermore, the C-C double bonds in the polymer backbone allow for chemical modification with polar groups and increase the materials' dielectric permittivity to a value of 5.5, which is the highest value of dielectric permittivity for a cross-linked bottlebrush polymer.

13.
ACS Appl Mater Interfaces ; 15(14): 18354-18361, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36996820

RESUMEN

Currently, metal-organic framework (MOF)-polymer composites are attracting great interest as a step forward in making MOFs a useful material for industrially relevant applications. However, most of the research is engaged with finding promising MOF/polymer pairs and less with the synthetic methods by which these materials are then combined, albeit hybridization has a significant impact on the properties of the new composite macrostructure. Thus, the focus of this work is on the innovative hybridization of MOFs and polymerized high internal phase emulsions (polyHIPEs), two classes of materials that exhibit porosity at different length scales. The main thrust is the in situ secondary recrystallization, i.e., growth of MOFs from metal oxides previously fixed in polyHIPEs by the Pickering HIPE-templating, and further structure-function study of composites through the CO2 capture behavior. The combination of Pickering HIPE polymerization and secondary recrystallization at the metal oxide-polymer interface proved advantageous, as MOF-74 isostructures based on different metal cations (M2+ = Mg, Co, or Zn) could be successfully shaped in the polyHIPEs' macropores without affecting the properties of the individual components. The successful hybridization resulted in highly porous, co-continuous MOF-74-polyHIPE composite monoliths forming an architectural hierarchy with pronounced macro-microporosity, in which the MOF microporosity is almost completely accessible for gases, i.e., about 87% of the micropores, and the monoliths exhibit excellent mechanical stability. The well-structured porous architecture of the composites showed superior CO2 capture performance compared to the parent MOF-74 powders. Both adsorption and desorption kinetics are significantly faster for composites. Regeneration by temperature swing adsorption recovers about 88% of the total adsorption capacity of the composite, while it is lower for the parent MOF-74 powders (about 75%). Finally, the composites exhibit about 30% improvement in CO2 uptake under working conditions compared to the parent MOF-74 powders, and some of the composites are able to retain 99% of the original adsorption capacity after five adsorption/desorption cycles.

14.
ACS Appl Mater Interfaces ; 14(45): 51301-51306, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36318511

RESUMEN

Thermoset materials comprise a significant proportion of high-performance plastics due to their shape permanence and excellent thermal and mechanical properties. However, these properties come at the expense of degradability. Here, we show for the first time that the industrial thermoset polydicyclopentadiene (PDCPD) can be additively manufactured (AM) with degradable 2,3-dihydrofuran (DHF) linkages using a photochemical approach. Treatment of the manufactured objects with acid results in rapid degradation to soluble byproducts. This work highlights the potential of ring-opening metathesis polymerization (ROMP) chemistry to create degradable materials amenable to advanced manufacturing processes.

15.
Ann Indian Acad Neurol ; 25(4): 688-691, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211170

RESUMEN

Background: The Radboud Oral Motor Inventory for Parkinson's disease (ROMP) is a patient-rated assessment measuring patients' perceptions of speech, swallowing, and saliva control among patients with idiopathic Parkinson's disease (IPD). Objective: The present study was carried out to adapt and validate the Sinhala version of the ROMP questionnaire in a Sinhala-speaking patient cohort diagnosed with IPD. Materials and Methods: The study population consisted of patients diagnosed with IPD attending a tertiary care neurology clinic at the National Hospital of Sri Lanka. ROMP was translated from English to Sinhala, and an expert committee verified its content. Construct validity was assessed by correlating the Sinhala ROMP scores with the subscales in speech, salivation, and swallowing of the Unified Parkinson's Disease Rating Scale and with five-point Likert-type scale to assess dysarthria, dysphagia, and drooling by a speech and language therapist. Test-retest reproducibility was assessed by repeating the questionnaire in 2 weeks. Results: A cohort of 21 patients was evaluated (male to female ratio = 2.5:1, mean age was 58.8 [±8.3] years). The Spearman's correlations between ROMP and the Likert-type scale assessment, that is, speech r = 0.85 (P < 0.01), swallowing r = 0.86 (P < 0.01), and drooling r = 0.88 (P < 0.01), and subscales of the UPDRS were statistically significant, that is, speech r = 0.75 (P < 0.01), swallowing r = 0.96 (P < 0.01), and salivation r = 0.94 (P < 0.01). Reproducibility of the three domains and total intraclass correlation coefficients indicated a high level of agreement in test-retest reproducibility (range: 0.98-0.99). The three subdomains of the instrument also had excellent internal consistency (total Cronbach's α = 0.99). Conclusion: The Sinhala version of ROMP has proved to be a good assessment tool for dysphagia, dysarthria, and drooling in the early stage of IPD patients.

16.
J Polym Sci (2020) ; 60(9): 1501-1510, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35967758

RESUMEN

Herein it is reported how the overlap concentration (C*) can be used to overcome crosslinking due to diol impurities in commercial PEG, allowing for the synthesize of bottlebrush polymers with good control over molecular weight. Additionally, PEG-based bottlebrush networks are synthesized via ROMP, attaining high conversions with minimal sol fractions (<2%). The crystallinity and mechanical properties of these networks are then further altered by solvent swelling with phosphate buffer solution (PBS) and 1-ethyl-3-methylimidazolium ethyl sulfate/DCM cosolvents. The syntheses reported here highlight the potential of the bottlebrush network architecture for use in the rational design of new materials.

17.
Polymers (Basel) ; 14(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35745918

RESUMEN

The contamination of water resources with heavy metals is a very serious concern that demands prompt and effective attention due to the serious health risks caused by these contaminants. The synthesis and ring-opening metathesis polymerization (ROMP) of norbornene dicarboximides bearing thiol pendant groups, specifically, N-4-thiophenyl-exo-norbornene-5,6-dicarboximide (1a), N-4-(methylthio)phenyl-exo-norbornene-5,6-dicarboximide (1b) and N-4-(trifluoromethylthio)phenyl-exo-norbornene-5,6-dicarboximide (1c), as well as their assessment for the removal of heavy metals from aqueous systems, is addressed in this work. The polymers were characterized by NMR, SEM and TGA, among others. Single and multicomponent aqueous solutions of Pb2+, Cd2+ and Ni2+ were employed to perform both kinetic and isothermal adsorption studies taking into account several experimental parameters, for instance, the initial metal concentration, the contact time and the mass of the polymer. In general, the adsorption kinetic data fit the pseudo-second-order model more efficiently, while the adsorption isotherms fit the Freundlich and Langmuir models. The maximum metal uptakes were 53.7 mg/g for Pb2+, 43.8 mg/g for Cd2+ and 29.1 mg/g for Ni2+ in the SH-bearing polymer 2a, 46.4 mg/g for Pb2+, 32.9 mg/g for Cd2+ and 27.1 mg/g for Ni2+ in the SCH3-bearing polymer 2b and 40.3 mg/g for Pb2+, 35.9 mg/g for Cd2+ and 27.8 mg/g for Ni2+ in the SCF3-bearing polymer 2c, correspondingly. The better performance of polymer 2a for the metal uptake was ascribed to the lower steric hindrance and higher hydrophilicity imparted by -SH groups to the polymer. The results show that these thiol-functionalized polymers are effective adsorbents of heavy metal ions from aqueous media.

18.
Data Brief ; 42: 108202, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35515984

RESUMEN

This article describes data related to the research paper entitled "ROMP of norbornene and oxanorbornene derivatives with pendant fluorophore carbazole and coumarin groups" [1]. Six novel norbornene and oxanorbornene dicarboximides derivatives functionalized with carbazole or coumarin moieties, are synthesized and investigated in the preparation of fluorescent polymers by Ring-Opening Metathesis Polymerization (ROMP). Herein, we report on the characterization of all these compounds by 1D and 2D Nuclear Magnetic Resonance (NMR), UV-Visible and fluorescence spectroscopy. The characterization data include information obtained from 1H, 13C, Homonuclear Correlation Spectroscopy (1H-1H COSY) and Heteronuclear Single Quantum Coherence (1H-13C HSQC). The absorbence and fluorescence spectra for all these compounds are given. This work provides useful characterization data for the design of new norbornene and oxanorbornene-based monomers with fluorescent carbazole and coumarin groups, which can be employed for the synthesis of functional materials via ROMP.

19.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562910

RESUMEN

Unsaturated copolyesters are of great interest in polymer science due to their broad potential applications and sustainability. Copolyesters were synthesized from the ring-opening metathesis copolymerization of ω-6-hexadecenlactone (HDL) and norbornene (NB) using ruthenium-alkylidene [Ru(Cl2)(=CHPh)(1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene)(PCy3)] (Ru1), [Ru(Cl)2(=CHPh)(PCy3)2] (Ru2), and ruthenium-vinylidene [RuCl2(=C=CH(p-C6H4CF3))(PCy3)2] (Ru3) catalysts, respectively, yielding HDL-NB copolymers with different ratios of the monomer HDL in the feed. The activity of N-heterocyclic-carbene (NHC) (Ru1) and phosphine (Ru2 and Ru3) ligands containing ruthenium-carbene catalysts were evaluated in the synthesis of copolymer HDL-NB. The catalysts Ru1 with an NHC ligand showed superior activity and stability over catalysts Ru2 and Ru3 bearing PCy3 ligands. The incorporation of the monomers in the copolymers determined by 1H-NMR spectroscopy was similar to that of the HDL-NB values in the feed. Experiments, at distinct monomer molar ratios, were carried out using the catalysts Ru1-Ru3 to determine the copolymerization reactivity constants by applying the Mayo-Lewis and Fineman-Ross methods. The copolymer distribution under equilibrium conditions was studied by the 13C NMR spectra, indicating that the copolymer HDL-NB is a gradient copolymer. The main factor determining the decrease in melting temperature is the inclusion of norbornene units, indicating that the PNB units permeate trough the HDL chains. The copolymers with different molar ratios [HDL]/[NB] have good thermal stability up to 411 °C in comparison with the homopolymer PHDL (384 °C). Further, the stress-strain measurements in tension for these copolymers depicted the appreciable increment in stress values as the NB content increases.


Asunto(s)
Rutenio , Cinética , Ligandos , Metano/análogos & derivados , Norbornanos/química , Polímeros/química , Rutenio/química
20.
Angew Chem Int Ed Engl ; 61(24): e202203344, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35302707

RESUMEN

The ring-opening metathesis polymerization (ROMP) of cyclopropenes using hydrazonium initiators is described. The initiators, which are formed by the condensation of 2,3-diazabicyclo[2.2.2]octane and an aldehyde, polymerize cyclopropene monomers by a sequence of [3+2] cycloaddition and cycloreversion reactions. This process generates short chain polyolefins (Mn ≤9.4 kg mol-1 ) with relatively low dispersities (D≤1.4). The optimized conditions showed efficiency comparable to that achieved with Grubbs' 2nd generation catalyst for the polymerization of 3-methyl-3-phenylcyclopropene. A positive correlation between monomer to initiator ratio and degree of polymerization was revealed through NMR spectroscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA