Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Protein Cell ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39252612

RESUMEN

Pyroptosis is an identified programmed cell death that has been highly linked to endoplasmic reticulum (ER) dynamics. However, the crucial proteins for modulating dynamic ER membrane curvature change that trigger pyroptosis are currently not well understood. In this study, a biotin-labeled chemical probe of potent pyroptosis inducer α-mangostin (α-MG) was synthesized. Through protein microarray analysis, reticulon-4 (RTN4/Nogo), a crucial regulator of ER membrane curvature, was identified as a target of α-MG. We observed that chemically induced proteasome degradation of RTN4 by α-MG through recruiting E3 ligase UBR5 significantly enhances the pyroptosis phenotype in cancer cells. Interestingly, the downregulation of RTN4 expression significantly facilitated a dynamic remodeling of ER membrane curvature through a transition from tubules to sheets, consequently leading to rapid fusion of the ER with the cell plasma membrane. In particular, the ER-to-plasma membrane fusion process is supported by the observed translocation of several crucial ER markers to the "bubble" structures of pyroptotic cells. Furthermore, α-MG-induced RTN4 knockdown leads to PKM2-dependent conventional caspase-3/GSDME cleavages for pyroptosis progression. In vivo, we observed that chemical or genetic RTN4 knockdown significantly inhibited cancer cells growth, which further exhibited an antitumor immune response with anti-PD-1. In translational research, RTN4 high expression was closely correlated with the tumor metastasis and death of patients. Taken together, RTN4 plays a fundamental role in inducing pyroptosis through the modulation of ER membrane curvature remodeling, thus representing a prospective druggable target for anticancer immunotherapy.

2.
Aging (Albany NY) ; 16(16): 11904-11916, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39177670

RESUMEN

BACKGROUND: Adriamycin (ADR) is a widely used chemotherapy drug in clinical practice and it causes toxicity in the myocardium affecting its clinical use. miR-432-5p is a miRNA primarily expressed in myocardial cells and has a protective effect in the myocardium. We aim to explore the protective effect of miR-432-5p on ADR-caused impaired mitochondrial ATP metabolism and endoplasmic reticulum stress (ERs). METHOD: The primary cardiomyocytes were obtained from neonatal mice and the ADR was added to cells, meanwhile, a mice model was constructed through intravenous ADR challenge, and expression levels of miR-432-5p were examined. Subsequently, the miR-432-5p was introduced in vitro and in vivo to explore its effect on the activity of mitochondrial ATP synthesis, autophagy, and ER stress. The bioinformatics analysis was performed to explore the target of miR-432-5p. RESULTS: ADR decreased the expression of miR-432-5p in cardiomyocytes. It also decreases mitochondrial ATP production and activates the ER stress pathway by increasing the expression of LC3B, Beclin 1, cleaved caspase 3, and induces cardiac toxicity. miR-432-5p exogenous supplementation can reduce the cardiotoxicity caused by ADR, and its protective effect on cardiomyocytes depends on the down-regulation of the RTN3 signaling pathway in ER. CONCLUSION: ADR can induce the low expression of miR-432-5p, and activate the RTN3 pathway in ER, increase the expression of LC3B, Beclin 1, cleaved caspase 3, CHOP, and RTN3, and induce cardiac toxicity.


Asunto(s)
Cardiotoxicidad , Regulación hacia Abajo , Doxorrubicina , Estrés del Retículo Endoplásmico , MicroARNs , Miocitos Cardíacos , Transducción de Señal , Animales , MicroARNs/metabolismo , MicroARNs/genética , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Transducción de Señal/efectos de los fármacos , Doxorrubicina/toxicidad , Doxorrubicina/efectos adversos , Cardiotoxicidad/metabolismo , Cardiotoxicidad/genética , Regulación hacia Abajo/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Autofagia/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Masculino
3.
Epilepsy Behav ; 157: 109848, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38823073

RESUMEN

OSA is known to increase the risk for SUDEP in persons with epilepsy, but the relationship between these two factors is not clear. Also, there is no study showing the acute responses to obstructive apnea in a chronic epilepsy model. Therefore, this study aimed to characterize cardiorespiratory responses to obstructive apnea and chemoreceptor stimulation in rats. In addition, we analyzed respiratory centers in the brain stem by immunohistochemistry. Epilepsy was induced with pilocarpine. About 30-60 days after the first spontaneous seizure, tracheal and thoracic balloons, and electrodes for recording the electroencephalogram, electromyogram, and electrocardiogram were implanted. Intermittent apneas were made by inflation of the tracheal balloon during wakefulness, NREM sleep, and REM sleep. During apnea, respiratory effort increased, and heart rate fell, especially with apneas made during wakefulness, both in control rats and rats with epilepsy. Latency to awake from apnea was longer with apneas made during REM than NREM, but rats with epilepsy awoke more rapidly than controls with apneas made during REM sleep. Rats with epilepsy also had less REM sleep. Cardiorespiratory responses to stimulation of carotid chemoreceptors with cyanide were similar in rats with epilepsy and controls. Immunohistochemical analysis of Phox2b, tryptophan hydroxylase, and NK1 in brain stem nuclei involved in breathing and sleep (retrotrapezoid nucleus, pre-Bötzinger complex, Bötzinger complex, and caudal raphe nuclei) revealed no differences between control rats and rats with epilepsy. In conclusion, our study showed that rats with epilepsy had a decrease in the latency to awaken from apneas during REM sleep, which may be related to neuroplasticity in some other brain regions related to respiratory control, awakening mechanisms, and autonomic modulation.


Asunto(s)
Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia , Apnea Obstructiva del Sueño , Vigilia , Animales , Vigilia/fisiología , Masculino , Epilepsia/fisiopatología , Apnea Obstructiva del Sueño/fisiopatología , Apnea Obstructiva del Sueño/complicaciones , Ratas , Enfermedad Crónica , Pilocarpina/toxicidad , Tronco Encefálico/fisiopatología , Frecuencia Cardíaca/fisiología , Electromiografía , Ratas Sprague-Dawley , Ratas Wistar
4.
Int J Biol Sci ; 20(8): 3201-3218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904015

RESUMEN

Tumor-associated macrophages (TAMs) represent a predominant cellular component within the tumor microenvironment (TME) of pancreatic neuroendocrine neoplasms (pNENs). There is a growing body of evidence highlighting the critical role of exosomes in facilitating communication between tumor cells and TAMs, thereby contributing to the establishment of the premetastatic niche. Nonetheless, the specific mechanisms through which exosomes derived from tumor cells influence macrophage polarization under hypoxic conditions in pNENs, and the manner in which these interactions support cancer metastasis, remain largely unexplored. Recognizing the capacity of exosomes to transfer miRNAs that can modify cellular behaviors, our research identified a significant overexpression of miR-4488 in exosomes derived from hypoxic pNEN cells. Furthermore, we observed that macrophages that absorbed circulating exosomal miR-4488 underwent M2-like polarization. Our investigations revealed that miR-4488 promotes M2-like polarization by directly targeting and suppressing RTN3 in macrophages. This suppression of RTN3 enhances fatty acid oxidation and activates the PI3K/AKT/mTOR signaling pathway through the interaction and downregulation of FABP5. Additionally, M2 polarized macrophages contribute to the formation of the premetastatic niche and advance pNENs metastasis by releasing MMP2, thereby establishing a positive feedback loop involving miR-4488, RTN3, FABP5, and MMP2 in pNEN cells. Together, these findings shed light on the role of exosomal miRNAs from hypoxic pNEN cells in mediating interactions between pNEN cells and intrahepatic macrophages, suggesting that miR-4488 holds potential as a valuable biomarker and therapeutic target for pNENs.


Asunto(s)
Exosomas , Neoplasias Hepáticas , Macrófagos , MicroARNs , Tumores Neuroendocrinos , Neoplasias Pancreáticas , MicroARNs/metabolismo , MicroARNs/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Exosomas/metabolismo , Humanos , Animales , Ratones , Tumores Neuroendocrinos/metabolismo , Tumores Neuroendocrinos/patología , Tumores Neuroendocrinos/genética , Macrófagos/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/genética , Línea Celular Tumoral , Ácidos Grasos/metabolismo , Oxidación-Reducción , Microambiente Tumoral , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Ratones Desnudos , Transducción de Señal
5.
Elektrotech Informationstechnik ; 141(1): 37-46, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464743

RESUMEN

Random Telegraph Noise (RTN) is one of the major reliability concerns in nanoscale complementary metal-oxide semiconductor (CMOS) technologies. In this paper, we discuss the characterization of RTN in 40 nm CMOS technology using Ring Oscillators (ROSCs). We used different types of ROSCs to study the temporal and spectral characteristics of the RTN. We conducted measurements on one of the arrays with 128 identical ROSC cells. These results enabled statistical characterization of the RTN amplitude strength and its frequency characteristics in different supply voltage variations from 0.5 V to 0.7 V. At power supply of 0.65 V, dominant and observable RTN amplitude above 0.37% Δf/fmean is found in 60% of cells in the array. Further, the capture and emission time constant τe//c can be extracted from the measurements, the values observed ranging from 0.2 µs to 10 ms.

6.
Glia ; 72(6): 1067-1081, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38497356

RESUMEN

Alzheimer's Disease (AD) pathogenesis is thought to begin up to 20 years before cognitive symptoms appear, suggesting the need for more sensitive diagnostic biomarkers of AD. In this report, we demonstrated pathological changes in retinal Müller glia significantly earlier than amyloid pathology in AD mouse models. By utilizing the knock-in NLGF mouse model, we surprisingly discovered an increase in reticulon 3 (RTN3) protein levels in the NLGF retina as early as postnatal day 30 (P30). Despite RTN3 being a canonically neuronal protein, this increase was noted in the retinal Müller glia, confirmed by immunohistochemical characterization. Further unbiased transcriptomic assays of the P30 NLGF retina revealed that retinal Müller glia were the most sensitive responding cells in this mouse retina, compared with other cell types including photoreceptor cells and ganglion neurons. Pathway analyses of differentially expressed genes in glia cells showed activation of ER stress response via the upregulation of unfolded protein response (UPR) proteins such as ATF4 and CHOP. Early elevation of RTN3 in response to challenges by toxic Aß likely facilitated UPR. Altogether, these findings suggest that Müller glia act as a sentinel for AD pathology in the retina and should aid for both intervention and diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/patología , Retina , Neuronas/metabolismo , Modelos Animales de Enfermedad , Proteínas Amiloidogénicas/metabolismo , Neuroglía/metabolismo , Encéfalo/metabolismo , Células Ependimogliales/metabolismo
7.
Mitochondrion ; 75: 101851, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336146

RESUMEN

Reticulum 3 (RTN3) is an endoplasmic reticulum (ER) protein that has been reported to act in neurodegenerative diseases and lipid metabolism. However, the role of RTN3 in acute kidney injury (AKI) has not been explored. Here, we employed public datasets, patient data, and animal models to explore the role of RTN3 in AKI. The underlying mechanisms were studied in primary renal tubular epithelial cells and in the HK2 cell line. We found reduced expression of RTN3 in AKI patients, cisplatin-induced mice, and cisplatin-treated HK2 cells. RTN3-null mice exhibit more severe AKI symptoms and kidney fibrosis after cisplatin treatment. Mitochondrial dysfunction was also found in cells with RTN3 knockdown or knockout. A mechanistic study revealed that RTN3 can interact with HSPA9 in kidney cells. RTN3 deficiency may disrupt the RTN3-HSPA9-VDAC2 complex and affect MAMs during ER-mitochondrion contact, which further leads to mitochondrial dysfunction and exacerbates cisplatin-induced AKI. Our study indicated that RTN3 was important in the kidney and that a decrease in RTN3 in the kidney might be a risk factor for the aggravation of AKI.


Asunto(s)
Lesión Renal Aguda , Enfermedades Mitocondriales , Humanos , Ratones , Animales , Cisplatino/efectos adversos , Apoptosis , Lesión Renal Aguda/inducido químicamente , Riñón/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Proteínas Portadoras , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
8.
Cells ; 13(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38391914

RESUMEN

Continuous cell lines are important and commonly used in vitro models in breast cancer (BC) research. Selection of the appropriate model cell line is crucial and requires consideration of their molecular characteristics. To characterize BC cell line models in depth, we profiled a panel of 29 authenticated and publicly available BC cell lines by mRNA-sequencing, mutation analysis, and immunoblotting. Gene expression profiles separated BC cell lines in two major clusters that represent basal-like (mainly triple-negative BC) and luminal BC subtypes, respectively. HER2-positive cell lines were located within the luminal cluster. Mutation calling highlighted the frequent aberration of TP53 and BRCA2 in BC cell lines, which, therefore, share relevant characteristics with primary BC. Furthermore, we showed that the data can be used to find novel, potential oncogenic fusion transcripts, e.g., FGFR2::CRYBG1 and RTN4IP1::CRYBG1 in cell line MFM-223, and to elucidate the regulatory circuit of IRX genes and KLF15 as novel candidate tumor suppressor genes in BC. Our data indicated that KLF15 was activated by IRX1 and inhibited by IRX3. Moreover, KLF15 inhibited IRX1 in cell line HCC-1599. Each BC cell line carries unique molecular features. Therefore, the molecular characteristics of BC cell lines described here might serve as a valuable resource to improve the selection of appropriate models for BC research.


Asunto(s)
Neoplasias de la Mama , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Femenino , Neoplasias de la Mama/patología , Línea Celular Tumoral , Mama/metabolismo , Proteínas Portadoras , Proteínas Mitocondriales/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167086, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38378084

RESUMEN

Alzheimer's disease (AD) is characterized by the formation ß-amyloid (Aß) deposited neuritic plaques. Recent evidence suggests that abnormal lipid metabolism and accumulation could serve as biomarkers for neurodegenerative diseases, including AD. Tubular endoplasmic reticulum protein, reticulon 3 (RTN3), plays a crucial role in the development of neuritic plaque and lipid metabolism in AD brains. In present study, we sought to investigate a potential association between neutral lipid accumulation and AD pathology. BODIPY 500/510 dye was used to label neutral lipid surrounding Aß plaques in APPNL-G-F mouse and AD postmortem brains samples. Immunofluorescent images were captured using confocal microscope and co-localization between lipid metabolism proteins and neutral lipids were evaluated. Lipid accumulation in Aß plaque surrounding dystrophic neurites (DNs) was observed in the cortical region of AD mouse models and human AD brain samples. The neutral lipid staining was not co-localized with IBA1-labeled microglia or GFAP-labeled astrocytes, but it was co-labeled with VAMP2 and neurofilament. We further showed that neutral lipids were accumulated in RTN3 immunoreactive DNs. Both the neutral lipids accumulation and RIDNs formation showed age-dependent patterns in surrounding amyloid plaques. Mechanistic studies revealed that RTN3 likely contributes to the enrichment of neutral lipids near plaques by interacting with heat shock cognate protein 70 (HSC70) and diminishing its function in chaperone-mediated lipophagy. Our study provides immunohistochemical evidence of neutral lipids being enriched in DNs near amyloid plaques. Our findings shed light on RTN3-mediaed lipid accumulation in AD neuropathology and provide fresh insights into the role of RTN3 in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/metabolismo , Neuritas/patología , Placa Amiloide/metabolismo , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Lípidos
10.
Respir Physiol Neurobiol ; 322: 104217, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38237884

RESUMEN

Central respiratory chemoreceptors are cells in the brain that regulate breathing in relation to arterial pH and PCO2. Neurons located at the retrotrapezoid nucleus (RTN) have been hypothesized to be central chemoreceptors and/or to be part of the neural network that drives the central respiratory chemoreflex. The inhibition or ablation of RTN chemoreceptor neurons has offered important insights into the role of these cells on central respiratory chemoreception and the neural control of breathing over almost 60 years since the original identification of acid-sensitive properties of this ventral medullary site. Here, we discuss the current definition of chemoreceptor neurons in the RTN and describe how this definition has evolved over time. We then summarize the results of studies that use loss-of-function approaches to evaluate the effects of disrupting the function of RTN neurons on respiration. These studies offer evidence that RTN neurons are indispensable for the central respiratory chemoreflex in mammals and exert a tonic drive to breathe at rest. Moreover, RTN has an interdependent relationship with oxygen sensing mechanisms for the maintenance of the neural drive to breathe and blood gas homeostasis. Collectively, RTN neurons are a genetically-defined group of putative central respiratory chemoreceptors that generate CO2-dependent drive that supports eupneic breathing and stimulates the hypercapnic ventilatory reflex.


Asunto(s)
Células Quimiorreceptoras , Bulbo Raquídeo , Animales , Células Quimiorreceptoras/fisiología , Bulbo Raquídeo/fisiología , Hipercapnia , Respiración , Neuronas/fisiología , Dióxido de Carbono , Mamíferos
11.
Ophthalmic Genet ; 45(3): 289-293, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38224077

RESUMEN

BACKGROUND: Biallelic variants in RTN4IP1 are a well-established cause of syndromic and nonsyndromic early-onset autosomal recessive optic neuropathy. They have more recently been reported to cause a concomitant but later-onset rod-cone dystrophy with or without syndromic features. METHODS: A comprehensive evaluation was performed that included assessment of visual and retinal function, clinical examination, and retinal imaging. Childhood ophthalmic records as well as the results of genetic testing were evaluated. RESULTS: A 24-year-old female described longstanding reduced visual acuity with more recent subjective impairment of dark adaptation. Visual acuity was subnormal in both eyes. Goldmann kinetic perimetry demonstrated scotomas in a pattern consistent with the presence of both optic neuropathy and rod-cone dystrophy with fundus exam as well as retinal imaging showing corroborating findings. Full-field electroretinography further confirmed the presence of a rod-cone dystrophy. Genetic testing demonstrated biallelic variants in RTN4IP1, one of which was novel, in association with the ocular findings. CONCLUSIONS: RTN4IP1-associated early-onset bilateral optic neuropathy with rod-cone dystrophy is a recently described clinical entity with limited reports available to-date. The present case provides additional support for this dual phenotype and identifies a novel causative variant.


Asunto(s)
Distrofias de Conos y Bastones , Electrorretinografía , Enfermedades del Nervio Óptico , Humanos , Femenino , Adulto Joven , Distrofias de Conos y Bastones/genética , Distrofias de Conos y Bastones/diagnóstico , Enfermedades del Nervio Óptico/genética , Enfermedades del Nervio Óptico/diagnóstico , Agudeza Visual/fisiología , Adulto , Mutación , Pruebas del Campo Visual , Fenotipo , Proteínas Portadoras/genética , Proteínas/genética , Proteínas Mitocondriales
12.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37958606

RESUMEN

Schizophrenia is one of the most serious psychiatric disorders and is characterized by reductions in both brain volume and spine density in the frontal cortex. RhoA belongs to the RAS homolog (Rho) family and plays critical roles in neuronal development and structural plasticity via Rho-kinase. RhoA activity is regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Several variants in GAPs and GEFs associated with RhoA have been reported to be significantly associated with schizophrenia. Moreover, several mouse models carrying schizophrenia-associated gene variants involved in RhoA/Rho-kinase signaling have been developed. In this review, we summarize clinical evidence showing that variants in genes regulating RhoA activity are associated with schizophrenia. In the last half of the review, we discuss preclinical evidence indicating that RhoA/Rho-kinase is a potential therapeutic target of schizophrenia. In particular, Rho-kinase inhibitors exhibit anti-psychotic-like effects not only in Arhgap10 S490P/NHEJ mice, but also in pharmacologic models of schizophrenia (methamphetamine- and MK-801-treated mice). Accordingly, we propose that Rho-kinase inhibitors may have antipsychotic effects and reduce cognitive deficits in schizophrenia despite the presence or absence of genetic variants in small GTPase signaling pathways.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Esquizofrenia , Humanos , Ratones , Animales , Quinasas Asociadas a rho/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Transducción de Señal , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Genómica
13.
Sensors (Basel) ; 23(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37766015

RESUMEN

In this work, the degradation of the random telegraph noise (RTN) and the threshold voltage (Vt) shift of an 8.3Mpixel stacked CMOS image sensor (CIS) under hot carrier injection (HCI) stress are investigated. We report for the first time the significant statistical differences between these two device aging phenomena. The Vt shift is relatively uniform among all the devices and gradually evolves over time. By contrast, the RTN degradation is evidently abrupt and random in nature and only happens to a small percentage of devices. The generation of new RTN traps by HCI during times of stress is demonstrated both statistically and on the individual device level. An improved method is developed to identify RTN devices with degenerate amplitude histograms.

14.
Front Immunol ; 14: 1216585, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575244

RESUMEN

Introduction: The heterogeneity of tumor immune microenvironments is a major factor in poor prognosis among hepatocellular carcinoma (HCC) patients. Neutrophils have been identified as playing a critical role in the immune microenvironment of HCC based on recent single-cell studies. However, there is still a need to stratify HCC patients based on neutrophil heterogeneity. Therefore, developing an approach that efficiently describes "neutrophil characteristics" in HCC patients is crucial to guide clinical decision-making. Methods: We stratified two cohorts of HCC patients into molecular subtypes associated with neutrophils using bulk-sequencing and single-cell sequencing data. Additionally, we constructed a new risk model by integrating machine learning analysis from 101 prediction models. We compared the biological and molecular features among patient subgroups to assess the model's effectiveness. Furthermore, an essential gene identified in this study was validated through molecular biology experiments. Results: We stratified patients with HCC into subtypes that exhibited significant differences in prognosis, clinical pathological characteristics, inflammation-related pathways, levels of immune infiltration, and expression levels of immune genes. Furthermore, A risk model called the "neutrophil-derived signature" (NDS) was constructed using machine learning, consisting of 10 essential genes. The NDS's RiskScore demonstrated superior accuracy to clinical variables and correlated with higher malignancy degrees. RiskScore was an independent prognostic factor for overall survival and showed predictive value for HCC patient prognosis. Additionally, we observed associations between RiskScore and the efficacy of immune therapy and chemotherapy drugs. Discussion: Our study highlights the critical role of neutrophils in the tumor microenvironment of HCC. The developed NDS is a powerful tool for assessing the risk and clinical treatment of HCC. Furthermore, we identified and analyzed the feasibility of the critical gene RTN3 in NDS as a molecular marker for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neutrófilos , Neoplasias Hepáticas/genética , Toma de Decisiones Clínicas , Aprendizaje Automático , Microambiente Tumoral/genética
15.
Life (Basel) ; 13(7)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37511924

RESUMEN

Breast cancer (BC) is a complex disease caused by molecular events that disrupt cellular survival and death. Discovering novel biomarkers is still required to better understand and treat BC. The reticulon-4 (RTN4) gene, encoding Nogo proteins, plays a critical role in apoptosis and cancer development, with genetic variations affecting its function. We investigated the rs34917480 in RTN4 and its association with BC risk in an Iranian population sample. We also predicted the rs34917480 effect on RTN4 mRNA structure and explored the RTN4's protein-protein interaction network (PPIN) and related pathways. In this case-control study, 437 women (212 BC and 225 healthy) were recruited. The rs34917480 was genotyped using AS-PCR, mRNA secondary structure was predicted with RNAfold, and PPIN was constructed using the STRING database. Our findings revealed that this variant was associated with a decreased risk of BC in heterozygous (p = 0.012), dominant (p = 0.015), over-dominant (p = 0.017), and allelic (p = 0.035) models. Our prediction model showed that this variant could modify RTN4's mRNA thermodynamics and potentially its translation. RTN4's PPIN also revealed a strong association with apoptosis regulation and key signaling pathways highly implicated in BC. Consequently, our findings, for the first time, demonstrate that rs34917480 could be a protective factor against BC in our cohort, probably via preceding mechanisms.

16.
Adv Exp Med Biol ; 1427: 107-114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37322341

RESUMEN

Heart failure (HF) is a prevalent disease in elderly population. Potentiation of the ventilatory chemoreflex drive plays a pivotal role in disease progression, at least in part, through their contribution to the generation/maintenance of breathing disorders. Peripheral and central chemoreflexes are mainly regulated by carotid body (CB) and the retrotrapezoid nuclei (RTN), respectively. Recent evidence showed an enhanced central chemoreflex drive in rats with nonischemic HF along with breathing disorders. Importantly, increase activity from RTN chemoreceptors contribute to the potentiation of central chemoreflex response to hypercapnia. The precise mechanism driving RTN potentiation in HF is still elusive. Since interdependency of RTN and CB chemoreceptors has been described, we hypothesized that CB afferent activity is required to increase RTN chemosensitivity in the setting of HF. Accordingly, we studied central/peripheral chemoreflex drive and breathing disorders in HF rats with and without functional CBs (CB denervation). We found that CB afferent activity was required to increase central chemoreflex drive in HF. Indeed, CB denervation restored normal central chemoreflex drive and reduced the incidence of apneas by twofold. Our results support the notion that CB afferent activity plays an important role in central chemoreflex potentiation in rats with HF.


Asunto(s)
Cuerpo Carotídeo , Insuficiencia Cardíaca , Anciano , Ratas , Humanos , Animales , Células Quimiorreceptoras/fisiología , Cuerpo Carotídeo/fisiología , Fenómenos Fisiológicos Respiratorios , Hipercapnia
17.
Stem Cell Reports ; 18(7): 1500-1515, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37352849

RESUMEN

Retrotrapezoid nucleus (RTN) neurons in the brainstem regulate the ventilatory response to hypercarbia. It is unclear how PHOX2B-polyalanine repeat mutations (PHOX2B-PARMs) alter the function of PHOX2B and perturb the formation of RTN neurons. Here, we generated human brainstem organoids (HBSOs) with RTN-like neurons from human pluripotent stem cells. Single-cell transcriptomics revealed that expression of PHOX2B+7Ala PARM alters the differentiation trajectories of the hindbrain neurons and hampers the formation of the RTN-like neurons in HBSOs. With the unguided cerebral organoids (HCOs), PHOX2B+7Ala PARM interrupted the patterning of PHOX2B+ neurons with dysregulation of Hedgehog pathway and HOX genes. With complementary use of HBSOs and HCOs with a patient and two mutant induced pluripotent stem cell lines carrying different polyalanine repetition in PHOX2B, we further defined the association between the length of polyalanine repetition and malformation of RTN-respiratory center and demonstrated the potential toxic gain of function of PHOX2B-PARMs, highlighting the uniqueness of these organoid models for disease modeling.


Asunto(s)
Proteínas Hedgehog , Proteínas de Homeodominio , Humanos , Proteínas de Homeodominio/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Factores de Transcripción/metabolismo , Rombencéfalo/metabolismo , Neuronas/metabolismo , Mutación
18.
Front Mol Biosci ; 10: 1192313, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37363398

RESUMEN

Background: Endometrial cancer (UCEC) is a commonly occurring tumor in females, and polycystic ovary syndrome (PCOS) is closely related to UCEC, but the molecular mechanisms remain unclear. This article aims to explore potential molecular mechanisms in UCEC and PCOS, as well as identify prognostic genes for UCEC. Methods: Bioinformatics methods were employed to screen for DEGs in UCEC and PCOS. The shared DEGs were analyzed by constructing a protein-protein interaction (PPI) network using the String database and Cytoscape software. The enrichment analysis was performed using Metascape. The shared DEGs associated with the prognosis of UCEC were identified through univariate and lasso Cox regression methods. A multivariate Cox regression model was constructed and internally validated. The expression and test efficiency of the key prognostic genes were verified using external datasets for UCEC and PCOS. Furthermore, the Gepia database was utilized to analyze the expression of key prognostic genes and their correlation with the disease-free survival (RFS) of UCEC. Tumor mutation burden (TMB), immune infiltration, and the correlation of immune cells were assessed for the prognostic genes of UCEC. Results: There were 151 shared DEGs identified between UCEC and PCOS through bioinformatics screening. These shared DEGs were primarily enriched in leukocyte activation. Following model construction and verification, nine genes were determined to be prognostic for UCEC from the shared DEGs. Among them, TSPYL5, KCNJ15, RTN1, HMOX1, DCAF12L1, VNN2, and ANXA1 were confirmed as prognostic genes in UCEC through external validation. Additionally, RTN1 was identified as a key gene in both UCEC and PCOS. Gepia analysis revealed that higher expression of RTN1 was associated with RFS in UCEC. Immune infiltration analysis of the shared DEGs demonstrated significant differences in the expression of various immune cells between UCEC high and low TMB groups. The seven key prognostic genes in UCEC exhibited regulatory relationships with immune cells. Conclusion: This study identified TSPYL5, KCNJ15, RTN1, HMOX1, DCAF12L1, VNN2, and ANXA1 as the key prognostic DEGs of UCEC. These genes are associated with UCEC survival, TMB, immune cell infiltration, and immune cell regulation. Among them, RTN1 may serve as a potential biomarker for both UCEC and PCOS.

19.
Transl Cancer Res ; 12(4): 859-872, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37180657

RESUMEN

Background: RTN4IP1 interacts with a membranous protein of endoplasmic reticulum (RTN4), this study was to explore the role RTN4IP1 involved in breast cancer (BC). Methods: After RNAseq data of The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) project were downloaded, correlations between RTN4IP1 expression and clinicopathologic variables, as well as expression levels between cancerous samples and non-cancerous ones were tested. Differentially expressed genes (DEGs) and functional enrichment, gene set enrichment analysis (GSEA) and immune infiltration analysis were conduct for bioinformatics analysis. After logistic regression, Kaplan-Meier curve of disease-specific survival (DSS), univariate and multivariate COX analysis, a nomogram was established for prognosis. Results: RTN4IP1 expression was up-regulated in BC tissue, significantly associated with estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) status (P<0.001). The 771 DEGs linked RTN4IP1 to glutamine metabolism and mitoribosome-associated quality control. Functional enrichment pointed to DNA metabolic process, mitochondrial matrix and inner membrane, ATPase activity, cell cycle and cellular senescence; whereas GSEA indicated regulation of cellular cycle, G1_S DNA damage checkpoints, drug resistance and metastasis. Eosinophil cells, natural killer (NK) cells and Th 2 cells were found to be correlated with RTN4IP1 expression (R=-0.290, -0.277 and 0.266, respectively, P<0.001). RTN4IP1high BC had worse DSS than RTN4IP1low ones [hazard ratio (HR) =2.37, 95% confidential interval (CI): (1.48-3.78), P<0.001], which has independent prognostic value (P<0.05). Conclusions: Overexpressed in BC tissue, RTN4IP1 predicts adverse prognosis for patients with BC, especially in infiltrating ductal carcinoma, infiltrating lobular carcinoma, Stage II, Stages III&IV and luminal A subtype.

20.
Cell Signal ; 108: 110718, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196774

RESUMEN

Our previous study indicated that Reticulon 2 (RTN2) was upregulated and facilitated the progression of gastric cancer. Protein O-linked ß-N-acetylglucosaminylation (O-GlcNAcylation) is a general feature during tumorigenesis, and regulates protein activity and stability through post-translational modification on serine/threonine. However, the relationship between RTN2 and O-GlcNAcylation have never been determined. In this study, we explored the influence of O-GlcNAcylation on RTN2 expression and its promotive role in gastric cancer. We found that RTN2 interacted with O-GlcNAc transferase (OGT) and was modified by O-GlcNAc. O-GlcNAcylation enhanced RTN2 protein stability via attenuating its lysosomal degradation in gastric cancer cells. Furthermore, our results demonstrated that RTN2-induced activation of ERK signalling was dependent on O-GlcNAcylation. Consistently, the stimulative effects of RTN2 on cellular proliferation and migration were abrogated by OGT inhibition. Tissue microarray with immumohistochemical staining also confirmed that the expression of RTN2 was positively correlated with the level of total O-GlcNAcylation as well as the phosphorylation level of ERK. Besides, combined RTN2 and O-GlcNAc staining intensity could improve predictive accuracy for gastric cancer patients' survival compared with each alone. Altogether, these findings suggest that O-GlcNAcylation on RTN2 was pivotal for its oncogenic functions in gastric cancer. Targeting RTN2 O-GlcNAcylation might provide new ideas for gastric cancer therapies.


Asunto(s)
Proteínas de la Membrana , Neoplasias Gástricas , Humanos , Acetilglucosamina/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Transducción de Señal , Proteínas de la Membrana/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA