Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38891973

RESUMEN

Transcription factors are key molecules involved in transcriptional and post-transcriptional regulation in plants and play an important regulatory role in resisting biological stress. In this study, we identified a regulatory factor, OsZF8, mediating rice response to Rhizoctonia solani (R. solani) AG1-IA infection. The expression of OsZF8 affects R. solani rice infection. OsZF8 knockout and overexpressed rice plants were constructed, and the phenotypes of mutant and wild-type (WT) plants showed that OsZF8 negatively regulated rice resistance to rice sheath blight. However, it was speculated that OsZF8 plays a regulatory role at the protein level. The interacting protein PRB1 of OsZF8 was screened using the yeast two-hybrid and bimolecular fluorescence complementation test. The results showed that OsZF8 effectively inhibited PRB1-induced cell death in tobacco cells, and molecular docking results showed that PRB1 had a strong binding effect with OsZF8. Further, the binding ability of OsZF8-PRB1 to ergosterol was significantly reduced when compared with the PRB1 protein. These findings provide new insights into elucidating the mechanism of rice resistance to rice sheath blight.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Rhizoctonia , Oryza/microbiología , Oryza/genética , Oryza/metabolismo , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Rhizoctonia/patogenicidad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Simulación del Acoplamiento Molecular , Unión Proteica , Ergosterol/metabolismo , Plantas Modificadas Genéticamente
2.
BMC Microbiol ; 24(1): 217, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902632

RESUMEN

BACKGROUND: Rhizoctonia solani is an important plant pathogen worldwide, and causes serious tobacco target spot in tobacco in the last five years. This research studied the biological characteristics of four different anastomosis groups strains (AG-3, AG-5, AG-6, AG-1-IB) of R. solani from tobacco. Using metabolic phenotype technology analyzed the metabolic phenotype differences of these strains. RESULTS: The results showed that the suitable temperature for mycelial growth of four anastomosis group strains were from 20 to 30oC, and for sclerotia formation were from 20 to 25oC. Under different lighting conditions, R. solani AG-6 strains produced the most sclerotium, followed by R. solani AG-3, R. solani AG-5 and R. solani AG-1-IB. All strains had strong oligotrophic survivability, and can grow on water agar medium without any nitrutions. They exhibited three types of sclerotia distribution form, including dispersed type (R. solani AG-5 and AG-6), peripheral type (R. solani AG-1-IB), and central type (R. solani AG-3). They all presented different pathogenicities in tobacco leaves, with the most virulent was noted by R. solani AG-6, followed by R. solani AG-5 and AG-1-IB, finally was R. solani AG-3. R. solani AG-1-IB strains firstly present symptom after inoculation. Metabolic fingerprints of four anastomosis groups were different to each other. R. solani AG-3, AG-6, AG-5 and AG-1-IB strains efficiently metabolized 88, 94, 71 and 92 carbon substrates, respectively. Nitrogen substrates of amino acids and peptides were the significant utilization patterns for R. solani AG-3. R. solani AG-3 and AG-6 showed a large range of adaptabilities and were still able to metabolize substrates in the presence of the osmolytes, including up to 8% sodium lactate. Four anastomosis groups all showed active metabolism in environments with pH values from 4 to 6 and exhibited decarboxylase activities. CONCLUSIONS: The biological characteristics of different anastomosis group strains varies, and there were significant differences in the metabolic phenotype characteristics of different anastomosis group strains towards carbon source, nitrogen source, pH, and osmotic pressure.


Asunto(s)
Nicotiana , Fenotipo , Enfermedades de las Plantas , Rhizoctonia , Nicotiana/microbiología , Enfermedades de las Plantas/microbiología , Temperatura , Micelio/metabolismo , Micelio/crecimiento & desarrollo , Hojas de la Planta/microbiología , Virulencia
3.
Carbohydr Polym ; 337: 122149, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710571

RESUMEN

Phytopathogen cell wall polysaccharides have important physiological functions. In this study, we isolated and characterized the alkali-insoluble residue on the inner layers of the Rhizoctonia solani AG1 IA cell wall (RsCW-AIR). Through chemical composition and structural analysis, RsCW-AIR was mainly identified as a complex of chitin/chitosan and glucan (ChCsGC), with glucose and glucosamine were present in a molar ratio of 2.7:1.0. The predominant glycosidic bond linkage of glucan in ChCsGC was ß-1,3-linked Glcp, both the α and ß-polymorphic forms of chitin were presented in it by IR, XRD, and solid-state NMR, and the ChCsGC exhibited a degree of deacetylation measuring 67.08 %. RsCW-AIR pretreatment effectively reduced the incidence of rice sheath blight, and its induced resistance activity in rice was evaluated, such as inducing a reactive oxygen species (ROS) burst, leading to the accumulation of salicylic acid (SA) and the up-regulation of SA-related gene expression. The recognition of RsCW-AIR in rice is partially dependent on CERK1.


Asunto(s)
Pared Celular , Quitina , Quitosano , Glucanos , Oryza , Enfermedades de las Plantas , Rhizoctonia , Rhizoctonia/efectos de los fármacos , Oryza/microbiología , Oryza/química , Pared Celular/química , Quitosano/química , Quitosano/farmacología , Quitina/química , Quitina/farmacología , Glucanos/química , Glucanos/farmacología , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad , Especies Reactivas de Oxígeno/metabolismo
4.
Front Microbiol ; 15: 1377726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812677

RESUMEN

The gene family of thaumatin-like proteins (TLPs) plays a crucial role in the adaptation of organisms to environmental stresses. In recent years, fungal secreted proteins (SP) with inducing disease resistance activity in plants have emerged as important elicitors in the control of fungal diseases. Identifying SPs with inducing disease resistance activity and studying their mechanisms are crucial for controlling sheath blight. In the present study, 10 proteins containing the thaumatin-like domain were identified in strain AG4-JY of Rhizoctonia solani and eight of the 10 proteins had signal peptides. Analysis of the TLP genes of the 10 different anastomosis groups (AGs) showed that the evolutionary relationship of the TLP gene was consistent with that between different AGs of R. solani. Furthermore, it was found that RsTLP3, RsTLP9 and RsTLP10 were regarded as secreted proteins for their signaling peptides exhibited secretory activity. Prokaryotic expression and enzyme activity analysis revealed that the three secreted proteins possess glycoside hydrolase activity, suggesting they belong to the TLP family. Additionally, spraying the crude enzyme solution of the three TLP proteins could enhance maize resistance to sheath blight. Further analysis showed that genes associated with the salicylic acid and ethylene pathways were up-regulated following RsTLP3 application. The results indicated that RsTLP3 had a good application prospect in biological control.

5.
J Agric Food Chem ; 72(22): 12415-12424, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38779960

RESUMEN

A series of novel 2-Ar-1,2,3-triazole derivatives were designed and synthesized based on our previously discovered active compound 6d against Rhizoctonia solani. Most of these compounds exhibited good antifungal activity against R. solani at a concentration of 25 µg/mL. Based on the results of biological activity, we established a three-dimensional quantitative structure-activity relationship (3D-QSAR) model that guided the synthesis of compound 7y. Compound 7y exhibited superior activity against R. solani (EC50 = 0.47 µg/mL) compared to the positive controls hymexazol (EC50 = 12.80 µg/mL) and tebuconazole (EC50 = 0.87 µg/mL). Furthermore, compound 7y demonstrated better protective activity than the aforementioned two commercial fungicides in both detached leaf assays and greenhouse experiments, achieving 56.21% and 65.75% protective efficacy, respectively, at a concentration of 100 µg/mL. The ergosterol content was determined and molecular docking was performed to explore the mechanism of these active molecules. DFT calculation and MEP analysis were performed to illustrate the results of this study. These results suggest that compound 7y could serve as a novel 2-Ar-1,2,3-triazole lead compound for controlling R. solani.


Asunto(s)
Diseño de Fármacos , Fungicidas Industriales , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas , Relación Estructura-Actividad Cuantitativa , Rhizoctonia , Triazoles , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Fungicidas Industriales/síntesis química , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Rhizoctonia/efectos de los fármacos , Rhizoctonia/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Estructura Molecular , Hidrazinas/química , Hidrazinas/farmacología
6.
J Agric Food Chem ; 72(20): 11415-11428, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38727515

RESUMEN

Rice sheath blight, caused by the fungus Rhizoctonia solani, poses a significant threat to rice cultivation globally. This study aimed to investigate the potential mechanisms of action of camphor derivatives against R. solani. Compound 4o exhibited superior fungicidal activities in vitro (EC50 = 6.16 mg/L), and in vivo curative effects (77.5%) at 500 mg/L were significantly (P < 0.01) higher than the positive control validamycin·bacillus (66.1%). Additionally, compound 4o exhibited low cytotoxicity and acute oral toxicity for adult worker honeybees of Apis mellifera L. Mechanistically, compound 4o disrupted mycelial morphology and microstructure, increased cell membrane permeability, and inhibited both PDH and SDH enzyme activities. Molecular docking and molecular dynamics analyses indicated a tight interaction of compound 4o with PDH and SDH active sites. In summary, compound 4o exhibited substantial antifungal efficacy against R. solani, serving as a promising lead compound for further optimization of antifungal agents.


Asunto(s)
Alcanfor , Fungicidas Industriales , Simulación del Acoplamiento Molecular , Oryza , Enfermedades de las Plantas , Rhizoctonia , Rhizoctonia/efectos de los fármacos , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Animales , Alcanfor/farmacología , Alcanfor/química , Abejas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/síntesis química , Relación Estructura-Actividad
7.
Pest Manag Sci ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690722

RESUMEN

BACKGROUND: Sheath blight and bakanae disease, prominent among emerging rice ailments, exert a profound impact on rice productivity, causing severe impediments to crop yield. Excessive use of older fungicides may lead to the development of resistance in the pathogen. Indeed, a pressing and immediate need exists for novel, low-toxicity and highly selective fungicides that can effectively combat resistant fungal strains. RESULTS: A series of 20 isoxazole derivatives were synthesized using alkoxy/halo acetophenones and N,N-dimethylformamidedimethylacetal. These compounds were characterized by various spectroscopic techniques, namely 1H nuclear magnetic resonance (NMR), 13C NMR and liquid chromatography-high-resolution mass spectrometry, and were evaluated for their fungicidal activity against Rhizoctonia solani and Fusarium fujikuroi. Compound 5n (5-(2-chlorophenyl) isoxazole) exhibited highest activity (effective dose for 50% inhibition [ED50] = 4.43 µg mL-1) against R. solani, while 5p (5-(2,4-dichloro-2-hydroxylphenyl) isoxazole) exhibited highest activity (ED50 = 6.7 µg mL-1) against F. fujikuroi. Two-dimensional quantitative structural-activity relationship (QSAR) analysis, particularly multiple linear regression (MLR) (Model 1), highlighted chi6chain and DistTopo as the key descriptors influencing fungicidal activity. Molecular docking studies revealed the potential of these isoxazole derivatives as novel fungicides targeting sterol 14α-demethylase enzyme, suggesting their importance as crucial intermediates for the development of novel and effective fungicides. CONCLUSION: All test compounds were effective in inhibiting both fungi, according to the QSAR model, with various descriptors, such as structural, molecular shape analysis, electronic and thermodynamic, playing an important role. Molecular docking studies confirmed that these compounds can potentially replace commercially available fungicides and help control fungal pathogens in rice crops effectively. © 2024 Society of Chemical Industry.

8.
Sci Total Environ ; 934: 173297, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761953

RESUMEN

Co-incubation of plant growth promoting rhizobacteria (PGPRs) have been proposed as a potential alternative to pesticides for controlling fungal pathogens in crops, but their synergism mechanisms are not yet fully understood. In this study, combined use of Bacillus subtilis SL44 and Enterobacter hormaechei Wu15 could decrease the density of Colletotrichum gloeosporioides and Rhizoctonia solani and enhance the growth of beneficial bacteria on the mycelial surface, thereby mitigating disease severity. Meanwhile, PGPR application led to a reorganization of the rhizosphere microbial community through modulating its metabolites, such as extracellular polymeric substances and chitinase. These metabolites demonstrated positive effects on attracting and enhancing conventional periphery bacteria, inhibiting fungal pathogens and promoting soil health effectively. The improvement in the microbial community structure altered the trophic mode of soil fungal communities, effectively decreasing the proportion of saprotrophic soil and reducing fungal plant diseases. Certain combinations of PGPR have the potential to serve as precise instruments for managing plant pathogens.


Asunto(s)
Bacillus subtilis , Enterobacter , Enfermedades de las Plantas , Microbiología del Suelo , Enterobacter/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Rizosfera , Rhizoctonia/fisiología , Colletotrichum/fisiología
9.
New Phytol ; 243(1): 362-380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38730437

RESUMEN

Plants typically activate distinct defense pathways against various pathogens. Heightened resistance to one pathogen often coincides with increased susceptibility to another pathogen. However, the underlying molecular basis of this antagonistic response remains unclear. Here, we demonstrate that mutants defective in the transcription factor ETHYLENE-INSENSITIVE 3-LIKE 2 (OsEIL2) exhibited enhanced resistance to the biotrophic bacterial pathogen Xanthomonas oryzae pv oryzae and to the hemibiotrophic fungal pathogen Magnaporthe oryzae, but enhanced susceptibility to the necrotrophic fungal pathogen Rhizoctonia solani. Furthermore, necrotroph-induced OsEIL2 binds to the promoter of OsWRKY67 with high affinity, leading to the upregulation of salicylic acid (SA)/jasmonic acid (JA) pathway genes and increased SA/JA levels, ultimately resulting in enhanced resistance. However, biotroph- and hemibiotroph-induced OsEIL2 targets OsERF083, resulting in the inhibition of SA/JA pathway genes and decreased SA/JA levels, ultimately leading to reduced resistance. Our findings unveil a previously uncharacterized defense mechanism wherein two distinct transcriptional regulatory modules differentially mediate immunity against pathogens with different lifestyles through the transcriptional reprogramming of phytohormone pathway genes.


Asunto(s)
Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oryza , Oxilipinas , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Rhizoctonia , Ácido Salicílico , Xanthomonas , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Ciclopentanos/metabolismo , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Xanthomonas/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhizoctonia/fisiología , Inmunidad de la Planta/efectos de los fármacos , Mutación/genética , Resistencia a la Enfermedad/genética , Regiones Promotoras Genéticas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica/efectos de los fármacos
10.
Plant Cell Rep ; 43(6): 145, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761220

RESUMEN

KEY MESSAGE: We highlight the emerging role of the R. solani novel lipase domain effector AGLIP1 in suppressing pattern-triggered immunity and inducing plant cell death. The dynamic interplay between plants and Rhizoctonia solani constitutes a multifaceted struggle for survival and dominance. Within this complex dynamic, R. solani has evolved virulence mechanisms by secreting effectors that disrupt plants' first line of defense. A newly discovered effector, AGLIP1 in R. solani, plays a pivotal role in inducing plant cell death and subverting immune responses. AGLIP1, a protein containing a signal peptide and a lipase domain, involves complex formation in the intercellular space, followed by translocation to the plant cytoplasm, where it induces cell death (CD) and suppresses defense gene regulation. This study provides valuable insights into the intricate molecular interactions between plants and necrotrophic fungi, underscoring the imperative for further exploration in this field.


Asunto(s)
Lipasa , Enfermedades de las Plantas , Rhizoctonia , Rhizoctonia/patogenicidad , Rhizoctonia/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Lipasa/metabolismo , Lipasa/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Muerte Celular , Inmunidad de la Planta/genética , Dominios Proteicos , Regulación de la Expresión Génica de las Plantas
11.
Plant Pathol J ; 40(2): 192-204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606448

RESUMEN

In this study, the efficacy of the essential oil of Mentha longifolia, Achillea arabica and Artemisia absinthium plants were evaluated against important soil-borne fungal pathogens as Verticillium dahliae, Rhizoctonia solani, and Fusarium oxysporum. Essential oils were obtained from plants by hydrodistillation method and the chemical components of essential oils were determined by analyzing by gas chromatography-mass spectrometry. The main components found as piperitone oxide (13.61%), piperitenone oxide (15.55%), pulegone (12.47%), 1-menthone (5.75%), and camphor (5.75%) in M. longifolia, á-selinene 13.38%, camphor 13.34%, L-4-terpineneol 8.40%, (-)-á-Elemene 7.01%, 1,8-cineole 4.71%, and (-)-spathulenol 3.84% in A. arabica, and á-thujone (34.64%), 1,8-cineole (19.54%), pulegone (7.86%), camphene (5.31%), sabinene (4.86%), and germacrene-d (3.67%) in A. absinthium. The antifungal activities of the oils were investigated 0.05, 0.1, 0.25, 0.5, 1.00, and 2.00 µl/ml concentrations with the contact effect method. M. longifolia oil (1.00 and 2.00 µl/ml) has displayed remarkable antifungal effect and provided 100% inhibition on mycelial growth of V. dahliae, R. solani and F. oxysporum. The results obtained from this study may contribute to the development of new alternative and safe methods against soil-borne fungal pathogens.

12.
Front Microbiol ; 15: 1371850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633707

RESUMEN

Rhizoctonia solani Kühn, a plant pathogenic fungus that can cause diseases in multiple plant species is considered one of the common and destructive pathogens in many crops. This study investigated the action of antimycin A1, which was isolated from Streptomyces AHF-20 found in the rhizosphere soil of an ancient banyan tree, on Rhizoctonia solani and its mechanism. The inhibitory effect of antimycin A1 on R. solani was assessed using the comparative growth rate method. The results revealed that antimycin A1 exhibited a 92.55% inhibition rate against R. solani at a concentration of 26.66 µg/mL, with an EC50 value of 1.25 µg/mL. To observe the impact of antimycin A1 on mycelial morphology and ultrastructure, the fungal mycelium was treated with 6.66 µg/mL antimycin A1, and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed. SEM analysis demonstrated that antimycin A1 caused mycelial morphology to become stripped, rough, and folded. The mycelium experienced severe distortion and breakage, with incomplete or locally enlarged ends, shortened branches, and reduced numbers. TEM observation revealed thickened cell walls, indistinct organelle boundaries, swollen mitochondria, exosmotic substances in vesicles, slow vesicle fusion, and cavitation. Real-time quantitative PCR and enzyme activity assays were conducted to further investigate the impact of antimycin A1 on mitochondria. The physiological and biochemical results indicated that antimycin A1 inhibited complexes III and IV of the mitochondrial electron transport chain. RT-PCR analysis demonstrated that antimycin A1 controlled the synthesis of relevant enzymes by suppressing the transcription levels of ATP6, ATP8, COX3, QCR6, CytB, ND1, and ND3 genes in mitochondria. Additionally, a metabolomic analysis revealed that antimycin A1 significantly impacted 12 metabolic pathways. These pathways likely experienced alterations in their metabolite profiles due to the inhibitory effects of antimycin A1. Consequently, the findings of this research contribute to the potential development of novel fungicides.

13.
Front Microbiol ; 15: 1360524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638902

RESUMEN

Rhizoctonia solani AG-3 is a plant pathogenic fungus that belongs to the group of multinucleate Rhizoctonia. According to its internal transcribed spacer (ITS) cluster analysis and host range, it is divided into TB, PT, and TM subgroups. AG-3 TB mainly causes tobacco target spots, AG-3 PT mainly causes potato black scurf, and AG-3 TM mainly causes tomato leaf blight. In our previous study, we found that all 36 tobacco target spot strains isolated from Yunnan (Southwest China) were classified into AG-3 TB subgroup, while only two of the six tobacco target spot strains isolated from Liaoning (Northeast China) were classified into AG-3 TB subgroup, and the remaining four strains were classified into AG-3 TM subgroup, which had a unique taxonomic status, and there was no previous report on the whole genome information of AG-3 TM subgroup. In this study, the whole genomes of R. solani AG-3 strains 3T-1 (AG-3 TM isolated from Liaoning) and MJ-102 (AG-3 TB isolated from Yunnan) isolated from tobacco target spot in Liaoning and Yunnan were sequenced by IIumina and PacBio sequencing platforms. Comparative genomic analysis was performed with the previously reported AG-3 PT strain Rhs1AP, revealing their differences in genomes and virulence factors. The results indicated that the genome size of 3T-1 was 42,103,597 bp with 11,290 coding genes and 49.74% GC content, and the genome size of MJ-102 was 41,908,281 bp with 10,592 coding genes and 48.91% GC content. Through comparative genomic analysis with the previously reported strain Rhs1AP (AG-3 PT), it was found that the GC content between the genomes was similar, but the strains 3T-1 and MJ-102 contained more repetitive sequences. Similarly, there are similarities between their virulence factors, but there are also some differences. In addition, the results of collinearity analysis showed that 3T-1 and MJ-102 had lower similarity and longer evolutionary distance with Rhs1AP, but the genetic relationship between 3T-1 and MJ-102 was closer. This study can lay a foundation for studying the molecular pathogenesis and virulence factors of R. solani AG-3, and revealing its genomic composition will also help to develop more effective disease control strategies.

14.
Curr Issues Mol Biol ; 46(4): 3063-3080, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38666922

RESUMEN

Maize is the third most vital global cereal, playing a key role in the world economy and plant genetics research. Despite its leadership in production, maize faces a severe threat from banded leaf and sheath blight, necessitating the urgent development of eco-friendly management strategies. This study aimed to understand the resistance mechanisms against banded leaf and sheath blight (BLSB) in maize hybrid "Vivek QPM-9". Seven fungicides at recommended doses (1000 and 500 ppm) and two plant defense inducers, salicylic acid (SA) and jasmonic acid (JA) at concentrations of 50 and 100 ppm, were applied. Fungicides, notably Azoxystrobin and Trifloxystrobin + Tebuconazole, demonstrated superior efficacy against BLSB, while Pencycuron showed limited effectiveness. Field-sprayed Azoxystrobin exhibited the lowest BLSB infection, correlating with heightened antioxidant enzyme activity (SOD, CAT, POX, ß-1,3-glucanase, PPO, PAL), similar to the Validamycin-treated plants. The expression of defense-related genes after seed priming with SA and JA was assessed via qRT-PCR. Lower SA concentrations down-regulated SOD, PPO, and APX genes but up-regulated CAT and ß-1,3-glucanase genes. JA at lower doses up-regulated CAT and APX genes, while higher doses up-regulated PPO and ß-1,3-glucanase genes; SOD gene expression was suppressed at both JA doses. This investigation elucidates the effectiveness of certain fungicides and plant defense inducers in mitigating BLSB in maize hybrids and sheds light on the intricate gene expression mechanisms governing defense responses against this pathogen.

15.
Artículo en Inglés | MEDLINE | ID: mdl-38597955

RESUMEN

A nanomicrocapsule system was constructed through the polymerization of tannic acid (TA) and emulsifier OP-10 (OP-10), followed by the chelation of iron ions, to develop a safe and effective method for controlling Rhizoctonia solani in agriculture. The encapsulated active component is a rosin-based triazole derivative (RTD) previously synthesized by our research group (RTD@OP10-TA-Fe). The encapsulation efficiency of the nanomicrocapsules is 82.39%, with an effective compound loading capacity of 96.49%. Through the encapsulation of the RTD via nanomicrocapsules, we improved its water solubility, optimized its stability, and increased its adhesion to the leaf surface. Under acidic conditions (pH = 5.0), the release rate of nanomicrocapsules at 96 h is 96.31 ± 0.8%, which is 2.04 times higher than the release rate under normal conditions (pH = 7.0). Additionally, the results of in vitro and in vivo antifungal assays indicate that compared with the original compound, the nanomicrocapsules exhibit superior antifungal activity (EC50 values of RTD and RTD@OP10-TA-Fe are 1.237 and 0.860 mg/L, respectively). The results of field efficacy trials indicate that compared with RTD, RTD@OP10-TA-Fe exhibits a more prolonged period of effectiveness. Even after 3 weeks, the antifungal rate of RTD@OP10-TA-Fe remains at 40%, whereas RTD, owing to degradation, shows an antifungal rate of 11.11% during the same period. Furthermore, safety assessment results indicate that compared with the control, RTD@OP10-TA-Fe has almost no impact on the growth of rice seedlings and exhibits low toxicity to zebrafish. This study provides valuable insights into controlling R. solani and enhancing the compound performance.

16.
Dev Cell ; 59(12): 1609-1622.e4, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38640925

RESUMEN

Although the antagonistic effects of host resistance against biotrophic and necrotrophic pathogens have been documented in various plants, the underlying mechanisms are unknown. Here, we investigated the antagonistic resistance mediated by the transcription factor ETHYLENE-INSENSITIVE3-LIKE 3 (OsEIL3) in rice. The Oseil3 mutant confers enhanced resistance to the necrotroph Rhizoctonia solani but greater susceptibility to the hemibiotroph Magnaporthe oryzae and biotroph Xanthomonas oryzae pv. oryzae. OsEIL3 directly activates OsERF040 transcription while repressing OsWRKY28 transcription. The infection of R. solani and M. oryzae or Xoo influences the extent of binding of OsEIL3 to OsWRKY28 and OsERF040 promoters, resulting in the repression or activation of both salicylic acid (SA)- and jasmonic acid (JA)-dependent pathways and enhanced susceptibility or resistance, respectively. These results demonstrate that the distinct effects of plant immunity to different pathogen types are determined by two transcription factor modules that control transcriptional reprogramming and the SA and JA pathways.


Asunto(s)
Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oryza , Oxilipinas , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Ácido Salicílico , Xanthomonas , Ciclopentanos/metabolismo , Oryza/microbiología , Oryza/genética , Oryza/inmunología , Oryza/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Xanthomonas/patogenicidad , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Rhizoctonia , Transducción de Señal , Resistencia a la Enfermedad/genética , Regiones Promotoras Genéticas/genética , Magnaporthe , Transcripción Genética
17.
Pest Manag Sci ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676622

RESUMEN

BACKGROUND: Rice sheath blight caused by Rhizoctonia solani is a severe threat to the yield and quality of rice. Due to the unscientific abuse of common fungicides causing resistance and environmental issues, the development of new fungicides is necessary. In this study, we used citral as the lead compound, designed and synthesized a series of novel citral amide derivatives, and evaluated their antifungal activity and mode of action against R. solani. RESULT: Bioassay results indicated that the antifungal activities of most citral amide derivatives against R. solani were significantly improved compared to citral, with EC50 values ranging from 9.50-27.12 mg L-1. Among them, compound d21 containing the N-(pyridin-4-yl)carboxamide group exhibited in vitro and in vivo fungicidal activities, with curative effects at 500 mg L-1 as effectively as the commercial fungicide validamycin·bacillus. Furthermore, d21 prolonged the lag phase of the growth curve of R. solani, reduced the amount of growth, and inhibited sclerotium germination and formation. Mechanistically, d21 deformed the mycelia, increased cell membrane permeability, and inhibited the activities of antioxidant and tricarboxylic acid cycle (TCA)-related enzymes. Metabolome analysis showed the abundance of some energy-related metabolites within R. solani increased, and simultaneously the antifungal substances secreted by itself reduced. Transcriptome analysis showed that most genes encoding ATP-binding cassette (ABC) transporters and peroxisomes upregulated after the treatment of d21 and cell membrane destruction. CONCLUSION: This study indicates that novel citral amide derivatives possess antifungal activity against R. solani and are expected to develop an alternative option for chemical control of rice sheath blight. © 2024 Society of Chemical Industry.

18.
Pol J Microbiol ; 73(1): 29-38, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437465

RESUMEN

Fungal diseases form perforated disease spots in tobacco plants, resulting in a decline in tobacco yield and quality. The present study investigated the antagonistic effect of Bacillus subtilis CTXW 7-6-2 against Rhizoctonia solani, its ability to promote the growth of tobacco seedlings, and the expression of disease resistance-related genes for efficient and eco-friendly plant disease control. Our results showed that CTXW 7-6-2 had the most vigorous growth after being cultured for 96 h, and its rate of inhibition of R. solani growth in vitro was 94.02%. The volatile compounds produced by CTXW 7-6-2 inhibited the growth of R. solani significantly (by 96.62%). The fungal growthinhibition rate of the B. subtilis CTXW 7-6-2 broth obtained after high-temperature and no-high-temperature sterile fermentation was low, at 50.88% and 54.63%, respectively. The lipopeptides extracted from the B. subtilis CTXW 7-6-2 fermentation broth showed a 74.88% fungal growth inhibition rate at a concentration of 100 mg/l. Scanning and transmission electron microscopy showed some organelle structural abnormalities, collapse, shrinkage, blurring, and dissolution in the R. solani mycelia. In addition, CTXW 7-6-2 increased tobacco seedling growth and improved leaf and root weight compared to the control. After CTXW 7-6-2 inoculation, tobacco leaves showed the upregulation of the PDF1.2, PPO, and PAL genes, which are closely related to target spot disease resistance. In conclusion, B. subtilis CTXW 7-6-2 may be an efficient biological control agent in tobacco agriculture and enhance plant growth potential.


Asunto(s)
Bacillus subtilis , Nicotiana , Bacillus subtilis/genética , Resistencia a la Enfermedad , Rhizoctonia
19.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38499445

RESUMEN

Promoting soil suppressiveness against soil borne pathogens could be a promising strategy to manage crop diseases. One way to increase the suppression potential in agricultural soils is via the addition of organic amendments. This microbe-mediated phenomenon, although not fully understood, prompted our study to explore the microbial taxa and functional properties associated with Rhizoctonia solani disease suppression in sugar beet seedlings after amending soil with a keratin-rich waste stream. Soil samples were analyzed using shotgun metagenomics sequencing. Results showed that both amended soils were enriched in bacterial families found in disease suppressive soils before, indicating that the amendment of keratin-rich material can support the transformation into a suppressive soil. On a functional level, genes encoding keratinolytic enzymes were found to be abundant in the keratin-amended samples. Proteins enriched in amended soils were those potentially involved in the production of secondary metabolites/antibiotics, motility, keratin-degradation, and contractile secretion system proteins. We hypothesize these taxa contribute to the amendment-induced suppression effect due to their genomic potential to produce antibiotics, secrete effectors via the contractile secretion system, and degrade oxalate-a potential virulence factor of R. solani-while simultaneously possessing the ability to metabolize keratin.


Asunto(s)
Microbiota , Rhizoctonia , Suelo , Humanos , Queratinas/farmacología , Microbiología del Suelo , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Antibacterianos/farmacología
20.
Plants (Basel) ; 13(4)2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38498437

RESUMEN

In searching for compounds with antioxidant and antifungal activity, our study focused on the subshrub species Empetrum rubrum Vahl ex Willd. (Ericaceae). We measured the antioxidant activity of its methanolic extract (MEE) obtained from the aerial parts (leaves and stems) and of its methanolic extract (MEF) obtained from the lyophilized fruits. The antioxidant activity of the MEE and MEF was evaluated in vitro via a 2,2-Diphenyl-1-picrylhydrazyl (DPPH) free radical and 2,2'-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) cationic radical. The results were expressed in gallic acid and Trolox equivalents for the DPPH and ABTS assays, respectively. The antioxidant activities, for the DPPH and ABTS assays, were also evaluated by considering the IC50 values. Concerning the antioxidant activity, the total phenolic content (TPC) in the MEE and MEF was determined using the Folin-Ciocalteu method. Polyphenols contained in the leaves, stems, and fruits of E. rubrum were determined qualitatively by employing high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) analysis. The antifungal activity of the MEE obtained from the aerial parts of E. rubrum was tested against Rhizoctonia solani. The results of IC50 values measured by the DPPH and ABTS methods with MEE were 0.4145 ± 0.0068 mg mL-1 and 0.1088 ± 0.0023 mg mL-1, respectively, and the IC50 values for MEF were 6.4768 ± 0.0218 mg mL-1 and 0.7666 ± 0.0089 mg mL-1 measured by the DPPH and ABTS methods, respectively. The HPLC-MS analysis revealed the presence of anthocyanins, phenolic acids derivatives, and flavonols. In vitro, mycelial growth of this fungus was reduced from 90% to nearly 100% in the presence of MEE. The observed antifungal effect is related to the presence of the abovementioned phenols, detected in the MEE.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA