Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
2.
Int Immunopharmacol ; 123: 110802, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37591122

RESUMEN

BACKGROUND: The ferroptosis of neurons is an important pathological mechanism of spinal cord ischemia reperfusion injury (SCIRI). Previous studies showed that synoviolin 1 (SYVN1) is a good prognostic marker of neurodegenerative diseases, but its mechanism is still unclear. This study aims to explore the role of SYVN1 in the ferroptosis of neurons and to clarify its internal mechanism. METHODS: Rat primary spinal cord neurons were treated with oxygen-glucose deprivation (OGD) for 1, 4 or 8 h, and then cell viability, ROS and MDA levels, glutathione peroxidase (GSH-Px) activity, and the expression of ferroptosis-related proteins GPX4, FTH1 and PTGS2 were detected. OGD/R-induced neurons were transfected with pcDNA-SYVN1 or si-HMGB1, and then cell functions were detected. Transmission electron microscope (TEM) was used to detect cell ferroptosis. The interplay between SYVN1 and high mobility group box 1 (HMGB1) was confirmed with Co-immunoprecipitation (Co-IP) assay. The stability of HMGB1 was measured by ubiquitination assay. Also, cells were treated with pcDNA-SYVN1 or together with ubiquitination inhibitor MG132, as well as treated with pcDNA-SYVN1 and pcDNA-HMGB1 or together with NRF2 activator dimethyl fumarate (DMF), and then Western blotting was used to detect the expression of HMGB1, nuclear NRF2 and HO-1 proteins. In addition, SD rats were occluded left common carotid artery and aortic arch to establish a SCIRI rat model. And rats were injected intrathecal with adenovirus-mediated SYVN1 overexpression vector (Ad-SYVN1, 2 µL, virus titer 5 × 1013 transduction unit [TU]/mL) to overexpress SYVN1. The motion function of rats was quantified using the Basso Rat Scale (BMS) for Locomotion. The ferroptosis and the number of neurons in the spinal cord tissue of rats were detected. RESULTS: SYVN1 overexpression inhibited ferroptosis of SCIRI rats and OGD/R-treated primary spinal cord neurons, and down-regulated the expression of HMGB1. In terms of mechanism, the binding of SYVN1 and HMGB1 promoted the ubiquitination and degradation of HMGB1, and negatively regulated the expression of HMGB1. Moreover, under OGD/R conditions, MG132 treatment or HMGB1 overexpression eliminated the inhibitory effect of SYVN1 overexpression on the ferroptosis of neurons and the activation of the NRF2/HO-1 pathway, and DMF treatment abolished the inhibition of HMGB1 overexpression on the NRF2/HO-1 pathway. Finally, in vivo experiments showed that SYVN1 overexpression could alleviate the spinal cord ischemia-reperfusion injury in rats by down-regulating HMGB1 and promoting the activation of the NRF2/HO-1 pathway. CONCLUSION: SYVN1 regulates ferroptosis through the HMGB1/NRF2/HO-1 axis to prevent spinal cord ischemia-reperfusion injury.


Asunto(s)
Ferroptosis , Proteína HMGB1 , Isquemia de la Médula Espinal , Animales , Ratas , Dimetilfumarato , Glucosa , Proteína HMGB1/genética , Factor 2 Relacionado con NF-E2/genética , Ratas Sprague-Dawley , Isquemia de la Médula Espinal/tratamiento farmacológico
3.
Neurochem Int ; 150: 105191, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34547325

RESUMEN

Spinal cord ischemia-reperfusion injury (SCIRI) can cause dramatic neuron loss and lead to paraplegia in patients. In this research, the role of mGluR5, a member of the metabotropic glutamate receptors (mGluRs) family, was investigated both in vitro and in vivo to explore a possible method to treat this complication. In vitro experiment, after activating mGluR5 via pretreating cells with (RS)-2-Chloro-5-hydroxyphenylglycine (CHPG) and 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) benzamide (CDPPB), excitotoxicity induced by glutamate (Glu) was attenuated in primary spinal cord neurons, evidenced by higher neuron viability, decreased lactate dehydrogenase (LDH) release and less detected TUNEL-positive cells. According to Western Blot (WB) results, Glu treatment resulted in a high level of large-conductance Ca2+- and voltage-activated K+ (BK) channels, with activation relying on the mGluR5-IP3R (inositol triphosphate) pathway. In vivo part, a rat model of SCIRI was built to further investigate the role of mGluR5. After pretreating them with CHPG and CDPPB, the rats showed markedly lower spinal water content, attenuated motor neuron injury in the spinal cord of L4 segments, and better neurological function. This effect could be partially reversed by paxilline, a blocker of BK channels. In addition, activating BK channels alone using specific openers: NS1619 or NS11021 can protect spinal cord neurons from injury induced by either SCIRI or Glu. In conclusion, in this research, we proved that mGluR5 exerts a protective role in SCIRI, and this effect partially works via IP3R-mediated activation of BK channels.


Asunto(s)
Adenosilhomocisteinasa/biosíntesis , Canales de Potasio de Gran Conductancia Activados por el Calcio/biosíntesis , Neuroprotección/fisiología , Receptor del Glutamato Metabotropico 5/biosíntesis , Daño por Reperfusión/metabolismo , Isquemia de la Médula Espinal/metabolismo , Animales , Benzamidas/farmacología , Células Cultivadas , Agonistas de Aminoácidos Excitadores/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Neuroprotección/efectos de los fármacos , Paxillin/farmacología , Pirazoles/farmacología , Ratas , Receptor del Glutamato Metabotropico 5/agonistas , Daño por Reperfusión/prevención & control , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Isquemia de la Médula Espinal/prevención & control
4.
Neurosci Lett ; 646: 49-55, 2017 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-28284837

RESUMEN

Spinal cord ischemia reperfusion injury (SCIRI) can cause spinal cord dysfunction and even devastating paraplegia. Calcium-sensing receptor (CaSR) and calpain are two calcium related molecules which have been reported to be involved in the ischemia reperfusion injury of cardiomyocytes and the subsequent apoptosis. Here, we studied the expression of CaSR and calpain in spinal cord neurons and tissues, followed by the further investigation of the role of CaSR/calpain axis in the cellular apoptosis process during SCIRI. The results of in vitro and in vivo studies showed that the expression of CaSR and calpain in spinal cord neurons increased during SCIRI. Moreover, the CaSR agonist GdCl3 and antagonist NPS-2390 enhanced or decreased the expression of CaSR and calpain respectively. The expressions of CaSR and calpain were also consistent with the cellular apoptosis in spinal cord. Taken together, CaSR-calpain contributes to the SCIRI apoptosis, and CaSR antagonist might be a helpful drug for alleviating SCIRI.


Asunto(s)
Calpaína/metabolismo , Receptores Sensibles al Calcio/metabolismo , Daño por Reperfusión/metabolismo , Isquemia de la Médula Espinal/metabolismo , Médula Espinal/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA