Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Med Dosim ; 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38910070

RESUMEN

Respiratory motion management is the crucial challenge for safe and effective application of lung stereotactic body radiotherapy (SBRT). The present study implemented lung SBRT treatment in voluntary deep inspiration breath-hold (DIBH) with surface-guided radiotherapy (SGRT) system and evaluated the geometric and dosimetric benefits of DIBH to organs-at-risk (OARs), aiming to advising the choice between DIBH technology and conventional free breathing 4 dimensions (FB-4D) technology. Five patients of lung SBRT treated in DIBH with SGRT at our institution were retrospectively analyzed. CT scans were acquired in DIBH and FB-4D, treatment plans were generated for both respiratory phases. The geometric and dosimetry of tumor, ipsilateral lung, double lungs and heart were compared between the DIBH and FB-4D treatment plans. In terms of target coverage, utilizing DIBH significantly reduced the mean plan target volume (PTV) by 21.9% (p = 0.09) compared to FB-4D, the conformity index (CI) of DIBH and FB-4D were comparable, but the dose gradient index (DGI) of DIBH was higher. With DIBH expanding lung, the volumes of ipsilateral lung and double lungs were 2535.1 ± 403.0cm3 and 4864.3 ± 900.2cm3, separately, 62.2% (p = 0.009) and 73.1% (p = 0.009) more than volumes of ipsilateral lung (1460.03 ± 146.60cm3) and double lungs (2811.25 ± 603.64cm3) in FB-4D. The heart volume in DIBH was 700.0 ± 146.1cm3, 11.6% (p = 0.021) less than that in FB-4D. As for OARs protection, the mean dose, percent of volume receiving > 20Gy (V20) and percent of volume receiving > 5Gy (V5) of ipsilateral lung in DIBH were significantly lower by 33.2% (p = 0.020), 44.0% (p = 0.022) and 24.5% (p = 0.037) on average, separately. Double lungs also showed significant decrease by 31.1% (p = 0.019), 45.5% (p = 0.024) and 20.9% (p = 0.048) on average for mean dose, V20 and V5 in DIBH. Different from the lung, the mean dose and V5 of heart showed no consistency between DIBH and FB-4D, but lower maximum dose of heart was achieved in DIBH for all patients in this study. Appling lung SBRT in DIBH with SGRT was feasibly performed with high patient compliance. DIBH brought significant dosimetric benefits to lung, however, it caused more or less irradiated heart dose that depend on the patients' individual differences which were unpredictable.

2.
J Appl Clin Med Phys ; : e14381, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696715

RESUMEN

BACKGROUND: Surface-guided radiotherapy (SGRT) is adopted by several institutions; however, reports on the phantoms used to assess the precision of the SGRT setup are limited. PURPOSE: The purpose of this study was to develop a phantom to verify the accuracy of the irradiation position during skin mark-less SGRT. METHODS: An acrylonitrile butadiene styrene (ABS) plastic cube phantom with a diameter of 150 mm on each side containing a dummy target of 15 mm and two types of body surface-shaped phantoms (breast/face shape) that could be attached to the cube phantom were fabricated. Films can be inserted on four sides of the cubic phantom (left, right, anterior and posterior), and the center of radiation can be calculated by irradiating the dummy target with orthogonal MV beams. Three types of SGRT using a VOXELAN-HEV600M (Electronics Research&Development Corporation, Okayama, Japan) were evaluated using this phantom: (i) SGRTCT-a SGRT set-up based solely on a computed tomography (CT)-reference image. (ii) SGRTCT + CBCT-a method where cone beam computed tomography (CBCT) matching was performed after SGRTCT. (iii) SGRTScan-a resetup technique using a scan reference image obtained after completing the (ii) step. RESULTS: Both the breast and face phantoms were recognized in the SGRT system without problems. SGRTScan ensure precision within 1 mm/1° for breast and face verification, respectively. All SGRT methods showed comparable rotational accuracies with no significant disparities. CONCLUSIONS: The developed phantom was useful for verifying the accuracy of skin mark-less SGRT position matching. The SGRTScan demonstrated the feasibility of achieving skin-mark less SGRT with high accuracy, with deviations of less than 1 mm. Additional research is necessary to evaluate the suitability of the developed phantoms for use in various facilities and systems. This phantom could be used for postal surveys in the future.

3.
J Appl Clin Med Phys ; : e14319, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522035

RESUMEN

BACKGROUND AND PURPOSE: By employing three surface-guided radiotherapy (SGRT)-assisted positioning methods, we conducted a prospective study of patients undergoing SGRT-based deep inspiration breath-hold (DIBH) radiotherapy using a Sentine/Catalys system. The aim of this study was to optimize the initial positioning workflow of SGRT-DIBH radiotherapy for breast cancer. MATERIALS AND METHODS: A total of 124 patients were divided into three groups to conduct a prospective comparative study of the setup accuracy and efficiency for the daily initial setup of SGRT-DIBH breast radiotherapy. Group A was subjected to skin marker plus SGRT verification, Group B underwent SGRT optical feedback plus auto-positioning, and Group C was subjected to skin marker plus SGRT auto-positioning. We evaluated setup accuracy and efficiency using cone-beam computed tomography (CBCT) verification data and the total setup time. RESULTS: In groups A, B, and C, the mean and standard deviation of the translational setup-error vectors were small, with the highest values of the three directions observed in group A (2.4 ± 1.6, 2.9 ± 1.8, and 2.8 ± 2.1 mm). The rotational vectors in group B (1.8 ± 0.7°, 2.1 ± 0.8°, and 1.8 ± 0.7°) were significantly larger than those in groups A and C, and the Group C setup required the shortest amount of time, at 1.5 ± 0.3 min, while that of Group B took the longest time, at 2.6 ± 0.9 min. CONCLUSION: SGRT one-key calibration was found to be more suitable when followed by skin marker/tattoo and in-room laser positioning, establishing it as an optimal daily initial set-up protocol for breast DIBH radiotherapy. This modality also proved to be suitable for free-breathing breast cancer radiotherapy, and its widespread clinical use is recommended.

4.
Br J Radiol ; 97(1157): 980-992, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38547402

RESUMEN

OBJECTIVES: To develop a mapping model between skin surface motion and internal tumour motion and deformation using end-of-exhalation (EOE) and end-of-inhalation (EOI) 3D CT images for tracking lung tumours during respiration. METHODS: Before treatment, skin and tumour surfaces were segmented and reconstructed from the EOE and the EOI 3D CT images. A non-rigid registration algorithm was used to register the EOE skin and tumour surfaces to the EOI, resulting in a displacement vector field that was then used to construct a mapping model. During treatment, the EOE skin surface was registered to the real-time, yielding a real-time skin surface displacement vector field. Using the mapping model generated, the input of a real-time skin surface can be used to calculate the real-time tumour surface. The proposed method was validated with and without simulated noise on 4D CT images from 15 patients at Léon Bérard Cancer Center and the 4D-lung dataset. RESULTS: The average centre position error, dice similarity coefficient (DSC), 95%-Hausdorff distance and mean distance to agreement of the tumour surfaces were 1.29 mm, 0.924, 2.76 mm, and 1.13 mm without simulated noise, respectively. With simulated noise, these values were 1.33 mm, 0.920, 2.79 mm, and 1.15 mm, respectively. CONCLUSIONS: A patient-specific model was proposed and validated that was constructed using only EOE and EOI 3D CT images and real-time skin surface images to predict internal tumour motion and deformation during respiratory motion. ADVANCES IN KNOWLEDGE: The proposed method achieves comparable accuracy to state-of-the-art methods with fewer pre-treatment planning CT images, which holds potential for application in precise image-guided radiation therapy.


Asunto(s)
Tomografía Computarizada Cuatridimensional , Neoplasias Pulmonares , Piel , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Tomografía Computarizada Cuatridimensional/métodos , Piel/diagnóstico por imagen , Inhalación , Planificación de la Radioterapia Asistida por Computador/métodos , Algoritmos , Espiración/fisiología , Imagenología Tridimensional/métodos , Respiración , Tomografía Computarizada por Rayos X/métodos
5.
J Appl Clin Med Phys ; 25(2): e14263, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38268200

RESUMEN

BACKGROUND: Surface-guided radiation therapy (SGRT) systems have been widely installed and utilized on linear accelerators. However, the use of SGRT with proton therapy is still a newly developing field, and published reports are currently very limited. PURPOSE: To assess the clinical application and alignment agreement of SGRT with CT-on-rails (CTOR) and kV-2D image-guided radiation therapy (IGRT) for breast treatment using proton therapy. METHODS: Four patients receiving breast or chest wall treatment with proton therapy were the subjects of this study. Patient #1's IGRT modalities were a combination of kV-2D and CTOR. CTOR was the only imaging modality for patients #2 and #3, and kV-2D was the only imaging modality for patient #4. The patients' respiratory motions were assessed using a 2-min surface position recorded by the SGRT system during treatment. SGRT offsets reported after IGRT shifts were recorded for each fraction of treatment. The agreement between SGRT and either kV-2D or CTOR was evaluated. RESULTS: The respiratory motion amplitude was <4 mm in translation and <2.0° in rotation for all patients. The mean and maximum amplitude of SGRT offsets after application of IGRT shifts were ≤(2.6 mm, 1.6° ) and (6.8 mm, 4.5° ) relative to kV-2D-based IGRT; ≤(3.0 mm, 2.6° ) and (5.0 mm, 4.7° ) relative to CTOR-based IGRT without breast tissue inflammation. For patient #3, breast inflammation was observed for the last three fractions of treatment, and the maximum SGRT offsets post CTOR shifts were up to (14.0 mm, 5.2° ). CONCLUSIONS: Due to the overall agreement between SGRT and IGRT within reasonable tolerance, SGRT has the potential to serve as a valuable auxiliary IGRT tool for proton breast treatment and may improve the efficiency of proton breast treatment.


Asunto(s)
Radioterapia Guiada por Imagen , Pared Torácica , Humanos , Radioterapia Guiada por Imagen/métodos , Protones , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada por Rayos X , Inflamación
6.
J Appl Clin Med Phys ; 25(6): e14271, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38273673

RESUMEN

PURPOSE: The use of volumetric modulated arc therapy (VMAT), simultaneous integrated boost (SIB), and hypofractionated regimen requires adequate patient setup accuracy to achieve an optimal outcome. The purpose of this study was to assess the setup accuracy of patients receiving left-sided breast cancer radiotherapy using deep inspiration breath-hold technique (DIBH) and surface guided radiotherapy (SGRT) and to calculate the corresponding setup margins. METHODS: The patient setup accuracy between and within radiotherapy fractions was measured by comparing the 6DOF shifts made by the SGRT system AlignRT with the shifts made by kV-CBCT. Three hundred and three radiotherapy fractions of 23 left-sided breast cancer patients using DIBH and SGRT were used for the analysis. All patients received pre-treatment DIBH training and visual feedback during DIBH. An analysis of variance (ANOVA) was used to test patient setup differences for statistical significance. The corresponding setup margins were calculated using the van Herk's formula. RESULTS: The intrafractional patient setup accuracy was significantly better than the interfractional setup accuracy (p < 0.001). The setup margin for the combined inter- and intrafractional setup error was 4, 6, and 4 mm in the lateral, longitudinal, and vertical directions if based on SGRT alone. The intrafractional error contributed ≤1 mm to the calculated setup margins. CONCLUSION: With SGRT, excellent intrafractional and acceptable interfractional patient setup accuracy can be achieved for the radiotherapy of left-sided breast cancer using DIBH and modern radiation techniques. This allows for reducing the frequency of kV-CBCTs, thereby saving treatment time and radiation exposure.


Asunto(s)
Contencion de la Respiración , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Errores de Configuración en Radioterapia , Radioterapia Guiada por Imagen , Radioterapia de Intensidad Modulada , Neoplasias de Mama Unilaterales , Humanos , Femenino , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Neoplasias de Mama Unilaterales/radioterapia , Errores de Configuración en Radioterapia/prevención & control , Radioterapia Guiada por Imagen/métodos , Órganos en Riesgo/efectos de la radiación , Persona de Mediana Edad , Neoplasias de la Mama/radioterapia , Pronóstico
7.
J Med Imaging Radiat Sci ; 55(1): 29-36, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38016852

RESUMEN

INTRODUCTION: Both cone-beam computed tomography (CBCT) and surface-guided radiotherapy (SGRT) are used for breast patient positioning verification before treatment delivery. SGRT may reduce treatment time and imaging dose by potentially reduce the number of CBCT needed. The aim of this study was to compare the displacements resulting in positioning from the Image Guided Radiation Therapy (IGRT) 3D and SGRT methods and to design a clinical workflow for SGRT implementation in breast radiotherapy to establish an imaging strategy based on the data obtained. METHODS: For this study 128 breast cancer patients treated with 42.5 Gy in 16 fractions using 3D conformal radiotherapy with free breathing technique were enroled. A total of 366 CBCT images were evaluated for patient setup verification and compared with SGRT. Image registrations between planning CT images and CBCT images were performed in mutual agreement and in online mode by three health professionals. Student's paired t-test was used to compare the absolute difference in vector shift, measured in mm, for each orthogonal axis (x, y, z) between SGRT and CBCT methods. The multidisciplinary team evaluated a review of the original clinical workflow for SGRT implementation and data about patients treated with the updated workflow were reported. RESULTS: Comparison of the shifts obtained with IGRT and SGRT for each orthogonal axis (for the x-axes the average displacement was 0.9 ± 0.7 mm, y = 1.1 ± 0.8 mm and z = 1.0 ± 0.7 mm) revealed no significant statistical differences (p > 0.05). Using the updated workflow the difference between SGRT and IGRT displacements was <3 mm in 91.4 % of patients with a reduction in total treatment time of approximately 20 %, due to the reduce frequency of the CBCT images acquisition and matching. CONCLUSIONS: This study has shown that IGRT and SGRT agree in positioning patients with breast cancer within a millimetre tolerance. SGRT can be used for patient positioning, with the advantages of reducing radiation exposure and shorter overall treatment time.


Asunto(s)
Neoplasias de la Mama , Radioterapia de Intensidad Modulada , Tomografía Computarizada de Haz Cónico Espiral , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos
8.
Phys Imaging Radiat Oncol ; 27: 100455, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37720462

RESUMEN

Background and purpose: Spirometry induced deep-inspiration-breath-hold (DIBH) reduces intrafractional motion during upper abdominal stereotactic body radiotherapy (SBRT). The aim of this prospective study was to evaluate whether surface scanning (SGRT) is an adequate surrogate for monitoring residual internal motion during DIBH. Residual motion detected by SGRT was compared with experimental 4D-ultrasound (US) and an internal motion detection benchmark (diaphragm-dome-position in kV cone-beam computed tomography (CBCT) projections). Materials and methods: Intrafractional monitoring was performed with SGRT and US in 460 DIBHs of 12 patients. Residual motion detected by all modalities (SGRT (anterior-posterior (AP)), US (AP, craniocaudal (CC)) and CBCT (CC)) was analyzed. Agreement analysis included Wilcoxon signed rank test, Maloney and Rastogi's test, Pearson's correlation coefficient (PCC) and interclass correlation coefficient (ICC). Results: Interquartile range was 0.7 mm (US(AP)), 0.8 mm (US(CC)), 0.9 mm (SGRT) and 0.8 mm (CBCT). SGRT(AP) vs. CBCT(CC) and US(CC) vs. CBCT(CC) showed comparable agreement (PCCs 0.53 and 0.52, ICCs 0.51 and 0.49) with slightly higher precision of CBCT(CC). Most agreement was observed for SGRT(AP) vs. US(AP) with largest PCC (0.61) and ICC (0.60), least agreement for SGRT(AP) vs. US(CC) with smallest PCC (0.44) and ICC (0.42). Conclusions: Residual motion detected during spirometry induced DIBH is small. SGRT alone is no sufficient surrogate for residual internal motion in all patients as some high velocity motion could not be detected. Observed patient-specific residual errors may require individualized PTV-margins.

9.
J Appl Clin Med Phys ; 24(12): e14133, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37643456

RESUMEN

PURPOSE: With the clinical implementation of kV-CBCT-based daily online-adaptive radiotherapy, the ability to monitor, quantify, and correct patient movement during adaptive sessions is paramount. With sessions lasting between 20-45 min, the ability to detect and correct for small movements without restarting the entire session is critical to the adaptive workflow and dosimetric outcome. The purpose of this study was to quantify and evaluate the correlation of observed patient movement with machine logs and a surface imaging (SI) system during adaptive radiation therapy. METHODS: Treatment machine logs and SGRT registration data log files for 1972 individual sessions were exported and analyzed. For each session, the calculated shifts from a pre-delivery position verification CBCT were extracted from the machine logs and compared to the SGRT registration data log files captured during motion monitoring. The SGRT calculated shifts were compared to the reported shifts of the machine logs for comparison for all patients and eight disease site categories. RESULTS: The average (±STD) net displacement of the SGRT shifts were 2.6 ± 3.4 mm, 2.6 ± 3.5 mm, and 3.0 ± 3.2 in the lateral, longitudinal, and vertical directions, respectively. For the treatment machine logs, the average net displacements in the lateral, longitudinal, and vertical directions were 2.7 ± 3.7 mm, 2.6 ± 3.7 mm, and 3.2 ± 3.6 mm. The average difference (Machine-SGRT) was -0.1 ± 1.8 mm, 0.2 ± 2.1 mm, and -0.5 ± 2.5 mm for the lateral, longitudinal, and vertical directions. On average, a movement of 5.8 ± 5.6 mm and 5.3 ± 4.9 mm was calculated prior to delivery for the CBCT and SGRT systems, respectively. The Pearson correlation coefficient between CBCT and SGRT shifts was r = 0.88. The mean and median difference between the treatment machine logs and SGRT log files was less than 1 mm for all sites. CONCLUSION: Surface imaging should be used to monitor and quantify patient movement during adaptive radiotherapy.


Asunto(s)
Radioterapia Guiada por Imagen , Tomografía Computarizada de Haz Cónico Espiral , Humanos , Radioterapia Guiada por Imagen/métodos , Posicionamiento del Paciente/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Movimiento , Dosificación Radioterapéutica , Tomografía Computarizada de Haz Cónico/métodos
10.
Cancer Radiother ; 27(6-7): 504-510, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37558608

RESUMEN

In radiotherapy, patient positioning has long been ensured by ionizing imaging (kV or MV). Over the past ten years, surface-guided radiotherapy has appeared in radiotherapy departments. It is a continuous three-dimensional acquisition of the surface of the patient, based on the use of several optical cameras. The acquired surface is compared to an expected surface (usually taken from the planning scanner). Operators can constantly appreciate poor position, anatomical deformity or patient shift. Thus, the system allows an aid to the positioning of the patient, possibly without tattooing, but also a follow-up of the patient during the duration of the session. The most obvious contribution of the system concerns the treatment of the breast. In fact, for this location, the bone registration is not ideal and the target is visible in surface-guided radiotherapy. These systems also make it possible to treat in deep inspiration breath hold. But several other locations can benefit from it (pelvis, thorax, etc.).


Asunto(s)
Braquiterapia , Oncología por Radiación , Radioterapia Guiada por Imagen , Humanos , Radioterapia Guiada por Imagen/métodos , Braquiterapia/métodos , Planificación de la Radioterapia Asistida por Computador
11.
Radiat Oncol ; 18(1): 112, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37408037

RESUMEN

PURPOSE: Surface-guided radiotherapy (SGRT) has been demonstrated to be a promising supplement to cone-beam computed tomography (CBCT) in adjuvant breast cancer radiotherapy, but a rational combination mode is lacking in clinical practice. The aim of this study was to explore this mode and investigate its impact on the setup and dose accuracy. METHODS AND MATERIALS: Daily SGRT and weekly CBCT images were acquired for 23 patients with breast cancer who received conventional fractionated radiotherapy after lumpectomy. Sixteen modes were acquired by randomly selecting one (CBCT1), two (CBCTij), three (CBCTijk), four (CBCTijkl), and five (CBCT12345) images from the CBCT images for fusion with the SGRT. The CTV-PTV margins, OAR doses, and dose coverage (V95%) of PTV and CTV was calculated based on SGRT setup errors with different regions of interest (ROIs). Dose correlations between these modalities were investigated using Pearson and Spearman's methods. Patient-specific parameters were recorded to assess their impact on dose. RESULTS: The CTV-PTV margins decreased with increasing CBCT frequencies and were close to 5 mm for CBCTijkl and CBCT12345. For the ipsilateral breast ROI, SGRT errors were larger in the AP direction, and target doses were higher in all modes than in the whole breast ROI (P < 0.05). In the ipsilateral ROI, the target dose correlations between all modes increased with increasing CBCT time intervals, decreased, and then increased with increasing CBCT frequencies, with the inflection point being CBCT participation at week 5. The dose deviations in CBCT123, CBCT124, CBCT125, CBCTijkl, and CBCT12345 were minimal and did not differ significantly (P > 0.05). There was excellent agreement between CBCT124 and CBCT1234, and between (CBCTijkl, CBCT12345) and CBCT125 in determining the classification for the percentage of PTV deviation (Kappa = 0.704-0.901). In addition, there were weak correlations between the patient's Dips_b (ipsilateral breast diameter with bolus) and CTV doses in modes with CBCT participation at week 4 (R = 0.270 to 0.480). CONCLUSIONS: Based on weekly CBCT, these modes with ipsilateral ROI and a combination of daily SGRT and a CBCT frequency of ≥ 3 were recommended, and CBCT was required at weeks 1 and 2 for CBCTijk.


Asunto(s)
Braquiterapia , Neoplasias de la Mama , Radioterapia Guiada por Imagen , Humanos , Femenino , Radioterapia Guiada por Imagen/métodos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/radioterapia , Fraccionamiento de la Dosis de Radiación , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada de Haz Cónico/métodos
12.
J Appl Clin Med Phys ; 24(10): e14058, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37289550

RESUMEN

PURPOSE: To commission and assess the clinical performance of a new commercial surface imaging (SI) system by analyzing intra-fraction motion from the initial cohort of patients treated with frameless stereotactic radiosurgery (fSRS). METHODS: The IDENTIFYTM SI system was commissioned for clinical use on an Edge (Varian Medical Systems, Palo Alto, CA) linear accelerator. All patients who received intracranial radiotherapy with HyperArcTM (Varian Medical Systems, Palo Alto, CA) were immobilized with the EncompassTM (Qfix, Avondale, PA) thermoplastic mask and monitored for intra-fraction motion with SI. IDENTIFYTM log files were correlated with trajectory log files to correlate treatment parameters with SI-reported offsets. IDENTIFYTM reported offsets were correlated with gantry and couch angles to assess system performance for obstructed and clear camera field of view. Data were stratified by race to evaluate performance differences due to skin tone. RESULTS: All commissioning data were found to meet recommended tolerances. IDENTIFYTM was used to monitor intra-fraction motion on 1164 fractions from 386 patients. The median magnitude of translational SI reported offsets at the end of treatment was 0.27 mm. SI reported offsets were shown to increase when camera pods are blocked by the gantry with larger increases seen at non-zero couch angles. With camera obstruction, the median magnitude of the SI reported offset was 0.50 and 0.80 mm for White and Black patients, respectively. CONCLUSIONS: IDENTIFYTM performance during fSRS is comparable to other commercially available SI systems where offsets are shown to increase at non-zero couch angles and during camera pod blockage.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radiocirugia/métodos , Posicionamiento del Paciente/métodos , Aceleradores de Partículas , Fantasmas de Imagen , Radioterapia de Intensidad Modulada/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/radioterapia
13.
Phys Imaging Radiat Oncol ; 26: 100448, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37252251

RESUMEN

Background and purpose: Tumor motion and delivery efficiency are two main challenges of lung stereotactic body radiotherapy (SBRT). The present work implemented the deep inspiration breath hold technique (DIBH) with surface guided radiation therapy (SGRT) on closed-bore linacs and investigated the correlation between SGRT data and internal target position. Materials and methods: Thirteen lung SBRT patients treated in DIBH using a closed-bore gantry linac and a ring-mounted SGRT system were retrospectively analysed. Visual coaching was used to achieve DIBH with a ± 1 mm threshold window in the anterior-posterior direction. Three kV-CBCTs were added to the treatment workflow and examined offline to verify intra-fraction tumor position. Surface-based DIBH was analysed using SGRT treatment reports and an in-house python script. Data from 73 treatment sessions and 175 kV-CBCTs were studied. Correlations between target and surface positions were studied with Linear Mixed Models. Results: Median intra-fraction tumor motion was 0.8 mm (range: 0.7-1.3 mm) in the anterior-posterior direction, 1.2 mm (range: 1-1.7 mm) in the superior-inferior direction, and 1 mm (range: 0.7-1.1 mm) in the left-right direction, with rotations of <1° (range: 0.6°-1.1°) degree in all three directions. Planned target volumes and healthy lung volumes receiving 12.5 Gy and 13.5 Gy were reduced on average by 67% and 54%, respectively. Conclusions: Lung SBRT in DIBH with the ring-mounted SGRT system proved reproducible. The surface monitoring provided by SGRT was found to be a reliable surrogate for internal target motion. Moreover, the implementation of DIBH technique helped reduce target volumes and lung doses.

14.
Radiat Oncol ; 18(1): 60, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37016351

RESUMEN

BACKGROUND: This study was conducted to evaluate the efficiency and accuracy of the daily patient setup for breast cancer patients by applying surface-guided radiation therapy (SGRT) using the Halcyon system instead of conventional laser alignment based on the skin marking method. METHODS AND MATERIALS: We retrospectively investigated 228 treatment fractions using two different initial patient setup methods. The accuracy of the residual rotational error of the SGRT system was evaluated by using an in-house breast phantom. The residual translational error was analyzed using the couch position difference in the vertical, longitudinal, and lateral directions between the reference computed tomography and daily kilo-voltage cone beam computed tomography acquired from the record and verification system. The residual rotational error (pitch, yaw, and roll) was also calculated using an auto rigid registration between the two images based on Velocity. The total setup time, which combined the initial setup time and imaging time, was analyzed to evaluate the efficiency of the daily patient setup for SGRT. RESULTS: The average residual rotational errors using the in-house fabricated breast phantom for pitch, roll, and yaw were 0.14°, 0.13°, and 0.29°, respectively. The average differences in the couch positions for laser alignment based on the skin marking method were 2.7 ± 1.6 mm, 2.0 ± 1.2 mm, and 2.1 ± 1.0 mm for the vertical, longitudinal, and lateral directions, respectively. For SGRT, the average differences in the couch positions were 1.9 ± 1.2 mm, 2.9 ± 2.1 mm, and 1.9 ± 0.7 mm for the vertical, longitudinal, and lateral directions, respectively. The rotational errors for pitch, yaw, and roll without the surface-guided radiation therapy approach were 0.32 ± 0.30°, 0.51 ± 0.24°, and 0.29 ± 0.22°, respectively. For SGRT, the rotational errors were 0.30 ± 0.22°, 0.51 ± 0.26°, and 0.19 ± 0.13°, respectively. The average total setup times considering both the initial setup time and imaging time were 314 s and 331 s, respectively, with and without SGRT. CONCLUSION: We demonstrated that using SGRT improves the accuracy and efficiency of initial patient setups in breast cancer patients using the Halcyon system, which has limitations in correcting the rotational offset.


Asunto(s)
Neoplasias de la Mama , Radioterapia Guiada por Imagen , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/radioterapia , Estudios Retrospectivos , Radioterapia Guiada por Imagen/métodos , Mama , Tomografía Computarizada por Rayos X , Tomografía Computarizada de Haz Cónico/métodos , Planificación de la Radioterapia Asistida por Computador/métodos
15.
J Appl Clin Med Phys ; 24(8): e13998, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37087557

RESUMEN

BACKGROUND: We retrospectively studied the dosimetry and setup accuracy of deep inspiration breath-hold (DIBH) radiotherapy in right-sided breast cancer patients with regional nodal irradiation (RNI) who had completed treatment based on surface-guided radiotherapy (SGRT) technology by Sentinel/Catalyst system, aiming to clarify the clinical application value and related issues. METHODS: Dosimetric indicators of four organs at risk (OARs), namely the heart, right coronary artery (RCA), right lung, and liver, were compared on the premise that the planning target volume met dose-volume prescription requirements. Meanwhile, the patients were divided into the edge of the xiphoid process (EXP), sternum middle (SM), and left breast wall (LBW) groups according to different positions of respiratory gating primary points. The CBCT setup error data of the three groups were contrasted for the treatment accuracy study, and the effects of different gating window heights on the right lung volume increases were compared among the three groups. RESULTS: Compared with free breath (FB), DIBH reduced the maximum dose of heart and RCA by 739.3 ± 571.2 cGy and 509.8 ± 403.8 cGy, respectively (p < 0.05). The liver changed the most in terms of the mean dose (916.9 ± 318.9 cGy to 281.2 ± 150.3 cGy, p < 0.05). The setup error of the EXP group in the anterior-posterior (AP) direction was 3.6 ± 4.5 mm, which is the highest among the three groups. The right lung volume increases in the EXP, SM, and LBW groups were 72.3%, 69.9%, and 67.2%, respectively (p = 0.08), and the corresponding breath-holding heights were 13.5 ± 3.7 mm, 10.3 ± 2.4 mm, and 9.6 ± 2.8 mm, respectively (p < 0.05). CONCLUSIONS: SGRT-based DIBH radiotherapy can better protect the four OARs of right-sided breast cancer patients with RNI. Different respiratory gating primary points have different setup accuracy and breath-hold height.


Asunto(s)
Neoplasias de la Mama , Neoplasias de Mama Unilaterales , Humanos , Femenino , Estudios Retrospectivos , Dosificación Radioterapéutica , Neoplasias de Mama Unilaterales/radioterapia , Neoplasias de la Mama/radioterapia , Planificación de la Radioterapia Asistida por Computador , Contencion de la Respiración , Corazón/efectos de la radiación , Órganos en Riesgo/efectos de la radiación
16.
Phys Med ; 108: 102566, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36989979

RESUMEN

PURPOSE: To develop SurVolT, a conversion tool able to apply volumetric changes to DICOM Computed Tomography (CT) data using daily surface (obj) data acquired with AlignRT® (VisionRT Ltd.), primarily designed and validated for breast treatments. MATERIALS AND METHODS: SurVolT proceeds in 4 steps: 1. AlignRT .obj files extraction, 2. Contour deformation where the surface data points are matched to the initial external contour on a Region Of Interest, ROImatch, on which the anatomy is supposed to be unchanged. Then, external contour substitution is performed on the ROIttt covering the treated breast area. This is validated on a female torso phantom with a tissue-equivalent bolus mimicking an edema. The Planning Treatment Volume (PTV) contour from the initial CT is also deformed according to the new external contour in the ROIttt. 3. Volumetric data estimation according to the new external contour, validated on an anthropomorphic pelvis phantom. 4. Import of new DICOM data into the Treatment Planning System (TPS). Finally, the workflow is applied on a first patient presenting an anatomical change during the treatment. RESULTS: The validation of step 2 and 3 shows a bolus thickness estimation of 5.8±1.2mm (expected 5 mm) and the non-rigid deformation of initial CT images follows the new external contour at the ROIttt bolus site while revealing negligible deformation elsewhere. CONCLUSION: This first proof of concept introducing a Surface Guided Radiotherapy (SGRT) tool allowing daily surface data to volume conversion is a fundamental step toward SGRT-based adaptive radiotherapy.


Asunto(s)
Braquiterapia , Radioterapia Guiada por Imagen , Humanos , Femenino , Tomografía Computarizada por Rayos X/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Dosificación Radioterapéutica
17.
Phys Med ; 108: 102564, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36989980

RESUMEN

PURPOSE: To evaluate the accuracy/agreement of a three-camera Catalyst Surface Guided Radiation Therapy (SGRT) system on a closed-gantry Halcyon for Free-Breathing (FB) and Deep Inspiration Breath Hold (DIBH) breast-only treatments. METHODS: The SGRT positioning agreement with Halcyon couch and cone-beam computed tomography (CBCT) was evaluated on phantom and by evaluation of 2401 FB and 855 DIBH breast-only treatment sessions. The DIBH agreement was evaluated using a programmable moving support. Dose agreement was evaluated for manual SGRT-assisted beam interruption and Halcyon arc beam interruption. RESULTS: Geometrical phantom agreement was < 0.4 mm. Couch and SGRT agreement for an anthropomorphic phantom resulted in 95% limits of agreement in Right-Left/Feet-Head/Posterior-Anterior (RL/FH/PA) directions of respectively ± 0.4/0.8/0.5 mm and ± 1.1/1.1/0.6 mm in the virtual and real isocenter. FB-SGRT-assisted patient positioning compared to CBCT positioning resulted in RL/FH/PA systematic differences of -0.1/0.1/2.0 mm with standard deviations of 2.7/2.8/2.4 mm. This mean systematic difference had three origins: a) couch sag/isocenter difference of ≤ 0.5 mm. b) Average reconstructed FB-CBCT images do not visually represent the average respiratory position. c) CBCT-based positioning focused on the inner thoracic interface, which can introduce a mean positioning difference between SGRT and CBCT. Manual SGRT-assisted beam interruption and arc interruptions resulted in mean gamma passing rates > 97% (0.5%/0.5 mm) and mean absolute differences < 0.3%. CONCLUSIONS: Accuracy was comparable with breast-only C-arm SGRT techniques, with different tradeoffs. Depending on the patient's morphology, real-time tracking accuracy in the real isocenter can be reduced. This study demonstrates possible discordances between SGRT and CBCT positioning for breast.


Asunto(s)
Neoplasias de la Mama , Radioterapia Guiada por Imagen , Humanos , Femenino , Contencion de la Respiración , Planificación de la Radioterapia Asistida por Computador/métodos , Respiración , Tomografía Computarizada de Haz Cónico/métodos , Radioterapia Guiada por Imagen/métodos , Dosificación Radioterapéutica
18.
Phys Med ; 108: 102567, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36996575

RESUMEN

OBJECTIVE: To determine the overall tracking errors inherent to the co-calibration procedure of AlignRT InBore™'s (Vision RT Ltd., London, UK) ceiling-mounted and ring-mounted cameras. METHODS: Extrinsic calibration errors related to the mismatch between ceiling and InBore cameras' isocentres and treatment isocentre were determined using MV images and the SRS package and compared to traditional plate-based error. Next, using a realistic anthropomorphic female phantom, intrinsic calibration errors were determined while varying source-skin distance (80 to 100 cm), breast board inclination (0° to 12.5°), room lighting conditions (0 to 258 lx), skin colour (dark, white and natural skin colour), and pod occlusion. RESULTS: MV images of the cube proved plate-based calibration to suffer from large errors especially in the vertical direction (up to 2 mm). Intrinsic calibration errors were considerably lower. Indeed, RTD values of ceiling and InBore cameras showed little variability with isocentre depth (within 1.0 mm/0.4°), surface orientation and breast board inclination (within 0.7 mm/0.3°), changing lighting conditions (within 0.1 mm/0.2°), skin colour/tone (within 0.3 mm/0.3°) and camera pod occlusion (within 0.3 mm/0.2°). CONCLUSION: The use of MV-images proved critical to maintain co-calibrating errors of ceiling and InBore cameras to Halcyon's treatment isocentre below 1 mm.


Asunto(s)
Fantasmas de Imagen , Calibración , Humanos , Femenino , Piel/diagnóstico por imagen
19.
J Appl Clin Med Phys ; 24(6): e13922, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36852489

RESUMEN

The aim of this study was to evaluate the reproducibility and stability of left breast positioning during spirometer-guided deep-inspiration breath-hold (DIBH) radiotherapy using an optical surface imaging system (AlignRT). The AlignRT optical tracking system was used to monitor five left-sided breast cancer patients treated using the Active Breathing Coordinator spirometer with DIBH technique. Treatment plans were created using an automated hybrid-VMAT technique on DIBH CTs. A prescribed dose of 60 Gy to the tumor bed and 50 Gy to the breast in 25 fractions was planned. During each treatment session, the antero-posterior (VRT), superior-inferior (LNG), and lateral (LAT) motion of patients was continuously recorded by AlignRT. The intra-breath-hold stability and the intra- and inter-fraction reproducibility were analyzed for all breath-holds and treatment fractions. The dosimetric impact of the residual motion during DIBH was evaluated from the isocenter shifts amplitudes obtained from the 50%, 90%, and 100% cumulative distribution functions of intra-fractional reproducibility. The positional variations of 590 breath-holds as measured by AlignRT were evaluated. The mean intra-breath-hold stability during DIBH was 1.0 ± 0.4 mm, 2.1 ± 1.9 mm, and 0.7 ± 0.5 mm in the VRT, LNG, and LAT directions, with a maximal value of 8.8 mm in LNG direction. Similarly, the mean intra-breath-hold reproducibility was 1.4 ± 0.8 mm, 1.7 ± 1.0 mm, and 0.8 ± 0.5 mm in the VRT, LNG, and LAT directions, with a maximal value of 4.1 mm in LNG direction. Inter-fractional reproducibility showed better reliability, with difference in breathing levels in all fractions of 0.3 mm on average. Based on tolerance limits corresponding to the 90% cumulative distribution level, gating window widths of 1 mm, 2 mm, and 5 mm in the LAT, VRT, and LNG directions were considered an appropriate choice. In conclusion, despite the use of a dedicated spirometer at constant tidal volume, a non-negligible variability of the breast surface position has been reported during breath-holds. The real-time monitoring of breast surface using surface-guided optical technology is strongly recommended.


Asunto(s)
Neoplasias de la Mama , Neoplasias de Mama Unilaterales , Humanos , Femenino , Reproducibilidad de los Resultados , Planificación de la Radioterapia Asistida por Computador/métodos , Respiración , Contencion de la Respiración , Mama , Dosificación Radioterapéutica , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/radioterapia , Neoplasias de Mama Unilaterales/radioterapia , Corazón , Órganos en Riesgo
20.
J Appl Clin Med Phys ; 24(5): e13906, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36691339

RESUMEN

PURPOSE: Deep inspiration breath-hold (DIBH) is crucial in reducing the lung and cardiac dose for treatment of left-sided breast cancer. We compared the stability and reproducibility of two DIBH techniques: Active Breathing Coordinator (ABC) and VisionRT (VRT). MATERIALS AND METHODS: We examined intra- and inter-fraction positional variation of the left lung. Eight left-sided breast cancer patients were monitored with electronic portal imaging during breath-hold (BH) at every fraction. For each patient, half of the fractions were treated using ABC and the other half with VRT, with an equal amount starting with either ABC or VRT. The lung in each portal image was delineated, and the variation of its area was evaluated. Intrafraction stability was evaluated as the mean coefficient of variation (CV) of the lung area for the supraclavicular (SCV) and left lateral (LLat) field over the course of treatment. Reproducibility was the CV for the first image of each fraction. Daily session time and total imaging monitor units (MU) used in patient positioning were recorded. RESULTS: The mean intrafraction stability across all patients for the LLat field was 1.3 ± 0.7% and 1.5 ± 0.9% for VRT and ABC, respectively. Similarly, this was 1.5 ± 0.7% and 1.6 ± 0.8% for VRT and ABC, respectively, for the SCV field. The mean interfraction reproducibility for the LLat field was 11.0 ± 3.4% and 14.9 ± 6.0% for VRT and ABC, respectively. Similarly, this was 13.0 ± 2.5% and 14.8 ± 9% for VRT and ABC, respectively, for the SCV. No difference was observed in the number of verification images required for either technique. CONCLUSIONS: The stability and reproducibility were found to be comparable between ABC and VRT. ABC can have larger interfractional variation with less feedback to the treating therapist compared to VRT as shown in the increase in geometric misses at the matchline.


Asunto(s)
Neoplasias de la Mama , Neoplasias de Mama Unilaterales , Humanos , Femenino , Estudios Prospectivos , Planificación de la Radioterapia Asistida por Computador , Neoplasias de Mama Unilaterales/diagnóstico por imagen , Neoplasias de Mama Unilaterales/radioterapia , Reproducibilidad de los Resultados , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/radioterapia , Contencion de la Respiración , Corazón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA