Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.325
Filtrar
1.
Geroscience ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976132

RESUMEN

Aging leads to a progressive decline in cardiac function, increasing the risk of heart failure with preserved ejection fraction (HFpEF). This study elucidates the impact of α-Klotho, an anti-aging hormone, on cardiac diastolic dysfunction and explore its downstream mechanisms. Aged wild-type and heterozygous Klotho-deficient mice received daily injection of soluble α-Klotho (sKL) for 10 weeks, followed by a comprehensive assessment of heart function by echocardiography, intracardiac pressure catheter, exercise tolerance, and cardiac pathology. Our findings show that klotho deficiency accentuated cardiac hypertrophy, diastolic dysfunction, and exercise intolerance, while sKL treatment ameliorates these abnormalities and improves cardiac capillary densities. Downstream of klotho, we focused on the Sirtuin1 (Sirt1) signaling pathway to elucidate the potential underlying mechanism by which Klotho improves diastolic function. We found that decreased Klotho levels were linked with Sirt1 deficiency, whereas sKL treatment restored Sirt1 expression in aged hearts and mitigated the DNA damage response pathway activation. Through tandem mass tag proteomics and unbiased acetylomics analysis, we identified 220 significantly hyperacetylated lysine sites in critical cardiac proteins of aged hearts. We found that sKL supplementation attenuated age-dependent DNA damage and cardiac diastolic dysfunction. In contrast, Klotho deficiency significantly increased hyperacetylation of several crucial cardiac contractile proteins, potentially impairing ventricular relaxation and diastolic function, thus predisposing to HFpEF. These results suggest the potential benefit of sKL supplementation as a promising therapeutic strategy for combating HFpEF in aging.

2.
Heliyon ; 10(12): e32108, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975143

RESUMEN

Lipopolysaccharide (LPS)-triggered damage in human dental pulp cells (hDPCs) is associated with the progression of gingivitis, which is inflammation of the gingival tissue. Nesfatin-1 is a peptide secreted by neurons and peripheral tissues. Here, we report a novel property of Nesfatin-1 in ameliorating LPS-induced inflammatory response and senescence in hDPCs. First, we demonstrate that Nesfatin-1 repressed LPS-triggered expression of inflammatory factors. Secondly, Nesfatin-1 restored telomerase activity and the expression of human telomerase reverse transcriptase (hTERT) and telomeric repeat binding factor 2 (TERF2) against LPS. Senescence-associated ß-galactosidase (SA-ß-gal) staining assay revealed that Nesfatin-1 attenuated LPS-induced cellular senescence in hDPCs. We also found that Nesfatin-1 increased telomerase activity in LPS-challenged hDPCs. It is also shown that Nesfatin-1 reduced the expression of plasminogen activator inhibitor-1 (PAI-1) and p16. Additionally, LPS stimulation reduced the expression of SIRT1, which was rescued by Nesfatin-1. However, the silencing of sirtuin1 (SIRT1) abrogated the protective property of Nesfatin-1 in preventing cellular senescence, implying that the function of Nesfatin-1 is regulated by SIRT1. Taken together, our findings suggest that Nesfatin-1 might possess a protective effect against gingivitis.

3.
Aging Med (Milton) ; 7(3): 320-327, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38975301

RESUMEN

Objectives: Specific miRNAs are evident to be overexpressed with age, lifestyle, and environmental changes. Previous studies reported miR-124 overexpression in different scenarios in aged skin, age-related cognitive impairment, ischemic heart disease, muscle atrophy, and fractures. Thus miR-124 was considered to be a reliable miRNA target to establish a hypothesis on aging epigenome. Parallelly the hypothesis focuses on the expression of SIRT1 and VDR genes as a target for this specific miRNA expression as these genes were believed to be related to aging. This study aims to derive facts and evidence from past studies on aging. The objective was to establish a hypothetical linkage between miR-124 with age-related genes like SIRT1 and VDR. Methods: An in silico search was performed in the TargetScan and miRbase databases to analyze the aging-associated miRNAs and their gene targets, the Python seaborn library was used, and the results were represented in terms of a bar plot. Results: Based on an in silico analysis and studies available in the literature, we identified that miR-124-3p.1 and miR-124-3p.2 targets 3' UTR of VDR and SIRT1 genes, and hence thereby indicates that the miR-124 can regulate the expression of these genes. Further, few in vitro research studies have observed that miR-124 overexpression leads to the downregulation of VDR and SIRT1 gene expression. These results indicate that the suppression of these target genes accelerates early aging and age-related disorders. Conclusions: Overall, this study hypothesizes that the overexpression of miR-124 diminishes the expression of VDR and SIRT1 genes, and thereby advances the process of aging, resulting in the development of age-associated complications.

4.
Sci Total Environ ; 947: 174502, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971248

RESUMEN

Arsenic, a widespread environmental poison, can cause significant liver damage upon exposure. Mitochondria are the most sensitive organelles to external factors. Dysfunctional mitochondria play a crucial role in cellular senescence and liver damage. Tunnelling nanotubes (TNTs), membrane structures formed between cells, with fibrous actin (F-actin) serving as the scaffold, facilitate mitochondrial transfer between cells. Notably, TNTs mediate the delivery of healthy mitochondria to damaged cells, thereby mitigating cellular damage. Although limited studies have suggested that F-actin may be modulated by the longevity gene SIRT1, the association between arsenic-induced liver damage and this mechanism remains unexplored. The findings of the current study indicate that arsenic suppresses SIRT1 and F-actin in the rat liver and MIHA cells, impeding the formation of TNTs and mitochondrial transfer between MIHA cells, thereby playing a pivotal role in mitochondrial dysfunction, cellular senescence and liver damage induced by arsenic. Notably, increasing SIRT1 levels effectively mitigated liver mitochondrial dysfunction and cellular senescence triggered by arsenic, highlighting SIRT1's crucial regulatory function. This research provides novel insights into the mechanisms underlying arsenic-induced liver damage, paving the way for the development of targeted preventive and therapeutic drugs to address arsenic-induced liver damage.

5.
Drug Des Devel Ther ; 18: 2793-2812, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979400

RESUMEN

Purpose: Zoledronate (ZA) stands as a highly effective antiresorptive agent known to trigger medication-related osteonecrosis of the jaw (MRONJ). Its clinical dosages primarily encompass those used for oncologic and osteoporosis treatments. While inflammation is recognized as a potential disruptor of mucosal healing processes associated with ZA, prior research has overlooked the influence of varying ZA dosages on tissue adaptability. Therefore, a deeper understanding of the specific mechanisms by which inflammation exacerbates ZA-induced MRONJ, particularly when inflammation acts as a risk factor, remains crucial. Methods: Cell proliferation and migration of human oral keratinocytes (HOK) was analyzed after treatment with different doses of ZA and/or lipopolysaccharide (LPS) to assess their possible effect on mucosal healing of extraction wounds. Mouse periodontitis models were established using LPS, and histological changes in extraction wounds were observed after the administration of oncologic dose ZA. Hematoxylin and eosin (HE) staining and immunofluorescence were used to evaluate mucosal healing. Results: In vitro, LPS did not exacerbate the effects of osteoporosis therapeutic dose of ZA on the proliferation and migration of HOK cells, while aggravated these with the oncologic dose of ZA treatment by inducing mitochondrial dysfunction and oxidative stress via regulating SIRT1 expression. Furthermore, SIRT1 overexpression can alleviate this process. In vivo, local injection of LPS increased the nonunion of mucous membranes in MRONJ and decreased the expression of SIRT1, PGC-1α, and MnSOD. Conclusion: Inflammation aggravates oncologic dose of ZA-induced mitochondrial dysfunction and oxidative stress via a SIRT1-dependent pathway, enhancing the risk of impaired mucosal healing in MRONJ. Our study implies that inflammation becomes a critical risk factor for MRONJ development at higher ZA concentrations. Elucidating the mechanisms of inflammation as a risk factor for mucosal non-healing in MRONJ could inform the development of SIRT1-targeted therapies.


Asunto(s)
Proliferación Celular , Relación Dosis-Respuesta a Droga , Inflamación , Transducción de Señal , Sirtuina 1 , Ácido Zoledrónico , Sirtuina 1/metabolismo , Animales , Ratones , Humanos , Proliferación Celular/efectos de los fármacos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Transducción de Señal/efectos de los fármacos , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/administración & dosificación , Factores de Riesgo , Movimiento Celular/efectos de los fármacos , Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/metabolismo , Osteonecrosis de los Maxilares Asociada a Difosfonatos/tratamiento farmacológico , Ratones Endogámicos C57BL , Células Cultivadas , Masculino , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Lipopolisacáridos/farmacología
6.
J Mol Med (Berl) ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953935

RESUMEN

Diabetes mellitus (DM), an important public health problem, aggravates the global economic burden. Diabetic encephalopathy (DE) is a serious complication of DM in the central nervous system. Metformin has been proven to improve DE. However, the mechanism is still unclear. In this study, the db/db mice, a common model used for DE, were employed to explore and study the neuroprotective effect of metformin and related mechanisms. Behavioral tests indicated that metformin (100 or 200 mg/kg/day) could significantly improve the learning and memory abilities of db/db mice. The outcomes from the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT) demonstrate that metformin effectively modulates glucose and insulin signaling pathways in db/db mice. The results of body weight and blood lipid panel (total cholesterol, triglycerides, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol) show that metformin promotes the level of lipid metabolism in db/db mice. Furthermore, data from oxidative stress assays, which measured levels of malondialdehyde, superoxide dismutase, catalase, and glutathione peroxidase, suggest that metformin suppresses oxidative stress-induced brain damage in db/db mice. In addition, western blot, Nissl staining, and immunofluorescence results showed that metformin increased the expressions of nerve growth factor and postsynaptic density 95 and repaired neuronal structural damage. For the mechanism study, metformin activated SIRT1 and inhibited the expression of NLRP3 inflammasome (NLRP3, ASC, caspase-1, IL-1ß, and IL-18) and inflammatory cytokines (TNFα and IL-6). In conclusion, metformin could ameliorate cognitive dysfunction through the SIRT1/NLRP3 pathway, which might be a promising mechanism for DE treatment.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38953971

RESUMEN

Cardiotoxicity is one of the side effects of the anti-cancer drug doxorubicin (DOX) that limits its clinical application. Betaine (BT) is a natural agent with promising useful effects against inflammation and oxidative stress (OS). We assessed the effects of BT on DOX-induced cardiotoxicity in mice. Forty-two male NMRI mice were assigned to six groups: I: control; II: BT (200 mg/kg; orally, alone); III: DOX (2.5 mg/kg; six injections (ip)) for two weeks; IV, V, VI: BT (50 mg/kg, 100 mg/kg, and 200 mg/kg; orally, once a day for two weeks, respectively) plus DOX administration. The cardiac enzymes like cardiac troponin-I (cTn-I), lactate dehydrogenase (LDH), and creatine kinase-MB (CK-MB) were assessed in serum. Oxidative/inflammatory markers like nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), reduced glutathione level (GSH), and glutathione peroxidase (GPx) activities were determined in cardiac tissue. The expressions of NOD-like receptor protein 3 (NLRP3), caspase-1, interleukin (IL)-1ß, and silent information regulator 1 (SIRT1) proteins were also evaluated in cardiac tissue. The results indicated that DOX significantly increased LDH, CK-MB, cTn-I, MDA, and NO levels and also the caspase-1, NLRP3, and IL-1ß expression. Furthermore, DOX caused a significant reduction in the GSH levels and SOD, CAT, GPX activities, and the expression of SIRT1 protein in heart tissue. However, BT significantly improved all studied parameters. The findings were confirmed by histopathological assessments of the heart. BT can protect against DOX-induced cardiotoxicity by suppressing the activation of NLRP3 and OS by stimulating the SIRT1 pathway.

8.
Oncol Rep ; 52(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963052

RESUMEN

Following the publication of the above article, a concerned reader drew to the Editor's attention that certain of the immunofluorescence data featured in Fig. 1H, TUNEL assay data in Fig. 2A, cytochome c leakage assay data in Fig. 2H, staining of cardiolipin images in Fig. 2H, lamellipodia­stained data in Fig. 3A, and immunofluorescence assay data in Figs. 3F and 5D were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had either already been published elsewhere prior to the submission of this paper to Oncology Reports, or were under consideration for publication at around the same time (several of which have now been retracted). In addition, overlapping sections of data were noted within the data panels in Fig. 3D and F, such that data which were intended to represent the results from differently performed experiments had apparently been derived from the same original source(s). In view of the fact that certain of these data had already apparently been published prior to the submission of this article for publication, and in view of an overall lack of confidence in the presented data, the Editor of Oncology Reports has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Oncology Reports 39: 1671­1681, 2018; DOI: 10.3892/or.2018.6252].

9.
Artículo en Inglés | MEDLINE | ID: mdl-38963551

RESUMEN

Fisetin, a polyphenolic flavonoid, exhibits numerous pharmacological activities against metabolic syndromes. The present research aims to explore the therapeutic efficacy of fisetin in experimental polycystic ovary syndrome (PCOS). Female Sprague-Dawley rats were administered mifepristone (20 mg/kg/day) to induce PCOS. PCOS rats were treated with fisetin (20 mg/kg and 40 mg/kg) and further compared with metformin HCl, the conventional drug for PCOS. The mechanism of fisetin was explored using dorsomorphin (an AMPK inhibitor). Then, rats were sacrificed for further analysis of biochemical and histological parameters. PCOS rats exhibited irregular estrous cycles, increased serum testosterone (4.72 ± 0.139 ng/ml), estradiol (750.2 ± 16.56 pg/ml), LH (30.33 ± 1.563 mIU/ml), HOMA-IR (1.115 ± 0.049), TNF-α (86.59 ± 3.93 pg/ml), IL-6 (55.34 ± 4.432 pg/ml), and TBARS (3.867 ± 0.193 µmol/mg) along with declined progesterone (11.67 ± 1.54 ng/ml), FSH (13.33 ± 1.256 mIU/ml), GSH (33.47 ± 1.348 µmol/mg) levels, and SOD (2.163 ± 0.298 U/mg) activity as compared to normal control group. Fisetin high dose significantly lowers testosterone (3.014 ± 0.234 ng/ml), estradiol (533.7 ± 15.39 pg/ml), LH (16.67 ± 1.62 mIU/ml), HOMA-IR (0.339 ± 0.20), TNF-α (46.02 ± 2.66 pg/ml), IL-6 (31.77 ± 3.47 pg/ml), and TBARS (1.747 ± 0.185 µmol/mg) and enhances progesterone (33.17 ± 1.447 ng/ml), FSH (27.17 ± 1.42 mIU/ml), GSH (60.35 ± 1.1.102 µmol/mg) levels, and SOD (4.513 ± 0.607 U/mg) activity. The histology of ovarian tissues shows a significant increase in cystic follicles in PCOS rats compared with the normal control group. These alterations were attenuated with fisetin treatment. Administration of dorsomorphin with fisetin can reverse the beneficial effects of fisetin in PCOS rats. Altogether, these present findings highlight the potential of fisetin as a promising therapeutic intervention for the management of PCOS by modulating AMPK/SIRT1 signaling in rats.

10.
Allergol Immunopathol (Madr) ; 52(4): 38-45, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38970263

RESUMEN

PURPOSE: Sepsis often triggers a systemic inflammatory response leading to multi-organ dysfunction, with complex and not fully understood pathogenesis. This study investigates the therapeutic effects of cimifugin on BV-2 cells under sepsis-induced stress conditions. METHODS: We utilized a BV-2 microglial cell model treated with lipopolysaccharide (LPS) to mimic sepsis. Assessments included cellular vitality, inflammatory cytokine quantification (6 interleukin [6IL]-1ß, interleukin 6 [IL-6], and tumor necrosis factor-α [TNF-α]) via enzyme-linked-immunosorbent serologic assay, and analysis of mRNA expression using real-time polymerase chain reaction. Oxidative stress and mitochondrial function were also evaluated to understand the cellular effects of cimifugin. RESULTS: Cimifugin significantly attenuated LPS-induced inflammatory responses, oxidative stress, and mitochondrial dysfunction. It enhanced cell viability and modulated the secretion and gene expression of inflammatory cytokines IL-1ß, IL-6, and TNF-α. Notably, cimifugin activated the deacetylase sirtuin 1-nuclear factor erythroid 2-related factor 2 pathway, contributing to its protective effects against mitochondrial damage. CONCLUSION: Cimifugin demonstrates the potential of being an effective treatment for sepsis--induced neuroinflammation, warranting further investigation.


Asunto(s)
Citocinas , Lipopolisacáridos , Microglía , Estrés Oxidativo , Animales , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Ratones , Estrés Oxidativo/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/inmunología , Citocinas/metabolismo , Supervivencia Celular/efectos de los fármacos , Sepsis/tratamiento farmacológico , Sepsis/inmunología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Línea Celular , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inmunología , Antiinflamatorios/farmacología , Transducción de Señal/efectos de los fármacos , Cromonas , Sirtuina 1
12.
Int Immunopharmacol ; 137: 112430, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38852519

RESUMEN

Mastitis, one of the most significant problems in women, is commonly caused by pathogens, especially Staphylococcus aureus (S.aureus). Schisandrin B (SCB), the main abundant derivatives from Schisandra chinensis, has been proven to have the ability to inhibiting inflammation and bacteria. However, few relevant researches systematically illustrate the role SCB in the treatment of mastitis. The aim of the present study is to demonstrate the mechanism that SCB functions in reducing pathological injury to the mammary gland in treating S.aureus-induced mastitis. H&E staining was used to identify pathological changes and injuries in mastitis. The levels of cytokines associated with inflammation were detected by ELISA. Key signals relevant to ferroptosis and Nrf2 signaling pathway were tested by western blot analysis and iron assay kit. Compared with the control group, inflammation-associated factors, such as IL-1ß, TNF-α, MPO activity, increased significantly in S. aureus-treated mice. However, these changes were inhibited by SCB. Ferroptosis-associated factors Fe2+ and MDA increased significantly, and GSH, GPX4 and ferritin expression decreased markedly in S. aureus-treated mice. SCB treatment could attenuate S.aureus-induced ferroptosis. Furthermore, SCB increase SIRT1 and SLC7A11 expression and down-regulated p53 expression and NF-κB activation. In conclusion, SCB alleviates S.aureus-induced mastitis via up-regulating SIRT1/p53/SLC7A11 signaling pathway, attenuating the activation of inflammation-associated cytokines and ferroptosis in the mammary gland tissues.


Asunto(s)
Ciclooctanos , Ferroptosis , Lignanos , Mastitis , Compuestos Policíclicos , Transducción de Señal , Sirtuina 1 , Infecciones Estafilocócicas , Staphylococcus aureus , Proteína p53 Supresora de Tumor , Animales , Lignanos/farmacología , Lignanos/uso terapéutico , Ciclooctanos/farmacología , Ciclooctanos/uso terapéutico , Ferroptosis/efectos de los fármacos , Mastitis/tratamiento farmacológico , Mastitis/inducido químicamente , Mastitis/inmunología , Mastitis/metabolismo , Compuestos Policíclicos/farmacología , Compuestos Policíclicos/uso terapéutico , Femenino , Sirtuina 1/metabolismo , Transducción de Señal/efectos de los fármacos , Ratones , Staphylococcus aureus/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/inmunología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/patología , Glándulas Mamarias Animales/inmunología , Citocinas/metabolismo , Inflamación/tratamiento farmacológico , Humanos
13.
J Dairy Sci ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38876213

RESUMEN

High-yield dairy cows typically undergo intense cellular metabolism, leading to oxidative stress in their mammary tissues. Our study found that these high-yield cows had significantly elevated levels of hydrogen peroxide (H2O2), lipoperoxidase, and total antioxidant capacity in their blood, compared with ordinary cows. This increased oxidative stress is associated with heightened expression of genes such as GCLC, GCLM and SIRT1 and proteins such as SIRT1 in the mammary tissue of high-yield cows. MAC-T cells were stimulated with H2O2 at a concentration equal to the average H2O2 level in the serum of ethically high-yielding cows, as detected by an assay kit. Our observations revealed that short-term exposure (12 h) to H2O2 upregulated the expression of SIRT1 gene and protein. It also increased gene expression for SOD2, CAT, GCLC, GCLM, PGC-1α, and NQO1, elevated the phosphorylation of AMPK, and enhanced protein expression of PGC-1α, NQO1, Nrf2, and HO-1, while reducing the phosphorylation of NF-κB. Additionally, short-term H2O2 stimulation resulted in increased total antioxidant capacity, SOD, GSH, and CAT levels in the mammary epithelial cells of dairy cows. In contrast, prolonged exposure to H2O2 (24 h) yielded opposite results, indicating reduced antioxidant capacity. Further investigation showed that SIRT1 inhibitor (EX 527) could reverse the enhanced cellular antioxidant capacity triggered by short-term oxidative stress. However, it is crucial to note that while 12 h H2O2 stimulation improved antioxidant capacity, reactive oxygen species (ROS) and malondialdehyde (MDA) levels inside the cell gradually increased over time, suggesting greater damage under long-term stimulation. Conversely, the SIRT1 activator (SRT 2104) could reverse the reduced cellular antioxidant capacity caused by long-term oxidative stress and significantly inhibit the accumulation of ROS and MDA. Notably, SRT 2104 demonstrated similar effects in MAC-T cells during lactation. In summary, SIRT1 plays a crucial role in regulating the antioxidant capacity of mammary epithelial cells in dairy cows. This discovery provides valuable insights into the antioxidant mechanisms of mammary cells, which can serve as a theoretical foundation for future mammary health strategies.

14.
Artículo en Inglés | MEDLINE | ID: mdl-38886190

RESUMEN

RATIONALE: Early-life maternal separation can lead to anxiety-like and depression-like behaviors in mice reared under maternal separation conditions. Scopoletin, a compound with anti-inflammatory and antidepressant properties, may offer therapeutic benefits, but its effectiveness against behaviors induced by maternal separation during adulthood remains unexplored. OBJECTIVES: This study investigates scopoletin's efficacy in alleviating anxiety-like and depression-like phenotypes in male mice subjected to early-life maternal separation. METHODS: Male C57BL/6J mice experienced daily maternal separation for 4 h from postnatal day (PND) 2 to 21. From postnatal day 61(PND 61), scopoletin was administered intraperitoneally at 20 mg/kg/day for four weeks. Behavioral and biochemical assessments were conducted at postnatal day 95 (PND 95). RESULTS: Maternally separated mice displayed marked anxiety-like and depression-like behaviors, evident in behavioral tests like the open field and elevated plus maze. These mice also showed increased immobility in the forced swimming and tail suspension tests. Biochemically, there were elevated levels of IL-1ß, IL-6, and TNF-α in the hippocampus, with a decrease in Sirt1 and upregulation in NF-κB p65 expression. Scopoletin treatment significantly mitigated these behavioral abnormalities, normalizing both anxiety-like and depression-like behaviors. Correspondingly, it reduced the levels of pro-inflammatory cytokines and reinstated the expression of Sirt1 and NF-κB p65. CONCLUSIONS: Scopoletin effectively reverses the adverse behavioral and biochemical effects induced by early-life maternal separation in male mice, suggesting its potential as a therapeutic agent for treating anxiety-like and depression-like behaviors. Modulation of neuroinflammatory pathways and the Sirt1/NF-κB signaling axis is one possible mechanism.

15.
Microbiol Immunol ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886542

RESUMEN

The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.

16.
Cancer Biol Ther ; 25(1): 2365449, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38865161

RESUMEN

We aimed to evaluate the influence of sirtuin1 (sirt1) on the ESCC chemotherapeutic sensitivity to cisplatin. We used ESCC cell ablation sirt1 for establishing a xenograft mouse tumor model. The tumor volume was then detected. sirt1 was over-expressed significantly in ESCC patients and cells. Moreover, sirt1 knockdown raised ESCC sensitivity to cisplatin. Besides, glycolysis was associated with ESCC cell chemotherapy resistance to cisplatin. Furthermore, sirt1 increased ESCC cells' cisplatin chemosensitivity through HK2. Sirt1 enhanced in vivo ESCC chemosensitivity to cisplatin. Overall, these findings suggested that sirt1 knockdown regulated the glycolysis pathway and raised the ESCC chemotherapeutic sensitivity.


Asunto(s)
Cisplatino , Resistencia a Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Glucólisis , Sirtuina 1 , Sirtuina 1/metabolismo , Sirtuina 1/genética , Cisplatino/farmacología , Cisplatino/uso terapéutico , Humanos , Glucólisis/efectos de los fármacos , Animales , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Ratones , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Femenino , Masculino , Ratones Desnudos
17.
Front Mol Neurosci ; 17: 1387481, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38840778

RESUMEN

Background: Central sensitization is one of the pivotal pathological mechanisms in chronic migraine (CM). Silent information regulator 1 (SIRT1) was shown to be involved in CM, but its specific mechanism is unclear. Reactive oxygen species (ROS) are increasingly regarded as important signaling molecules in several models of pain. However, studies about the role of ROS in the central sensitization of CM model are rare. We thus explored the specific process of SIRT1 involvement in the central sensitization of CM, focusing on the ROS pathway. Methods: Inflammatory soup was repeatedly administered to male Sprague-Dawley rats to establish a CM model. The SIRT1 expression level in trigeminal nucleus caudalis (TNC) tissues was assessed by qRT-PCR and Western blotting analysis. The levels of ROS were detected by a Tissue Reactive Oxygen Detection Kit, DHE staining, and the fluorescence signal intensity of 8-OHdG. A ROS scavenger (tempol), a SIRT1 activator (SRT1720), a SIRT1 inhibitor (EX527), and a mitochondrial fission inhibitor (Mdivi-1) were used to investigate the specific molecular mechanisms involved. NMDAR2B, CGRP, ERK, and mitochondrial fission-related protein were evaluated by Western blotting, and the CGRP level in frozen sections of the TNC was detected via immunofluorescence staining. Results: After repeated inflammatory soup infusion and successful establishment of the CM rat model, SIRT1 expression was found to be significantly reduced, accompanied by elevated ROS levels. Treatment with Tempol, SRT1720, or Mdivi-1 alleviated allodynia and reduced the increase in NMDAR2B phosphorylation and CGRP and ERK phosphorylation in the CM rat. In contrast, EX527 had the opposite effect in CM rat. SRT1720 and EX527 decreased and increased ROS levels, respectively, in CM rats, and tempol reversed the aggravating effect of EX527 in CM rats. Furthermore, the regulatory effect of SIRT1 on ROS may include the involvement of the mitochondrial fission protein DRP1. Conclusion: The results indicate the importance of SIRT1 in CM may be due to its role in regulating the production of ROS, which are involved in modulating central sensitization in CM. These findings could lead to new ideas for CM treatment with the use of SIRT1 agonists and antioxidants.

18.
Front Genet ; 15: 1363417, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841722

RESUMEN

Introduction: Obesity is a multifactorial disease associated with the development of many comorbidities. This disease is associated with several metabolic alterations; however, it has been shown that some individuals with obesity do not exhibit metabolic syndrome. Adipose tissue neutralizes the detrimental effects of circulating fatty acids, ectopic deposition, and inflammation, among others, through its esterification into neutral lipids that are stored in the adipocyte. However, when the adipocyte is overloaded, i.e., its expansion capacity is exceeded, this protection is lost, resulting in fatty acid toxicity with ectopic fat accumulation in peripheral tissues and inflammation. In this line, this study aimed to investigate whether polymorphisms in genes that control adipose tissue fat storage capacity are potential biomarkers for severe obesity susceptibility and also metabolic complications. Methods: This study enrolled 305 individuals with severe obesity (cases, BMI≥35 kg/m2) and 196 individuals with normal weight (controls, 18.5≤BMI≤24.9 kg/m2). Demographic, anthropometric, biochemical, and blood pressure variables were collected from the participants. Plasma levels of leptin, resistin, MCP1, and PAI1 were measured by Bio-Plex 200 Multiplexing Analyzer System. Genomic DNA was extracted and variants in DBC1 (rs17060940), SIRT1 (rs7895833 and rs1467568), UCP2 (rs660339), PPARG (rs1801282) and ADRB2 (rs1042713 and rs1042714) genes were genotyped by PCR allelic discrimination using TaqMan® assays. Results: Our findings indicated that SIRT1 rs7895833 polymorphism was a risk factor for severe obesity development in the overdominant model. SIRT1 rs1467568 and UCP2 rs660339 were associated with anthropometric traits. SIRT1 rs1467568 G allele was related to lower medians of body adipose index and hip circumference, while the UCP2 rs660339 AA genotype was associate with increased body mass index. Additionally, DBC1 rs17060940 influenced glycated hemoglobin. Regarding metabolic alterations, 27% of individuals with obesity presented balanced metabolic status in our cohort. Furthermore, SIRT1 rs1467568 AG genotype increased 2.5 times the risk of developing metabolic alterations. No statistically significant results were observed with Peroxisome Proliferator-Activated Receptor Gama and ADRB2 polymorphisms. Discussion/Conclusion: This study revealed that SIRT1 rs7895833 and rs1467568 are potential biomarkers for severe obesity susceptibility and the development of unbalanced metabolic status in obesity, respectively. UCP2 rs660339 and DBC1 rs17060940 also showed a significant role in obesity related-traits.

19.
J Ethnopharmacol ; 333: 118485, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38908490

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xuefu Zhuyu Decoction (XZD), a renowned traditional Chinese medicine prescription, is widely employed for the management of conditions characterized by qi-stagnation and blood stasis. Although its anti-thrombotic effect on deep vein thrombosis (DVT) patients has been clinically observed, the underlying mechanism remains largely unexplored. AIM OF THE STUDY: Our aim was to investigate the mechanisms by which XZD exerted its effect on DVT. MATERIALS AND METHODS: The ultra performance liquid chromatography (UPLC) technique was employed to evaluate quality of XZD. To examine the effect of XZD on DVT, a DVT rat model with inferior vena cava (IVC) stenosis was established. The 4D-label-free proteomics approach was then utilized to uncover the possible mechanisms of XZD against DVT. Based on proteomics, citrullinated histone H3 (CitH3), along with serum levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1ß) were observed the inhibitory activity of XZD on neutrophil activation. Subsequently, the marker of platelet activation, specifically glycoprotein IIb (CD41) and glycoprotein IIIa (CD61), were assessed along with the secretion of von Willebrand factor (vWF) to investigate the inhibitory activity of XZD on platelet activation. Finally, we explored the impact of XZD on the sirtuin 1 (SIRT1)/nuclear factor kappa-B (NF-κB) pathway, which was associated with the activation of platelets and neutrophils. RESULTS: Eight distinct components were identified for the quality control of XZD. XZD effectively reduced thrombus weight and length in DVT rats, without affecting the coagulation function or hematological parameters in the systemic circulation. Proteomics analysis revealed that XZD alleviated DVT by inhibiting the activation of platelets and neutrophils. The protein expression of CitH3, along with serum levels of TNF-α and IL-1ß, were reduced in XZD-treated DVT rats. Similarly, protein expressions of CD41 and CD61, along with the release of vWF, were markedly down-regulated in XZD-treated DVT rats. Finally, treatment with XZD resulted in an up-regulation of SIRT1 protein expression and a down-regulation of both acetylated NF-κB/p65 and phosphorylated NF-κB/p65 protein expressions in endothelium. CONCLUSIONS: XZD alleviates DVT by inhibiting the activation of platelets and neutrophils at the injured endothelium via the regulation of SIRT1/NF-κB pathway.

20.
Tissue Eng Part C Methods ; 30(6): 248-254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38842177

RESUMEN

Tendon stem/progenitor cell (TSPC) senescence is often associated with age-dependent tendon diseases and greatly reduces the capacities for tendon repair and replacement. Exosomes contain bioactive molecules and have been increasingly used in regenerative medicine. In the present study, we demonstrated the antiaging effects of young exosomes from circPVT1-overexpressing TSPCs at early passages (circPVT1-exo). These exosomes attenuated the phenotypes of aged TSPCs at late passages (L-TSPCs) by enhancing self-renewal and proliferation abilities, suppressing cell senescence, maintaining their tenogenic capacity, and weakening their osteogenic differentiation. Mechanistically, circPVT1-exo inhibited the NF-κB pathway and increased SIRT1 expression in L-TSPCs. Knockdown of SIRT1 reversed these effects as evidenced by increased senescence, decreased proliferation, and tenogenic differentiation. These results suggest that circPVT1-exo may ameliorate aging-impaired TSPC function by modulating the SIRT1/NF-κB pathway, suggesting that circPVT1-exo has therapeutic potential for age-related diseases.


Asunto(s)
Senescencia Celular , Exosomas , FN-kappa B , Sirtuina 1 , Sirtuina 1/metabolismo , FN-kappa B/metabolismo , Exosomas/metabolismo , Senescencia Celular/efectos de los fármacos , Animales , Células Madre/metabolismo , Células Madre/citología , Tendones/patología , Tendones/metabolismo , Proliferación Celular , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Transducción de Señal , Diferenciación Celular , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Envejecimiento , Osteogénesis/efectos de los fármacos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA