RESUMEN
Receiver for Activated C Kinase 1 (RACK1) is a highly conserved scaffold protein that can assemble multiple kinases and proteins together to form complexes, thereby regulating signal transduction process and various cellular biological processes, including cell cycle regulation, differentiation, and immune response. However, the function and mechanism of RACK1 in cervical cancer remain incompletely understood. Here we identified that RACK1 could significantly suppress cell ferroptosis in cervical cancer cells. Mechanistically, RACK1 increased the expression of FUT8 by inhibiting miR-1275, which in turn promoted the FUT8-catalyzed core-fucosylation of cystine/glutamate antiporter SLC7A11, thereby inhibiting SLC7A11 degradation and cell ferroptosis. Our data highlight the role of RACK1 in cervical cancer progression and its suppression of ferroptosis via the RACK1/miR-1275/FUT8/SLC7A11 axis, suggesting that inhibiting this pathway may be a promising therapeutic approach for patients with cervical cancer.
RESUMEN
Introduction: Traditional prognostic indicators for head and neck squamous cell carcinoma (HNSCC), such as clinicopathological features, human papillomavirus status, and imaging examinations, often lack precision in guiding medical therapy. Therefore, discovering novel tumor biomarkers that can accurately assess prognosis and aid in personalized medical treatment for HNSCC is critical. Solute carrier family 7, member 11 (SLC7A11), is implicated in ferroptosis, and various malignant tumor therapies regulate its expression. However, the mechanisms regulating SLC7A11 expression, the transporter activity, and its specific role in controlling ferroptosis in cancer cells remain unknown. Thus, in this study, we aimed to develop an improved computed tomography (CT) radiomics model that could predict SLC7A11 expression in patients with HNSCC. Methods: We used patient genomic data and corresponding augmented CT images for prognostic analysis and building models. Further, we investigated the potential molecular mechanisms underlying SLC7A11 expression in the immune microenvironment. Our radiomics model successfully predicted SLC7A11 mRNA expression in HNSCC tissues and elucidated its association with relevant genes and prognostic outcomes. Results: SLC7A11 expression level was high within tumor tissues and was connected to the infiltration of eosinophil, CD8+ T-cell, and macrophages, which was associated with poor overall survival. Our models demonstrated robust predictive power. The distribution of radiomics scores (RAD scores) within the training and validation sets was markedly different between the high- and low-expression groups of SLC7A11. Conclusion: SLC7A11 is likely an important factor in the prognosis of HNSCC. SLC7A11 expression can be predicted effectively and reliably by radiomics models based on enhanced CT.
RESUMEN
BACKGROUND: Myocardial ischemia-reperfusion injury (MI/RI) is an unavoidable risk event for acute myocardial infarction, with ferroptosis showing close involvement. We investigated the mechanism of MI/RI inducing myocardial injury by inhibiting the ferroptosis-related SLC7A11/glutathione (GSH)/glutathione peroxidase 4 (GPX4) pathway and activating mitophagy. METHODS: A rat MI/RI model was established, with myocardial infarction area and injury assessed by TTC and H&E staining. Rat cardiomyocytes H9C2 were cultured in vitro, followed by hypoxia/reoxygenation (H/R) modeling and the ferroptosis inhibitor lipoxstatin-1 (Lip-1) treatment, or 3-Methyladenine or rapamycin treatment and overexpression plasmid (oe-SLC7A11) transfection during modeling. Cell viability and death were evaluated by CCK-8 and LDH assays. Mitochondrial morphology was observed by transmission electron microscopy. Mitochondrial membrane potential was detected by fluorescence dye JC-1. Levels of inflammatory factors, reactive oxygen species (ROS), Fe2+, malondialdehyde, lipid peroxidation, GPX4 enzyme activity, glutathione reductase, GSH and glutathione disulfide, and SLC7A11, GPX4, LC3II/I and p62 proteins were determined by ELISA kit, related indicator detection kits and Western blot. RESULTS: The ferroptosis-related SLC7A11/GSH/GPX4 pathway was repressed in MI/RI rat myocardial tissues, inducing myocardial injury. H/R affected GSH synthesis and inhibited GPX4 enzyme activity by down-regulating SLC7A11, thus promoting ferroptosis in cardiomyocytes, which was averted by Lip-1. SLC7A11 overexpression improved H/R-induced cardiomyocyte ferroptosis via the GSH/GPX4 pathway. H/R activated mitophagy in cardiomyocytes. Mitophagy inhibition reversed H/R-induced cellular ferroptosis. Mitophagy activation partially averted SLC7A11 overexpression-improved H/R-induced cardiomyocyte ferroptosis. H/R suppressed the ferroptosis-related SLC7A11/GSH/GPX4 pathway by inducing mitophagy, leading to cardiomyocyte injury. CONCLUSIONS: Increased ROS under H/R conditions triggered cardiomyocyte injury by inducing mitophagy to suppress the ferroptosis-related SLC7A11/GSH/GPX4 signaling pathway activation.
Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Modelos Animales de Enfermedad , Ferroptosis , Glutatión , Mitofagia , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Ratas Sprague-Dawley , Transducción de Señal , Animales , Masculino , Ratas , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Línea Celular , Ferroptosis/efectos de los fármacos , Glutatión/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/efectos de los fármacos , Mitofagia/efectos de los fármacos , Infarto del Miocardio/patología , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Prostate cancer (PCa) remains a significant global health burden and an increase in oxidative stress is associated with cancer progression. High Mobility Group A2 (HMGA2), a chromatin architectural protein, increases oxidative stress and promotes sensitivity to ferroptosis inducers, however, the mechanism is unknown. We investigated the role of HMGA2 in GPX4 regulation and the impact on cellular responses to oxidative stress and ferroptosis sensitivity. We conducted UALCAN database analysis, western blot analysis, and lipid peroxidation assays to determine the relationship between HMGA2 and GPX4 and the levels of lipid reactive oxygen species in a panel of PCa cell lines, including an enzalutamide-resistant cancer cell line (C4-2B MDVR). Our results show an inverse relationship between HMGA2 and GPX4 expression with high HMGA2 and low GPX4 expression associated with higher Gleason score and lower survival probability in prostate adenocarcinoma (PRAD) patients, while low/moderate HMGA2 expression is positively associated with increased GPX4 expression and higher survival probability. Cell lines showed a moderately negative but not statistically significant correlation between HMGA2 and GPX4 expression, however, PC3 and DU145 PCa cells display higher lipid peroxides concomitant with higher endogenous levels of HMGA2 and low GPX4. Overexpression of wild-type HMGA2 in LNCaP and 22Rv1 cells leads to higher HMGA2 expression compared to Neo control and is associated with higher SLC7A11 and GPX4 expression, while interestingly truncated HMGA2 overexpression in LNCaP and 22Rv1 cells coincides with higher HMGA2 and reduced GPX4 expression, leading to increased lipid peroxides and susceptibility to ferroptosis. Overexpression of wild-type and truncated HMGA2 in 22Rv1 cells increases SLC7A11 mRNA yet differing GPX4 protein expression suggests posttranslational regulation of GPX4. Moreover, enzalutamide-resistant C4-2B MDVR cells display higher HMGA2 levels compared to C4-2B cells, as well as sensitivity to RSL3 ferroptosis inducer, which is partially reversed by ferroptosis inhibitor, ferrostatin-1. Interestingly, GPX4 expression is higher in C4-2B MDVR cells compared to C4-2B, and HMGA2 knockdown further increases its expression but does not significantly alter its susceptibility to ferroptosis. In conclusion, our study shows that HMGA2 regulation of GPX4 expression is complex and truncated HMGA2 downregulates GPX4 and increases lipid peroxides. Moreover, HMGA2-expressing cells including enzalutamide-resistant cells are susceptible to RSL-3-induced ferroptosis. Thus, ferroptosis sensitivity offers promising insights for the development of targeted therapeutic interventions for aggressive PCa.
RESUMEN
Ferroptosis is a unique modality of regulated cell death that is driven by iron-dependent phospholipid peroxidation. N6-methyladenosine (m6A) RNA modification participates in varieties of cellular processes. However, it remains elusive whether m6A reader Fragile X Mental Retardation Protein (FMRP) are involved in the modulation of ferroptosis in breast cancer (BC). In this study, we found that FMRP expression was elevated and associated with poor prognosis and pathological stage in BC patients. Overexpression of FMRP induced ferroptosis resistance and exerted oncogenic roles by positively regulating a critical ferroptosis defense gene SLC7A11. Mechanistically, upregulated FMRP catalyzes m6A modification of SLC7A11 mRNA and further influences the SLC7A11 translation through METTL3-dependent manner. Further studies revealed that FMRP interacts with splicing factor hnRNPM to recognize the splice site and then modulated the exon skip splicing event of SLC7A11 transcript. Interestingly, SLC7A11-S splicing variant can effectively promote FMRP overexpression-induced ferroptosis resistance in BC cells. Moreover, our clinical data suggested that FMRP/hnRNPM/SLC7A11 expression were significantly increased in the tumor tissues, and this signal axis was important evaluation factors closely related to the worse survival and prognosis of BC patients. Overall, our results uncovered a novel regulatory mechanism by which high FMRP expression protects BC cells from undergoing ferroptosis. Targeting the FMRP-SLC7A11 axis has a dual effect of inhibiting ferroptosis resistance and tumor growth, which could be a promising therapeutic target for treating BC.
RESUMEN
Metabolic dysfunction-associated steatotic liver disease (MASLD) remains a rapidly growing global health burden. Here, we report that the nonessential amino acid (NEAA) transporter SLC7A11 plays a key role in MASLD. In patients with MASLD, we found high expression levels of SLC7A11 that were correlated directly with clinical grade. Using both loss-of-function and gain-of-function genetic models, we found that Slc7a11 deficiency accelerated MASLD progression via classic cystine/cysteine deficiency-induced ferroptosis, while serine deficiency and a resulting impairment in de novo cysteine production were attributed to ferroptosis-induced MASLD progression in mice overexpressing hepatic Slc7a11. Consistent with these findings, we found that both serine supplementation and blocking ferroptosis significantly alleviated MASLD, and the serum serine/glutamate ratio was significantly lower in these preclinical disease models, suggesting that it might serve as a prognostic biomarker for MASLD in patients. These findings indicate that defects in NEAA metabolism are involved in the progression of MASLD and that serine deficiency-triggered ferroptosis may provide a therapeutic target for its treatment.
RESUMEN
Introduction: Disulfidptosis is a recently identified form of non-apoptotic programmed cell death which distinguishes itself from classical cell death pathways. However, the prognostic implications of disulfidptosis-related long non-coding RNAs (DRLs) and their underlying mechanisms in hepatocellular carcinoma (HCC) remain largely unexplored. Methods: In this study, we leveraged RNA-sequencing data and clinical information of HCC patients from the TCGA database. Through expression correlation and prognostic correlation analyses, we identified a set of top-performing long non-coding RNAs. Subsequently, a 5-DRLs predictive signature was established by conducting a Lasso regression analysis. Results: This signature effectively stratified patients into high- and low-risk groups, revealing notable differences in survival outcomes. Further validation through univariate and multivariate Cox regression analyses confirmed that the risk score derived from our signature independently predicted the prognosis of HCC patients. Moreover, we observed significant disparities in immune cell infiltration and tumor mutation burden (TMB) between the two risk groups, shedding light on the potential connection between immune-related mechanisms and disulfidptosis. Notably, the signature also exhibited predictive value in the context of chemotherapeutic drug sensitivity and immunotherapy efficacy for HCC patients. Finally, we performed experimental validation at both cellular and patient levels and successfully induced a disulfidptosis phenotype in HCC cells. Discussion: In general, this multifaceted approach provides a comprehensive overview of DRLs profiles in HCC, culminating in the establishment of a novel risk signature that holds promise for predicting prognosis and therapy outcomes of HCC patients.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , ARN Largo no Codificante , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico , Biomarcadores de Tumor/genética , Masculino , Femenino , Perfilación de la Expresión Génica , Transcriptoma , Línea Celular TumoralRESUMEN
Regulated cell death (RCD) is crucial for the elimination of abnormal cells. In recent years, strategies aimed at inducing RCD, particularly apoptosis, have become increasingly important in cancer therapy. However, the ability of tumor cells to evade apoptosis has led to treatment resistance and relapse, prompting extensive research into alternative death processes in cancer cells. A recent study identified a novel form of RCD known as disulfidptosis, which is linked to disulfide stress. Cancer cells import cystine from the extracellular environment via solute carrier family 7 member 11 (SLC7A11) and convert it to cysteine using nicotinamide adenine dinucleotide phosphate (NADPH). When NADPH is deficient or its utilization is impaired, cystine accumulates, leading to the formation of disulfide bonds in the actin cytoskeleton, triggering disulfidptosis. Disulfidptosis reveals a metabolic vulnerability in tumors, offering new insights into cancer therapy strategies. This review provides a detailed overview of the mechanisms underlying disulfidptosis, the current research progress, and limitations. It also highlights innovative strategies for inducing disulfidptosis and explores the potential of combining these approaches with traditional cancer therapies, particularly immunotherapy, to expedite clinical translation.
RESUMEN
Bladder cancer (BLCA) is a prevalent cancer with high case-fatality rates and a substantial economic burden worldwide. Understanding its molecular underpinnings to guide clinical management is crucial. Ferroptosis, a recently described non-apoptotic form of cell death, is initiated by the lethal accumulation of iron-dependent lipid peroxidation products. Despite growing interest, the roles and vulnerabilities determining ferroptosis sensitivity in BLCA remain unclear. Re-analysis of single-cell RNA data reveals a decrease in high-ferroptosis cancer cells as BLCA advances. USP52/PAN2 is identified as a key regulator of ferroptosis in BLCA through an unbiased siRNA screen targeting 96 deubiquitylases (DUBs). Functionally, USP52 depletion impedes glutathione (GSH) synthesis by promoting xCT protein degradation, increasing lipid peroxidation and ferroptosis susceptibility, thus suppressing BLCA progression. Mechanistically, USP52 interacts with xCT and enzymatically cleaves the K48-conjugated ubiquitin chains at K4 and K12, enhancing its protein stability. Clinical BLCA samples demonstrate a positive correlation between USP52 and xCT expression, with high USP52 levels associated with aggressive disease progression and poor prognosis. In vivo, USP52 depletion combined with ferroptosis triggers imidazole ketone Erastin (IKE) synergistically restrains BLCA progression by inducing ferroptosis. These findings elucidate the role of the USP52-xCT axis in BLCA and highlight the therapeutic potential of targeting USP52 and ferroptosis inducers in BLCA.
RESUMEN
BACKGROUND: Colorectal cancer (CRC) is one of the most common and fatal diseases, yet effective therapeutic drugs are lacking in clinical settings. Gingerenone A (GA) is an active compound derived from ginger, has demonstrated anti-tumor properties. However, the efficacy of GA against CRC and its primary mechanism of action remain unclear. MATERIALS AND METHODS: MTT assay and colony formation assay were employed to evaluate cell viability. Transwell assays were utilized to assess the migratory and invasive capabilities of the cells. The effects of GA on ferroptosis related proteins were analyzed using Western blot. Levels of glutathione (GSH), malondialdehyde (MDA), Fe2+, and 4-hydroxynonenal (4-HNE) levels were measured with a biochemical index determination kit. Cellular reactive oxygen species (ROS) were quantified using flow cytometry. CETSA, pull-down, and co-immunoprecipitation (Co-IP) assays confirmed the interactions between GA and SLC7A11, as well as the ubiquitination promoted by SLC7A11. A xenograft mouse model was employed to validate the anticancer effect of GA in vivo. RESULTS: We observed that GA significantly suppressed proliferation in human CRC cells. Additionally, GA treatment inhibited the migration, invasion, and colony formation of CRC cells. Subsequently, through the use of specific inhibitors, we discovered that the suppression of CRC cells by GA was dependent on ferroptosis rather than autophagy or apoptosis. Previous research has demonstrated that GA treatment significantly triggers ferroptosis. Mechanistically, GA treatment promotes the degradation of the SLC7A11 protein, which plays a crucial role in ferroptosis. Notably, the knockdown of SLC7A11 abolished the detrimental effects of GA on the proliferation of CRC cells and reversed GA-induced ferroptosis in CRC cells both in vivo and in vitro. Further research has shown that GA can directly bind to the SLC7A11 protein and promote its ubiquitination. CONCLUSION: Our research provides compelling evidence that GA may serve as a potential agent for suppressing the progression of CRC by inducing ferroptosis and promoting the ubiquitination and degradation of SLC7A11.
RESUMEN
Oral leukoplakia (OLK) is the most representative oral potentially malignant disorder, with a high risk of malignant transformation and unclear mechanisms of occurrence. Recently, photodynamic therapy (PDT) has exhibited great potential in the treatment of OLK. However, the efficacy of PDT is difficult to predict and varies from person to person. Ferroptosis-related pathways are upregulated in many cancers, and ferroptosis induction is considered to be a potential synergistic strategy for various antitumor therapies, but its role in OLK treatment remains unclear. This study aimed to determine whether ferroptosis induction can enhance the efficacy of PDT in OLK treatment. Our study revealed that solute carrier family 7 member 11 (SLC7A11), a component of a crucial amino acid transporter and a key negative regulator of ferroptosis, was found to be highly expressed in OLK patients with no response to PDT. 5-Aminolevulinic acid (ALA)-PDT is known to cause apoptosis and necrosis, but ferroptosis also occurred under ALA-PDT in OLK cells in our study. Using erastin to induce ferroptosis enhanced the efficacy of ALA-PDT on OLK cells by disrupting the antioxidant system and further elevating intracellular reactive oxygen species levels, leading to increased apoptosis. Furthermore, this combined modality also enhanced the efficacy of ALA-PDT on 4-nitroquinoline-1-oxide (4NQO)-induced OLK lesions in mice. In summary, ferroptosis induction may serve as a potential strategy to enhance the efficacy of ALA-PDT for OLK treatment.
RESUMEN
BACKGROUND: Ferroptosis, a newly identified form of regulated cell death triggered by small molecules or specific conditions, plays a significant role in virus-associated carcinogenesis. However, whether tumours arising after high-risk HPV integration are associated with ferroptosis is unexplored and remains enigmatic. METHODS: High-risk HPV16 integration was analysed by high-throughput viral integration detection (HIVID). Ferroptosis was induced by erastin, and the levels of ferroptosis were assessed through the measurement of lipid-reactive oxygen species (ROS), malondialdehyde (MDA), intracellular Fe2+ level and transmission electron microscopy (TEM). Additionally, clinical cervical specimens and an in vivo xenograft model were utilized for the study. RESULTS: Expression of HPV16 integration hot spot c-Myc negatively correlates with ferroptosis during the progression of cervical squamous cell carcinoma (CSCC). Further investigation revealed that the upregulated oncogene miR-142-5p in HPV16-integrated CSCC cells served as a critical downstream effector of c-Myc in its target network. Inhibiting miR-142-5p significantly decreased the ferroptosis-suppressing effect mediated by c-Myc. Through a combination of computational and experimental approaches, HOXA5 was identified as a key downstream target gene of miR-142-5p. Overexpression of miR-142-5p suppressed HOXA5 expression, leading to decreased accumulation of intracellular Fe2+ and lipid peroxides (ROS and MDA). HOXA5 increased the sensitivity of CSCC cells to erastin-induced ferroptosis via transcriptional downregulation of SLC7A11, a negative regulator of ferroptosis. Importantly, c-Myc knockdown increased the anti-tumour activity of erastin by promoting ferroptosis both in vitro and in vivo. CONCLUSIONS: Collectively, these data indicate that HPV16 integration hot spot c-Myc plays a novel and indispensable role in ferroptosis resistance by regulating the miR-142-5p/HOXA5/SLC7A11 signalling axis and suggest a potential therapeutic approach for HPV16 integration-related CSCC.
RESUMEN
Objective: Non-small-cell lung cancer (NSCLC) is a leading attributor to cancer deaths. High HDAC10 and low microRNA (miR)-223-5p levels have been observed in NSCLC. But their roles remain elusive. This study illustrated their roles in NSCLC cell ferroptosis and the mechanism. Methods: HDAC10, miR-223-5p, and solute carrier family 7 member 11 (SLC7A11) levels in cells were determined by RT-qPCR. Iron ion content, reactive oxygen species (ROS), and glutathione (GSH) levels were tested using reagent kits, and levels of SLC7A11 and Acyl-CoA synthesis long chain family (ACSL4) were examined using Western blot. Chromatin immunoprecision was performed to analyze the enrichment of HDAC10 and acetylated lysine 9 of histone H3 (H3K9ac) on the miR-223-5p promoter. The targeted binding of miR-223-5p and SLC7A11 was analyzed by dual-luciferase assay. Joint experiments were designed to identify the role of miR-223-5p/SLC7A11 axis in HDAC10-regulated ferroptosis in NSCLC cells. Results: HDAC10 was highly expressed in NSCLC cells. Silencing HDAC10 significantly reduced GSH and SLC7A11 levels, upregulated iron ion content, ROS levels, and ACSL4 expression, promoting cell ferroptosis. Mechanically, HDAC10 inhibited miR-223-5p expression through H3K9ac deacetylation of the miR-223-5p promoter, thereby targeting SLC7A11. The joint experimental results showed that overexpression of SLC7A11 or downregulation of miR-223-5p alleviated the promoting effect of silencing HDAC10 on ferroptosis in NSCLC cells. Conclusion: HDAC10 inhibits miR-223-5p expression through H3K9ac deacetylation of the miR-223-5p promoter, thereby promoting SLC7A11 expression and inhibiting ferroptosis in NSCLC cells.
RESUMEN
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Asunto(s)
Citoesqueleto de Actina , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Citoesqueleto de Actina/metabolismo , Muerte Celular , Animales , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genéticaRESUMEN
System xc-, the cystine/glutamate exchanger, is a membrane transporter that plays a critical role in the antioxidant response of cells. Recent work has shown that System xc- localizes to the plasma membrane during oxidative stress, allowing for increased activity to support the production of glutathione. In this study, we used site-directed mutagenesis to examine the role of C-terminal lysine residues (K422, K472, and K473) of xCT (SLC7A11) in regulating System xc-. We observed that K473R exhibits loss of transporter activity and membrane localization and is 7.5 kD lower in molecular weight, suggesting that K473 regulates System xc- trafficking and is modified under basal conditions. After ruling out ubiquitination and neddylation, we demonstrated that unlike WT xCT, K473R lacks N- and O-glycosylation and is sequestered in the endoplasmic reticulum. Next, we demonstrated that K473Q, a constitutively acetylated lysine mimic, also exhibits loss of transporter activity, decreased membrane expression, and a 4 kD decrease in molecular weight; however, it is N- and O-glycosylated and localized to the endoplasmic reticulum and Golgi. These results suggest that acetylation and deacetylation of K473 in the endoplasmic reticulum and Golgi, respectively, serve to regulate the progression of the transporter through the biosynthetic pathway.
Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Retículo Endoplásmico , Lisina , Lisina/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Humanos , Retículo Endoplásmico/metabolismo , Glicosilación , Vías Secretoras , Células HEK293 , Aparato de Golgi/metabolismo , Animales , Acetilación , Cistina/metabolismo , Membrana Celular/metabolismo , Transporte de ProteínasRESUMEN
AIM: Sex-determining region Y-related high-mobility group box 4 (SOX4) has been reported to play a carcinogenic role in endometrial cancer (EC). However, the biological function and regulatory mechanisms of SOX4 in ferroptosis during the progression of EC are still unknown. METHODS: The mRNA and protein levels were scrutinized by quantitative reverse-transcription polymerase chain reaction and western blot, respectively. The cell viability and proliferative capability were determined by cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. Transcriptional regulation of gene expression was investigated by dual-luciferase reporter assay and chromatin immunoprecipitation. Ferroptosis was evaluated by detection of reactive oxygen species, malondialdehyde, Fe2+, and ferroptosis-related proteins. The mice test was implemented to confirm the influence of SOX4 on EC tumor growth and ferroptosis in vivo. RESULTS: We here discovered the elevation of SOX4 in EC tissues and cells. Functionally, SOX4 knockdown hampered proliferation and promoted ferroptosis of EC cells. Mechanistically, SOX4 bound to p53 promoter and inhibited its transcriptional activity in EC cells. In addition, p53 transcriptionally suppressed SLC7A11 expression in EC cells. Downregulation of p53 reverses the effect of SOX4 knockdown on proliferation and ferroptosis of EC cells. Finally, in vivo experiments demonstrated that SOX4 depletion hindered tumor growth and triggered ferroptosis in EC. CONCLUSIONS: These findings collectively suggested that SOX4 inhibited ferroptosis and promoted proliferation of EC cells via the p53/SLC7A11 signaling. Our research unveiled a novel regulatory mechanism of ferroptosis in EC, offering promising perspectives for the development of EC therapies.
RESUMEN
Dysregulated calcium (Ca2+) signaling pathways are associated with tumor cell death and drug resistance. In non-excitable cells, such as hepatocellular carcinoma (HCC) cells, the primary pathway for Ca2+ influx is through stromal interaction molecule 1 (STIM1)-mediated store-operated calcium entry (SOCE). Previous studies have demonstrated the involvement of STIM1-mediated SOCE in processes such as genesis, metastasis, and stem cell self-renewal of HCC. However, it remains unclear whether STIM1-mediated SOCE plays a role in developing acquired resistance to sorafenib in HCC patients. In this study, we established acquired sorafenib-resistant (SR) HCC cell lines by intermittently exposing them to increasing concentrations of sorafenib. Our results showed higher levels of STIM1 and stronger SOCE in SR cells compared with parental cells. Deleting STIM1 significantly enhanced sensitivity to sorafenib in SR cells, while overexpressing STIM1 promoted SR by activating SOCE. Mechanistically, STIM1 increased the transcription of SLC7A11 through the SOCE-CaN-NFAT pathway. Subsequently, up-regulated SLC7A11 increased glutathione synthesis, resulting in ferroptosis insensitivity and SR. Furthermore, combining the SOCE inhibitor SKF96365 with sorafenib significantly improved the sensitivity of SR cells to sorafenib both in vitro and in vivo. These findings suggest a potential strategy to overcome acquired resistance to sorafenib in HCC cells.
RESUMEN
Xinglou Chengqi decoction (XLCQD) is a Chinese formula that offers benefits in ischemic stroke. However, the underlying mechanism of the effects of XLCQD-mediated anti-ischemic stroke effects remains obscure. This study investigates the ferroptosis mechanism of XLCQD against cerebral ischemia/reperfusion (I/R) injury using rat models of middle cerebral artery occlusion/reperfusion (MCAO/R). Ferroptosis differs from traditional cell death pathways and is linked to oxidative stress-induced lipid peroxidation and glutathione (GSH) depletion, which is essential to the development of ischemic stroke. In this study, it is shown that XLCQD improves brain infarction, neurological dysfunction, and histopathological changes caused by MCAO/R exposure, and improving I/R-induced oxidative damage through inhibition of ferroptosis via (Solute Carrier Family 7 Member 11) SLC7A11/ (glutathione peroxidase 4) GPX4 pathway. Interestingly, it is found that XLCQD-mediated protection in I/R is reversed by the silence of SLC7A11. XLCQD intervention significantly promotes GSH content and suppresses Reactive Oxygen Species(ROS), iron accumulation, as well as Malondialdehyde (MDA) generation, are markedly abrogated when SLC7A11 is knockdown by SLC7A11-shRNA transfection, indicating that SLC7A11 is the main target of XLCQD to further trigger intracellular events. In conclusion, XLCQD attenuates in vivo cerebral I/R injury by reducing ferroptosis via the SLC7A11/GPX4 pathway.
RESUMEN
The efficacy of radiotherapy (RT) is limited by inefficient X-ray absorption and reactive oxygen species generation, upregulation of immunosuppressive factors, and a reducing tumor microenvironment (TME). Here, the design of a mitochondria-targeted and digitonin (Dig)-loaded nanoscale metal-organic framework, Th-Ir-DBB/Dig, is reported to overcome these limitations and elicit strong antitumor effects upon low-dose X-ray irradiation. Built from Th6O4(OH)4 secondary building units (SBUs) and photosensitizing Ir(DBB)(ppy)2 2+ (Ir-DBB, DBB = 4,4'-di(4-benzoato)-2,2'-bipyridine; ppy = 2-phenylpyridine) ligands, Th-Ir-DBB exhibits strong RT-radiodynamic therapy (RDT) effects via potent radiosensitization with high-Z SBUs for hydroxyl radical generation and efficient excitation of Ir-DBB ligands for singlet oxygen production. Th-Ir-DBB/Dig releases digitonin in acidic TMEs to trigger disulfidptosis of cancer cells and sensitize cancer cells to RT-RDT through glucose and glutathione depletion. The released digitonin simultaneously downregulates multiple immune checkpoints in cancer cells and T cells through cholesterol depletion. As a result, Th-Ir-DBB/dig plus X-ray irradiation induces strong antitumor immunity to effectively inhibit tumor growth in mouse models of colon and breast cancer.
RESUMEN
BACKGROUND: Hypoxia plays an important role in the chemotherapy resistance of nasopharyngeal carcinoma (NPC). Ferroptosis is a newly discovered form of programmed cell death and ferroptosis inducers showed promising therapeutic effects in some cancers. However, the sensibility of NPC cells to ferroptosis under the hypoxic microenvironment is still unclear, and this study was designed to clarify it. METHODS: NPC cells, treated with erastin, were placed in a normoxia or hypoxic environment (5% CO2, 94% N2 and 1% O2) at 37âfor 24 h. After exposed to hypoxia, ferroptosis-associated phenotypes were detected by CCK8, MDA, GSH, lipid ROS and Fe. The gene expression profiles of head and neck squamous cell carcinoma (HNSCC) tissues were downloaded from the TCGA database to screen construction molecule. BAP1 was screened out and its functions on erastin-induced ferroptosis in NPC cells were detected by knockdown of BAP1. Luciferase reporter assay and co-IP experiment were performed to explore the molecular mechanism. Finally, the tumour xenograft model was applied to further verify these results in vivo. RESULTS: CCK8 assay showed that IC50 of NPC cells treated with erastin under hypoxia was significantly lower than that under normoxia. Hypoxia significantly increased the levels of lipid ROS and MDA, and decreased GSH content induced by erastin. A prognostic risk model for HNSCC with six ferroptosis-related genes was constructed and validated based on TCGA database. BAP1 was significantly up-regulated under hypoxia, and luciferase reporter assay showed that HIF-1α was an upstream transcription regulator of BAP1. Knockdown of BAP1 in NPC cells significantly increased the IC50 value of erastin under hypoxia and significantly ameliorated erastin-induced ferroptosis under hypoxia in aspect of lipid ROS, MDA content and GSH. Co-IP results showed that BAP1 mediated deubiquitination of H2A and decreased SLC7A11 expression. Finally, knockdown of BAP1 reduced sensitivity to erastin-induced ferroptosis in a tumour xenograft model. And the level of H2A was significantly decreased in xenograft tumors of BAP1 knockdown cells. CONCLUSION: Hypoxia-induced BAP1 enhances erastin-induced ferroptosis in NPC by stabilizing H2A. Ferroptosis inducers targeting BAP1 may be an effective way to improve chemotherapy resistance in NPC, especially in the hypoxic microenvironment.