Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
Theriogenology ; 230: 130-141, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39298912

RESUMEN

Testosterone is secreted by Leydig cells (LCs), which play an important physiological role in preserving male secondary sex characteristics, protecting male reproductive function, and establishing the blood-testis barrier. Studies have shown that autophagy is particularly active in LCs; however, its involvement in testosterone synthesis in porcine LCs has not been fully explored. Therefore, this experiment aimed to investigate the influence of autophagy on testosterone secretion in porcine LCs and its potential regulatory mechanism. Our results demonstrated that both testicular autophagy and serum testosterone levels increased in piglets during postnatal development from 4 to 18 weeks. In addition, autophagy was found to degrade the Na+/H+ exchange regulatory factor 2 (NHERF2), leading to the up-regulation of scavenger receptor class B type 1 (SRB1). This process resulted in increased cholesterol intake and enhanced testosterone production. The observable level of sirtuin 1 (SIRT1) was directly proportional to the level of autophagy. In vitro investigations have shown that SIRT1 can affect the level of autophagy, cholesterol uptake as well as testosterone release. In conclusion, testosterone synthesis during pig development is regulated by SIRT1. SIRT1 mediates the degradation of NHERF2 through autophagy, thereby weakening its negative regulatory effect on the high-density lipoprotein receptor SRB1 in Leydig cells. This process increases cholesterol uptake and enhances testosterone synthesis.

2.
Biofouling ; 40(9): 617-631, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39291398

RESUMEN

The impact of Flavin adenine dinucleotide (FAD) on sulfate-reducing bacteria (SRB) corrosion of a pipeline welded joint (WJ) was investigated under anaerobic condition in this paper. The results showed that the thickness of the corrosion product on heat affected zone (HAZ) was lower than that on base metal (BM) and welded zone (WZ), and the FAD addition enhanced the development of the protruding microbial tubercles on the WJ. The local corrosion degrees of the BM and WZ coupons were significantly higher than that of the HAZ coupon. Besides, the FAD addition simultaneously promoted local corrosion of all three zones of the WJ in the SRB inoculated environment, and the promotion role was much more pronounced on the WZ coupons. The selective promotion effect of FAD on SRB corrosion in the WJ was attributed to the special structure of the WZ, the selected SRB attachment and the FAD/FADH2 redox feedback cycle.


Asunto(s)
Desulfovibrio desulfuricans , Flavina-Adenina Dinucleótido , Corrosión , Flavina-Adenina Dinucleótido/metabolismo , Flavina-Adenina Dinucleótido/química , Desulfovibrio desulfuricans/metabolismo , Oxidación-Reducción , Biopelículas
3.
Materials (Basel) ; 17(17)2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39274767

RESUMEN

The development of pitting corrosion on L245 carbon steel in a culture medium solution containing sulfate-reducing bacteria (SRB) was investigated. The results showed that the occurrence of corrosion in L245 carbon steel is closely linked to the evolution of biofilm and product film. As the test duration extended, overall corrosion was inhibited. Simultaneously, bacteria beneath the film layer promoted the generation and development of pitting corrosion, and the aggregation of bacteria (colonies) led to the aggregation of pitting corrosion.

4.
Molecules ; 29(18)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39339492

RESUMEN

Bioremediation of acid mine drainage (AMD) was often challenged by poor tolerance of sulfate-reducing bacteria (SRB) to heavy metals and low bioactivity. The highly active immobilized particles with Fe0/Fe2+ enhanced SRB (Fe0/2+-SRB) were prepared by the microorganism immobilization technique. Three dynamic columns were constructed to investigate the adsorption capacity of Fe0/2+-SRB for Mn2+ under varying adsorption layer heights, inflow velocity, and initial Mn2+ concentrations. The role of each matrix material in the immobilized particles was explored, the mechanism of AMD remediation by Fe0/2+-SRB was revealed, and the adaptability of Fe0/2+-SRB to AMD under various initial conditions was investigated. The results showed that the prepared Fe0/2+-SRB exhibited a well-developed surface pore structure. When the adsorption layer height was 200 mm, the influent flow rate was 5 × 10-5 m3/s, and the initial manganese ion concentration was 10 mg/L, the maximum dynamic adsorption capacities (qe) of Mn2+ for each dynamic column were 7.8430, 4.7627, and 8.7677 mg/g, respectively. Compared to dynamic columns 1# and 2#, dynamic column 3# showed the best performance in treating AMD, and the Thomas model effectively described the adsorption kinetics of Mn2+ by Fe0/2+-SRB(3#). Microstructural analysis indicated that chemical adsorption, ion exchange, dissimilation-reduction reaction, and surface complexation occurred between the various matrix materials in Fe0/2+-SRB(3#). Mn2+ was primarily removed in the form of metal sulfide (MnS), and Fe0/Fe2+ could promote the dissimilatory reduction of SO42- by SRB to form S2-. Fe0/2+-SRB(3#) was able to adapt to AMD with initial conditions of pH was 2~4, SO42- < 2500 mg/L, and Mn2+ < 20 mg/L. The research results provide new insights into the remediation of AMD, using a combined microbial-adsorption technology.

5.
Fish Shellfish Immunol ; 153: 109811, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117126

RESUMEN

Scavenger receptors (SRs) are integral to the innate immune system and function as pattern-recognition receptors that facilitate pathogen clearance and mediate anti-inflammatory responses. However, the role of SRs in the immune response of Lateolabrax maculatus against Aeromonas veronii is unclear. Here, we cloned scavenger receptor B1 from L. maculatus (LmSRB1) and performed bioinformatics analysis to study its potential functions. The open reading frame spans 1530 base pairs and encodes a 509-amino acid protein with a molecular mass of 57.44 kDa. Comparative analysis revealed high sequence conservation among fish species. Expression profiling revealed strong LmSRB1 transcription in various tissues, especially in head kidney and spleen. Following A. veronii exposure, LmSRB1 expression initially increased, peaking after 4-8 h, with a notable secondary peak at 72 h. Fluorescence in situ hybridization indicated that LmSRB1 mainly localized to the cytoplasm, and subcellular-localization studies confirmed LmSRB1 protein expression in the cytoplasm and cell membrane. Enzyme-linked immunosorbent assay data showed dose-dependent binding of LmSRB1 to A. veronii. Modulating LmSRB1 expression significantly altered the levels of IL-8, IL-1ß, TRAF6, and NIK. These results highlight the crucial role of LmSRB1 in L. maculatus's innate immune response to A. veronii and offer insights into improving the management of bacterial infections in aquaculture.


Asunto(s)
Lubina , Enfermedades de los Peces , Proteínas de Peces , Perfilación de la Expresión Génica , Infecciones por Bacterias Gramnegativas , Animales , Aeromonas veronii/fisiología , Secuencia de Aminoácidos , Lubina/inmunología , Lubina/genética , Enfermedades de los Peces/inmunología , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Perfilación de la Expresión Génica/veterinaria , Regulación de la Expresión Génica/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Inmunidad Innata/genética , Filogenia , Alineación de Secuencia/veterinaria
6.
Front Microbiol ; 15: 1407459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104580

RESUMEN

Variation in the condition of marine sediments provides selective preservation milieus, which act as a key determinant for the abundance and distribution of dinoflagellate resting cysts in natural sediments. Microbial degradation is an understudied biological factor of potential importance in the processes. However, gaps remain in our knowledge about the fundamental information of the bacterial consortia associated with dinoflagellate resting cysts both in laboratory cultures and in the field. Here we used Scrippsiella acuminata as a representative of cyst-producing dinoflagellates to delineate the diversity and composition of bacterial microbiomes co-existing with the laboratory-cultured resting cysts, and to explore possible impacts of low temperature, darkness, and anoxia (the mock conditions commonly observed in marine sediments) on the associated bacterial consortia. Bacterial microbiome with high diversity were revealed associated with S. acuminata at resting stage. The mock conditions could significantly shift bacterial community structure and exert notably inhibitory effects on growth-promoting bacteria. Resting cysts under conditions typically observed in marine sediments fostered bacterial microbiomes with more diverse trophic strategies, characteristic of prominently enriched anaerobic chemotrophic bacteria generating energy via respiration with several different terminal electron acceptors, which yielded more acidic milieu unfavorable for the preservation of calcareous resting cysts. Our findings suggest that there is complex and dynamic interaction between dinoflagellates resting cysts and the associated bacterial consortia in natural sediments. This intrinsic interaction may influence the maintenance and/or accumulation of dinoflagellate resting cysts with potential of germination and initiation blooms in the field.

7.
J Hazard Mater ; 477: 135405, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106728

RESUMEN

Landfill mining (LFM) has gained widespread recognition due to its benefits in terms of resource utilization of landfill waste and reuse of landfill sites. However, it is important to thoroughly assess the associated environmental risks. This study simulated the pressure release induced from LFM in small-scale batch anaerobic reactors subject to different initial pressures (0.2-0.6 MPa). The potential risk of hydrogen sulfide (H2S) pollution resulting from pressure release caused by LFM was investigated. The results demonstrated that the concentration of H2S significantly increased following the simulated pressure treatments. At the low (25 °C) and high (50 °C) temperatures tested, the peak H2S concentration reached 19366 and 24794 mg·m-3, respectively. Both of these concentrations were observed under highest initial pressure condition (0.6 MPa). However, the duration of H2S release was remarkably longer (>90 days) at the low temperature tested. Microbial diversity analysis results revealed that, at tested low temperature, the sulfate-reducing bacteria (SRB) communities of various pressure-bearing environments became phylogenetically similar following the pressure releases. In contrast, at the high temperature tested, specific SRB genera (Desulfitibacter and Candidatus Desulforudis) showed further enrichment. Moreover, the intensified sulfate reduction activity following pressure release was attributed to the enrichment of specific SRBs, including Desulfovibrio (ASV585 and ASV1417), Desulfofarcimen (ASV343), Candidatus Desulforudis (ASV24), and Desulfohalotomaculum (ASV506 and ASV2530). These results indicate that the pressure release associated with LFM significantly increases the amount of H2S released from landfills, and the SRB communities have different response mechanisms to pressure release at different temperature conditions. This study highlights the importance of considering the potential secondary environmental risks associated with LFM.


Asunto(s)
Sulfuro de Hidrógeno , Minería , Presión , Instalaciones de Eliminación de Residuos , Temperatura , Bacterias/metabolismo
8.
Environ Sci Pollut Res Int ; 31(33): 45875-45886, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38981966

RESUMEN

The corrosion behavior of carbon steel under the coexistence of carbon dioxide and SRB was studied by means of corrosion weight loss, SEM, EDS, in situ pH test, and other methods. The results showed that Chloride ions, temperature, pH, and oxygen coexist with iron bacteria will affect the corrosion under the coexistence of CO2 and SRB, and SRB tends to grow in a favorable environment for itself, and the corrosion rate of X52N at 42 days is slightly higher than that at 21 days. However, the pitting depth increased sharply from 21.20 µm in 21 days to 39.79 µm in 42 days. So that the corrosion can be divided into two stages. First, SRB catalyze the dissolution of FeCO3, leading to local uniform corrosion. Second, SRB directly obtain electrons from the metal surface, resulting in local pitting. In addition, the environment under the stable mineralized biofilm was found to be slightly alkaline.


Asunto(s)
Dióxido de Carbono , Acero , Corrosión , Acero/química , Dióxido de Carbono/química , Biopelículas , Carbono/química
9.
Microorganisms ; 12(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39065198

RESUMEN

The gut microbiota-brain axis allows for bidirectional communication between the microbes in our gastrointestinal (GI) tract and the central nervous system. Psychological stress has been known to disrupt the gut microbiome (dysbiosis) leading to anxiety-like behavior. Pathogens administered into the gut have been reported to cause anxiety. Whether commensal bacteria affect the gut-brain axis is not well understood. In this study, we examined the impact of a commensal sulfate-reducing bacteria (SRB) and its metabolite, hydrogen sulfide (H2S), on anxiety-like behavior. We found that mice gavaged with SRB had increased anxiety-like behavior as measured by the open field test. We also tested the effects of magnesium oxide (MgO) on SRB growth both in vitro and in vivo using a water avoidance stress (WAS) model. We found that MgO inhibited SRB growth and H2S production in a dose-dependent fashion. Mice that underwent psychological stress using the WAS model were observed to have an overgrowth (bloom) of SRB (Deferribacterota) and increased anxiety-like behavior. However, WAS-induced overgrowth of SRB and anxiety-like behavioral effects were attenuated in animals fed a MgO-enriched diet. These findings supported a potential MgO-reversible relationship between WAS-induced SRB blooms and anxiety-like behavior.

10.
Biofouling ; 40(5-6): 333-347, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836545

RESUMEN

The corrosion behaviors of four pure metals (Fe, Ni, Mo and Cr) in the presence of sulfate reducing bacteria (SRB) were investigated in enriched artificial seawater (EASW) after 14-day incubation. Metal Fe and metal Ni experienced weight losses of 1.96 mg cm-2 and 1.26 mg cm-2, respectively. In contrast, metal Mo and metal Cr exhibited minimal weight losses, with values of only 0.05 mg cm-2 and 0.03 mg cm-2, respectively. In comparison to Mo (2.2 × 106 cells cm-2) or Cr (1.4 × 106 cells cm-2) surface, the sessile cell counts on Fe (4.0 × 107 cells cm-2) or Ni (3.1 × 107 cells cm-2) surface was higher.


Asunto(s)
Adhesión Bacteriana , Sulfatos , Corrosión , Sulfatos/química , Metales/química , Agua de Mar/microbiología , Agua de Mar/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Bacterias/efectos de los fármacos , Incrustaciones Biológicas/prevención & control
12.
Sci Total Environ ; 931: 172898, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697543

RESUMEN

The production of short-chain fatty acids (SCFAs) is constrained by substrate availability and the increased fractional pressure of H2 emitted by acidogenic/fermentative bacteria during anaerobic fermentation of waste activated sludge (WAS). This study introduced a novel approach employing zero-valent iron (ZVI)-activated sulfite pretreatment combined with H2-consuming sulfate-reducing bacteria (SRB) mediation to improve SCFAs, especially acetate production from WAS fermentation. Experimental results showed that the combined ZVI-activated sulfite and incomplete-oxidative SRB (io-SRB) process achieved a peak SCFAs production of 868.11 mg COD/L, with acetate accounting for 80.55 %, which was 7.90- and 2.18-fold higher than that obtained from raw WAS fermentation, respectively. This could be firstly attributed to the SO4- and OH generated by ZVI-activated sulfite, which significantly promoted WAS decomposition, e.g., soluble proteins and carbohydrates increased 14.3- and 10.8-fold, respectively, over those in raw WAS. The biodegradation of dissolved organic matter was subsequently enhanced by the synergistic interaction and H2 transfer between anaerobic fermentation bacteria (AFB) and io-SRB. The positive and negative correlations among AFB, nitrate-reducing bacteria (NRB) and the io-SRB consortia were revealed by molecular ecological network (MEN) and Mantel test. Moreover, the expression of functional genes was also improved, for instance, in relation to acetate formation, the relative abundances of phosphate acetyltransferase and acetate kinase was 0.002 % and 0.005 % higher than that in the control test, respectively. These findings emphasized the importance of sulfate radicals-based oxidation pretreatment and the collaborative relationships of multifunctional microbes on the value-added chemicals and energy recovery from sludge fermentation.


Asunto(s)
Ácidos Grasos Volátiles , Fermentación , Aguas del Alcantarillado , Sulfitos , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Sulfitos/metabolismo , Ácidos Grasos Volátiles/metabolismo , Eliminación de Residuos Líquidos/métodos , Sulfatos/metabolismo , Hidrógeno/metabolismo , Bacterias/metabolismo , Hierro/metabolismo
13.
J Hazard Mater ; 473: 134582, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38776810

RESUMEN

Sulfate-reducing bacteria (SRB) are generally found in sanitary landfills and play a role in sulfur (S) and metal/metalloid geochemical cycling. In this study, we investigated the influence of SRB on arsenic (As) metabolic pathways in refuse-derived cultures. The results indicated that SRB promote As(III) methylation and are beneficial for controlling As levels. Heterotrophic and autotrophic SRB showed significant differences during As cycling. In heterotrophic SRB cultures, the As methylation rate increased with As(III) concentration in the medium and reached a peak (85.1%) in cultures containing 25 mg L-1 As(III). Moreover, 4.0-12.6% of SO42- was reduced to S2-, which then reacted with As(III) to form realgar (AsS). In contrast, autotrophic SRB oxidized As(III) to less toxic As(V) under anaerobic conditions. Heterotrophic arsM-harboring SRB, such as Desulfosporosinus, Desulfocurvibacter, and Desulfotomaculum, express As-related genes and are considered key genera for As methylation in landfills. Thiobacillus are the main autotrophic SRB in landfills and can derive energy by oxidizing sulfur compounds and metal(loid)s. These results suggest that different types of SRB drive As methylation, redox reaction, and mineral formation in landfills. These study findings have implications for the management of As pollutants in landfills and other contaminated environments.


Asunto(s)
Arsénico , Sulfatos , Instalaciones de Eliminación de Residuos , Arsénico/metabolismo , Sulfatos/metabolismo , Sulfatos/química , Oxidación-Reducción , Metilación , Bacterias/metabolismo , Bacterias/genética , Biodegradación Ambiental , Contaminantes Químicos del Agua/metabolismo
14.
Sci Rep ; 14(1): 10041, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693218

RESUMEN

The detection of N-hexanoyl-l-homoserine lactone (C6-HSL), a crucial signal in Gram-negative bacterial communication, is essential for addressing microbiologically influenced corrosion (MIC) induced by sulfate-reducing bacteria (SRB) in oil and gas industries. Metal oxides (MOx) intercalated into conducting polymers (CPs) offer a promising sensing approach due to their effective detection of biological molecules such as C6-HSL. In this study, we synthesized and characterized two MOx/polyaniline-dodecyl benzene sulfonic acid (PANI-DBSA) nanocomposites, namely ZnO/PANI-DBSA and Fe2O3/PANI-DBSA. These nanocomposites were applied with 1% by-weight carbon paste over a carbon working electrode (WE) for qualitative and quantitative detection of C6-HSL through electrochemical analysis. The electrochemical impedance spectroscopy (EIS) confirmed the composites' capability to monitor C6-HSL produced by SRB-biofilm, with detection limits of 624 ppm for ZnO/PANI-DBSA and 441 ppm for Fe2O3/PANI-DBSA. Furthermore, calorimetric measurements validated the presence of SRB-biofilm, supporting the EIS analysis. The utilization of these MOx/CP nanocomposites offers a practical approach for detecting C6-HSL and monitoring SRB-biofilm formation, aiding in MIC management in oil and gas wells. The ZnO/PANI-DBSA-based sensor exhibited higher sensitivity towards C6-HSL compared to Fe2O3/PANI-DBSA, indicating its potential for enhanced detection capabilities in this context. Stability tests revealed ZnO/PANI-DBSA's superior stability over Fe2O3/PANI-DBSA, with both sensors retaining approximately 85-90% of their initial current after 1 month, demonstrating remarkable reproducibility and durability.

15.
Front Microbiol ; 15: 1352430, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38618484

RESUMEN

In view of water and soil getting polluted by Pb(II), Zn(II), and other heavy metals in tailings and acid mine drainage (AMD), we explored the removal effect of sulfate-reducing bacteria (SRB) on Pb(II), Zn(II), and other pollutants in solution and tailings based on the microbial treatment technology. We used the scanning electron microscope-energy dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray fluorescence (XRF), to reveal the mechanism of SRB treatment of tailings. The results showed that SRB had a strong removal capacity for Zn(II) at 0-40 mg/L; however, Zn(II) at 60-100 mg/L inhibited the growth of SRB. Similarly, SRB exhibited a very strong ability to remove Pb(II) from the solution. At a Pb(II) concentration of 10-50 mg/L, its removal percentage by SRB was 100%. SRB treatment could effectively immobilize the pollutants leached from the tailings. With an increase in the amount of tailings added to each layer, the ability of SRB to treat the pollutants diminished. When 1 cm of tailingssand was added to each layer, SRB had the best effect on tailing sand treatment. After treatment, the immobilization rates of SO42-, Fe(III), Mn(II), Pb(II), Zn(II), Cu(II), and total Cr in the leachate of #1 tailing sand were 95.44%, 100%, 90.88%, 100%, 96.20%, 86.23%, and 93.34%, respectively. After the tailings were treated by SRB, although the tailings solidified into a cohesive mass from loose granular particles, their mechanical strength was <0.2 MPa. Desulfovibrio and Desulfohalotomaculum played the predominant roles in treating tailings by mixing SRB. The S2- and carbonate produced by mixing SRB during the treatment of tailings could metabolize sulfate by combining with the heavy metal ions released by the tailings to form FeS, MnS, ZnS, CuS, PbS, Cr2S3, CaCO3, MnCO3, and other precipitated particles. These particles were attached to the surface of the tailings, reducing the environmental pollution of the tailings in the water and soil around the mining area.

16.
Nanomaterials (Basel) ; 14(7)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38607155

RESUMEN

In this paper, a novel method was proposed for the synthesis of Cu2S on copper mesh via electrolysis in SRB culture medium. It was found that following electrolysis in SRB medium, squamous-like Cu2S arrays were obtained on the copper mesh, and the Cu2S loading contents varied with the electrolyzing parameters. The resultant Cu2S on copper mesh in SRB (CSCM-SRB) with the highest catalytic MB degradation properties was produced by electrolysis at 3.75 mA/cm2 for 900 s. The optimized MB-degrading conditions were determined to be 1.2 cm2/mL CSCM-SRB with 0.05 M H2O2 at 35 °C when pH = 6, under which the degradation of MB reached over 99% after 120 min of reaction. Disinfecting properties was also proven by antibacterial tests, revealing that an almost 100% antibacterial rate against E. coli was obtained after 8 min. The organic compounds produced by SRB adsorbed on CSCM-SRB strongly promoted the degradation of MB. Furthermore, possible Fenton-like mechanisms of CSCM-SRB were proposed, illustrating that ·O2-, ·OH, and 1O2 acted as the main functional species during Fenton-like reactions, leading to effective MB degradation and high antibacterial properties. Finally, a simple device for wastewater treatment was designed, providing possible applications in real environments.

17.
Chem Biodivers ; 21(6): e202301874, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38488665

RESUMEN

Lichens are a symbiotic association of algae and fungus, belonging to the family Parmeliaceae. Some lichen species are edible and used as an active ingredient for preparation of exotic spices as well as folklore medicine to cure different kinds of ailments. A specimen of lichen was collected from Munner in the Kerala State of South India for chemical profiling. Chemical analyses of the diethyl ether extract of the defatted lichen led to the isolation of six phenols 1-6 with variation of relative abundance. Amongst them, the relative abundance of compound 3 was the greatest (1 % of crude extract) and it was identified as atranorin. The structures of known compounds were confirmed by comparison of their 1H-NMR, 13C NMR, and mass data with published values available in the literature. In vitro bioassay for anti-proliferative activity of these compounds has been conducted against various human cancer cell lines in comparison with paclitaxel as control using SRB assay. Interestingly, a new compound 5 was found along with previously reported compounds from this lichen. This new compound was designated as fluoroatranorin 5 which was reported for the first time herein. The structural characterization of a new depside was determined by spectral methods such as 1H-NMR, 13C NMR, 19F NMR, IR, LC-HRESI-MS, and LC-MS/MS study. Its structure was confirmed by single crystal X-ray diffraction study. This new compound was designated as fluoroatranorin 5 which was reported first time herein. Anti-proliferative activity of all these compounds was evaluated against six different cancer cell lines. The inhibitory activity, IC50 value of compounds 1-3 and 5 exhibited at 99.64, 102.04, 109.20, 53.0 and 2.4 µM on cancer cell lines HT-29 (colon), Hela (cervical), HT-29, HPAC (pancreas) and A2780 (ovarian cancer cell line) respectively in comparison with paclitaxel as control. The new compound 5 exhibited significant activity with IC50 value 2.4 µM on A2780 ovarian cancer cell line.


Asunto(s)
Antineoplásicos , Proliferación Celular , Depsidos , Ensayos de Selección de Medicamentos Antitumorales , Líquenes , Humanos , Líquenes/química , Proliferación Celular/efectos de los fármacos , Depsidos/farmacología , Depsidos/química , Depsidos/aislamiento & purificación , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Halogenación , Estructura Molecular , Relación Estructura-Actividad , Relación Dosis-Respuesta a Droga
18.
Front Plant Sci ; 15: 1341993, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439982

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) colonize plant roots, establish a mutualistic relationship with the plants and help them grow better. This study reports novel findings on the plant growth-promoting effects of the PGPR Bacillus aryabhattai. Soil was collected from a soybean field, PGPR were isolated, identified, and characterized for their ability to promote plant growth and development. The bacterium was isolated from the soybean rhizosphere and identified as B. aryabhattai strain SRB02 via 16s rRNA sequencing. As shown by SEM, the bacterium successfully colonized rice and soybean roots within 2 days and significantly promoted the growth of the GA-deficient rice cultivar Waito-C within 10 days, as well as the growth of soybean plants with at least six times longer shoots, roots, higher chlorophyll content, fresh, and dry weight after 10 days of inoculation. ICP analysis showed up to a 100% increase in the quantity of 18 different amino acids in the SRB02-treated soybean plants. Furthermore, the 2-DE gel assay indicated the presence of several differentially expressed proteins in soybean leaves after 24 hrs of SRB02 application. MALDI-TOF-MS identified ß-conglycinin and glycinin along with several other proteins that were traced back to their respective genes. Analysis of bacterial culture filtrates via GCMS recorded significantly higher quantities of butanoic acid which was approximately 42% of all the metabolites found in the filtrates. The application of 100 ppm butanoic acid had significantly positive effects on plant growth via chlorophyll maintenance. These results establish the suitability of B. aryabhattai as a promising PGPR for field application in various crops.

19.
World J Microbiol Biotechnol ; 40(3): 98, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353843

RESUMEN

Microbiologically-influenced corrosion (MIC) is a common operational hazard to many industrial processes. The focus of this review lies on microbial corrosion in the maritime industry. Microbial metal attachment and colonization are the critical steps in MIC initiation. We have outlined the crucial factors influencing corrosion caused by microorganism sulfate-reducing bacteria (SRB), where its adherence on the metal surface leads to Direct Electron Transfer (DET)-MIC. This review thus aims to summarize the recent progress and the lacunae in mitigation of MIC. We further highlight the susceptibility of stainless steel grades to SRB pitting corrosion and have included recent developments in understanding the quorum sensing mechanisms in SRB, which governs the proliferation process of the microbial community. There is a paucity of literature on the utilization of anti-quorum sensing molecules against SRB, indicating that the area of study is in its nascent stage of development. Furthermore, microbial adherence to metal is significantly impacted by surface chemistry and topography. Thus, we have reviewed the application of super wettable surfaces such as superhydrophobic, superhydrophilic, and slippery liquid-infused porous surfaces as "anti-corrosion coatings" in preventing adhesion of SRB, providing a potential avenue for the development of practical and feasible solutions in the prevention of MIC. The emerging field of super wettable surfaces holds significant potential for advancing efficient and practical MIC prevention techniques.


Asunto(s)
Desulfovibrio , Microbiota , Corrosión , Transporte de Electrón , Porosidad
20.
Animals (Basel) ; 14(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38338126

RESUMEN

One of the main aims of companion animal welfare charities is to educate the public about the needs of animals. This is frequently performed through campaigns focusing on specific aspects of welfare. The Royal Society for the Prevention of Cruelty to Animals (RSPCA), Britain's biggest animal welfare charity, launched the nationwide #DogKind campaign in March 2019. Targeted mainly at 25-34-year-olds, the campaign aimed to increase awareness of separation-related behaviour (SRB) among dog owners and encourage them to seek help for SRB from reliable sources. This research involved a quasi-experimental, non-equivalent control group design evaluating the campaign's effectiveness. It was conducted through a series of online surveys at three different time points: before the launch of the campaign (n = 2002), six months after (n = 2423), and, again, two months later (n = 269), during which we asked the same questions regarding knowledge of SRB. An experimental trial of 269 participants tested whether accessing a video alongside the campaign web pages increased the effectiveness of the campaign objectives. Overall, the campaign appeared to be effective in reaching its target audience but not at raising awareness of SRB or increasing the number of owners intending to seek help. The inclusion of a video in the campaign made no difference to its effectiveness. This study shows that this campaign had limited success in achieving its targets and highlights the importance of thorough evaluations of education interventions that aim to improve the welfare of companion animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA