Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 547
Filtrar
1.
Curr Eye Res ; : 1-9, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39356002

RESUMEN

PURPOSE: Bufalin (BU) is a bioactive ingredient extracted from the skin and parotid venom glands of Bufo raddei, which can effectively inhibit angiogenesis. The aim of this study was to investigate whether BU could affect corneal neovascularization (CoNV). METHODS: A rat CoNV model (right eye) was constructed by administration of NaOH, and the left eye served as a control. Corneal damage scores of rats were detected. Hematoxylin & eosin, TUNEL, and Masson staining examined pathological changes, apoptosis, and fibrosis of corneal tissues. Immunohistochemistry and western blotting assessed the expression of proteins. RESULTS: BU intervention resulted in a significant reduction in corneal inflammatory cells, repair of corneal epithelial hyperplasia, significant reduction in stromal edema, and reduction in vascular proliferation. BU can inhibit corneal neovascularization. CONCLUSION: This study demonstrated that BU inhibits CoNV, fibrosis, and inflammation by modulating the STAT3 signaling pathway, elucidating the intrinsic mechanism of its protective effect. BU has great potential in the treatment of CoNV caused by corneal alkali burns.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39360530

RESUMEN

OBJECTIVE: To investigate the underlying mechanism by which quercetin (Que) regulates macrophage polarization and its subsequent therapeutic effect on liver fibrosis, an important pathological precondition for hepatocellular carcinoma (HCC). METHODS: In vitro experiments were performed on the RAW264.7 mouse macrophage line. After the induction of M1-type macrophages with LPS, the effects of Que on cell morphology, M1/M2 surface marker expression, cytokine expression, and JAK2/STAT3 expression were analyzed. In vivo, male SD rats were used as a model of CCL4-induced hepatic fibrosis, and the effects of Que on serum aminotransferase levels, the histopathological structure of liver tissues, and macrophage-associated protein expression in liver tissues were analyzed. RESULTS: In vitro experiments revealed that Que can suppress the activation of the JAK2/STAT3 signaling pathway, leading to decreases in the expression of M1 macrophage surface markers and cytokines. Additionally, Que was found to increase the expression of M2 macrophage surface markers and cytokines. In vivo, assays demonstrated that Que significantly ameliorated the development of inflammation and fibrosis in a rat liver fibrosis model. CONCLUSION: Que can inhibit hepatic fibrosis by promoting M1 to M2 macrophage polarization, which could be associated with its ability to suppress the JAK2/STAT3 signaling pathway in macrophages.

3.
Heliyon ; 10(19): e38188, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39391472

RESUMEN

The purpose of this study was to investigate the effect of TGF-ß on keloid and its molecular mechanism in fibroblasts. METHODS: The difference between normal tissue and keloid tissue can be detected using HE staining. Fibroblasts were treated with TGF-ß, and then treated with the BRD4 inhibitor JQ1 and the STAT3 activator Colivelin TFA. Western blot was used to measure the relative protein expression of TGF-ß, BRD4, p-STAT3, p-EZH2, C-myc, KLF2, KLF4, α-SMA, and Collagen-I. Immunofluorescence staining was used to measure the relative fluorescence intensity of BRD4, p-STAT3, α-SMA, and Collagen-I. Cell proliferation ability was evaluated by CCK-8 assay and colony formation assay. RESULTS: The expression of TGF-ß and BRD4 was significantly higher in keloid tissue compared to normal tissue. TGF-ß mediated the BRD4/STAT3 signaling pathway to inhibit p-EZH2 and promote the expression of C-myc, KLF2, KLF4, α-SMA, and Collagen-I. Additionally, TGF-ß mediated the BRD4/STAT3 signaling pathway to enhance fibroblast proliferation. CONCLUSION: TGF-ß mediates the BRD4/STAT3 signaling pathway to promote fibroblast proliferation and contribute to the progression of keloid.

4.
J Cancer ; 15(16): 5288-5307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247606

RESUMEN

In the dynamic landscape of cervical cancer (CC) pathophysiology, this study aimed to elucidate the role of necroptosis in modulating tumor proliferation, invasion, and the immune microenvironment in CC. In this study, the impact of necroptosis on CC was evaluated through a series of bioinformatical analyses and experimental approaches. The impact of necroptosis on CC was illustrated by analyzing its effects on tumor aggression, immune responses, and the JAK2-STAT3 signaling pathway. Bevacizumab, a monoclonal antibody targeting vascular endothelial growth factor (VEGF), was also evaluated for its potential induction of necroptosis in CC cells and its interaction with necroptosis inhibitors. Additionally, the study assessed the influence of necroptosis on the immune microenvironment, particularly in T-cell-related pathways and the expression of tumor suppressor genes in CC. Necroptosis was found to enhance VEGFA expression through the activation of the JAK2-STAT3 pathway, promoting tumor proliferative and invasive capabilities in CC. Bevacizumab induced necroptosis in CC cells, potentially leading to resistance to therapy. The combination of bevacizumab with necroptosis inhibitors attenuated VEGFA expression, suggesting a novel therapeutic strategy. Additionally, necroptosis activated T-cell-related pathways and promoted the infiltration and activation of Jurkat T cells. CD3D-a tumor suppressor gene in CC-was identified as a critical marker and its expression could be upregulated by necroptosis via the JAK2-STAT3 pathway in Jurkat T cells. Treatment of CC cells with supernatants from necroptosis-induced Jurkat cells resulted in reduced tumor cell proliferation and invasion. This study reveals a complex interaction between necroptosis, tumor progression, and the immune response in CC. The findings propose a nuanced approach to leveraging necroptosis for therapeutic interventions, highlighting the potential of combining necroptosis inhibitors with existing therapies to improve treatment outcomes in CC.

5.
Discov Oncol ; 15(1): 421, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254762

RESUMEN

BACKGROUND: Existing studies have already revealed the involvement of C-C chemokine receptor type 7 (CCR7) in diverse human cancers, including esophageal cell squamous carcinoma (ESCA). Our current study, aims to explore the relevant mechanisms implicated. METHODS: ESCA cell lines were collected for CCR7 expression quantification using western blot. Following the transfection, the viability, migration and invasion of ESCA cells were evaluated via cell counting kit-8 and Transwell assays. The specific molecular mechanisms underlying the effects of CCR7 in ESCA cells were explored via calculating the expressions of proteins related to metastasis and Janus kinase 2/signal transduction and transcription activation 3 (JAK2/STAT3) signaling pathway via western blot. The correlation between CCR7 and metastasis-related proteins was explored via Pearson's correlation test. RESULTS: CCR7 was high-expressed in ESCA cells and CCR7 knockdown repressed the viability, migration and invasion of ESCA cells, concurrent with the increased expression of E-cadherin (E-cad, which was also known as CDH1 and lowly expressed in ESCA cells) and the decreased expressions of vimentin (Vim, which was highly expressed in ESCA cells) and matrix metalloproteinase-9 (MMP-9, which was also highly expressed in ESCA cells). Meanwhile, CCR7 was positively correlated with Vim and MMP-9 yet negatively correlated with E-cad in ESCA cells, which indicated that CCR7 has a role in promoting tumor progression in ESCA cells. Besides, the phosphorylation of STAT3 and JAK2 in ESCA cells was elevated, which was diminished following CCR7 knockdown. CONCLUSION: This study proves the modulation of CCR7 on ESCA in vitro, which was achieved via JAK2/STAT3 signaling pathway. Our discovery will provide new therapeutic basis and insights for ESCA.

6.
Immunopharmacol Immunotoxicol ; : 1-8, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39307916

RESUMEN

Objective: This study aims to explore the effects of Triptolide (TP) on the differentiation of Th17 cells in ankylosing spondylitis (AS).Methods: Peripheral blood mononuclear cells (PBMCs) collected from 10 patients with active AS patients were exposed to TP, GSK-J4 or vehicle. T lymphocyte subsets were analyzed using flow cytometry. ELISA was used to assess the level of IL-17. Western blot analysis and quantitative RT-PCR were used to measure the mRNA and protein levels of RORγt, JMJD3, EZH2, JAK2 and STAT3 in the JAK2/STAT3 signaling pathway.Results: We observed a tendency toward a greater percentage of IL-17-positive CD4+ T cells in peripheral blood mononuclear cells (PBMCs) from patients with active AS than in those from healthy controls. Triptolide (TP) and GSK-J4 significantly reduced IL-17 expression. In cultured PBMCs from patients with active AS, 24 h of treatment with TP or GSK-J4 decreased the expression of RORγt (p < 0.05), JAK2 and STAT3 (JAK2: p < 0.05; STAT3: p < 0.05). Furthermore, both triptolide and GSK-J4 increased the level of histone 3 with Lys 27 trimethylation (H3K27me3) in patient-derived PBMCs. H3K27me3 enrichment was detected at the promoters of the RORc, STAT3 and IL-17 genes. Consistent with this finding, triptolide upregulated the EZH2 gene and downregulated the JMJD3 gene.Conclusion: Triptolide inhibits Th17 cell differentiation via H3K27me3 upregulation and orchestrates changes in histone-modifying enzymes, including JMJD3 and EZH2. These findings support the clinical efficacy of triptolide for AS and may provide clues for identifying molecular targets for the development of novel treatments.

7.
Int J Biol Macromol ; 277(Pt 3): 134370, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094864

RESUMEN

Ulcerative Colitis (UC) is a chronic inflammatory disease of the intestinal tract with unknown definitive etiology. Polysaccharides are among the most important active components of Abelmoschi Corolla, exhibitings various pharmacological activities such as antioxidation and immunomodulation. However, no studies have yet reported the application of Abelmoschi Corolla Polysaccharides (ACP) in treating UC. This study aims to highlight the therapeutic efficacy of ACP in UC and reveal the underlying mechanism. The potential therapeutic effect is initially verified using a dextran sodium sulfate (DSS)-induced colitis model. 16S rRNA sequencing is performed using feces samples and untargeted metabolomics using serum samples to further reveal that ACP reprograms the dysbiosis triggered by UC progression, increases the abundance of Bacteroides spp., Blautia spp., and Parabacteroides spp. at the genus level and enriches the serum concentration of 7-ketodeoxycholic acid (7-KDA). Furthermore, using the FXR-/- mouse model, it is revealed that Farnesoid X Receptor (FXR) is a key target for ACP and the metabolite 7-KDA to block STAT3 phosphorylation by repairing the intestinal barrier to attenuate UC. Taken together, this work highlights the therapeutic potential of ACP against UC, mainly exerting its effects via modulating gut microbiota and regulating the FXR/STAT3 signaling pathway.


Asunto(s)
Abelmoschus , Microbioma Gastrointestinal , Polisacáridos , Receptores Citoplasmáticos y Nucleares , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Polisacáridos/farmacología , Polisacáridos/química , Transducción de Señal/efectos de los fármacos , Ratones , Receptores Citoplasmáticos y Nucleares/metabolismo , Abelmoschus/química , Sulfato de Dextran , Modelos Animales de Enfermedad , Masculino , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colitis/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/microbiología , Ratones Endogámicos C57BL
8.
Ann Hepatol ; 29(6): 101538, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147129

RESUMEN

INTRODUCTION AND OBJECTIVES: Prostate apoptosis response protein-4 (PAR-4) is considered a tumor suppressor. However, the role of PAR-4 in hepatocellular carcinoma (HCC) has rarely been reported. The study explores the role of PAR-4 in the malignant behaviors of HCC cells. MATERIALS AND METHODS: TCGA database was applied to analyze the expression of PAR-4 in HCC. Evaluated PAR-4 relationship with clinical parameters and prognosis by tissue microarray; expression of STAT3, p-STAT3, Src and Ras was detected by Western blotting or laser confocal microscopy. Cell scratch and flow cytometry assays were used to observe IL-6 regulation of the malignant behaviors of HCC cells. The tumorigenic potential of HCC cells in vivo was evaluated in a nude mouse tumor model. RESULTS: Analysis indicated that the expression of PAR-4 in HCC tissues was significantly higher than that in normal liver tissues; and PAR-4 interacted with STAT3. KEGG analysis showed that PAR-4 plays a role in the Janus kinase (JAK)/STAT signaling pathway. The positive expression rate of PAR-4 in HCC tissues was significantly higher than that in adjacent tissues. Positive correlation between IL-6 and PAR-4 expression in the HCC tissues. Exogenous IL-6 significantly promoted the proliferation and migration of HCC cells and up-regulated the expression of PAR-4 and p-STAT3 in HCC cells. Interference of the expression of PAR-4 could reduce the malignant behaviors of HCC cells and inhibit tumorigenesis in a nude mouse tumor model. CONCLUSIONS: PAR-4 expression is positively correlated with HCC; PAR-4 promotes malignant behavior of HCC cells mediated by the IL-6/STAT3 signaling pathway.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39207680

RESUMEN

An upregulated histocompatibility minor 13 (HM13) has been studied in various tumors, yet the exact mechanism of HM13 in non-small cell lung cancer (NSCLC) is unclear. In view of same, the present study investigates crucial role and action mechanism of HM13 in human NSCLC. HM13 expression was higher in NSCLC tissue and cells through the Western blotting technique along with qRT-PCR. As per data from The Cancer Genome Atlas (TCGA), NSCLC patients having high HM13 expression show lower overall survival. 5-ethynyl-2-deoxyuridine (EdU), Cell Counting Kit-8 (CCK-8), and transwell tests were assessed for NSCLC cell growth, and invasion, and we found that silencing of HM13 inhibited the NSCLC cell proliferation, invasion. Additionally, to investigate the effects of HM13 on THP-1 macrophage polarization, a co-culture model of NSCLC and THP-1 macrophages were used. The CD206 + macrophages were examined using flow cytometry. As the markers of M2 macrophage, the mRNA levels of IL-10 and TGF-ß of THP-1 cells were also detected by qRT-PCR. Knockdown of HM13 could inhibit the M2 polarization. Further experiments demonstrated that downregulated HM13 could inhibit the JAK2/STAT3 signaling pathway. RO8191 (activator of JAK/STAT3 pathway) influenced the invasion, proliferation, and expression of JAK2/STAT3 signaling pathway and Epithelial-mesenchymal transition (EMT) markers induced by HM13 silencing. HM13 knockdown also inhibited the tumor growth in vivo by xenograft nude mouse model. By inhibiting JAK2/STAT3 signaling pathway, HM13 knockdown inhibited the NSCLC cell proliferation, metastasis tumor growth, and tumor-associated macrophage M2 polarization. In NSCLC, HM13 could be a therapeutic target to treat the NSCLC.

10.
Phytomedicine ; 134: 155954, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39178683

RESUMEN

BACKGROUND: Cognitive impairment (CI) is now well-accepted as a complication and comorbidity of diabetes mellitus (DM), becoming a serious medical and social problem. Jiao-tai-wan (JTW), one of noted traditional Chinese medicine (TCM), showed dual therapeutic effects on DM and CI. Nevertheless, the potential mechanism is unclear. PURPOSE: This study sought to investigate the mechanism how JTW protected against DM and CI and screen the active component in JTW. METHODS: Db/db mice were used as mouse models. Mice were treated by gavage with 0.9 % saline (0.1 mL/10g/d), low dose of JTW (2.4 g/kg/d) or high dose of JTW (4.8 g/kg/d) for 8 weeks separately. To access the effects of JTW, the levels of OGTT, HOMA-IR, blood lipids, inflammatory cytokines in serum and hippocampus were measured, behavioral tests were conducted, and histopathological changes were observed. The mechanism exploration was performed via network pharmacology, RT-qPCR, western blot, and immunofluorescence staining (IF). The impact and mechanism of coptisine in vitro were investigated using BV2 cells induced by LPS as cellular models. In vitro experiments were conducted in two parts. The first part comprised four groups: Control group, LPS group, LPS+LCOP group and LPS+HCOP group. The second part consisted of four groups: Control group, LPS group, LPS+HCOP group, and LPS+ Fed group. The western blot and RT-qPCR methods were used to examine the changes in biomarkers of the JAK2/STAT3 signaling pathways in BV2 cells. RESULTS: The results demonstrated that JTW could improve OGTT and HOMA-IR, reduce the serum levels of LDL-C, HDL-C, TG, and TC, restore neuronal dysfunction and synaptic plasticity, and decrease the deposition of Aß in the hippocampus. The findings from ELISA, IF, and RT-qPCR revealed that JTW could alleviate microglial activation and inflammatory status in vivo and coptisine could play the same role in vitro. Moreover, the changes of the JAK2/STAT3 signaling pathway in LPS-induced BV2 cells or hippocampus of db/db mice were distinctly reversed by coptisine or JTW, respectively. CONCLUSION: Our study suggested that JTW and its effective component coptisine could alleviate diabetes mellitus-related cognitive impairment, closely linked to the JAK2/STAT3 signaling pathway.


Asunto(s)
Berberina , Disfunción Cognitiva , Medicamentos Herbarios Chinos , Hipocampo , Transducción de Señal , Animales , Masculino , Ratones , Berberina/farmacología , Berberina/análogos & derivados , Disfunción Cognitiva/tratamiento farmacológico , Citocinas/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Janus Quinasa 2/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo
11.
J Agric Food Chem ; 72(32): 17964-17976, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39096281

RESUMEN

Spinal cord injury (SCI) is one of the most serious health problems, with no effective therapy. Recent studies indicate that Fisetin, a natural polyphenolic flavonoid, exhibits multiple functions, such as life-prolonging, antioxidant, antitumor, and neuroprotection. However, the restorative effects of Fisetin on SCI and the underlying mechanism are still unclear. In the present study, we found that Fisetin reduced LPS-induced apoptosis and oxidative damage in PC12 cells and reversed LPS-induced M1 polarization in BV2 cells. Additionally, Fisetin safely and effectively promoted the motor function recovery of SCI mice by attenuating neurological damage and promoting neurogenesis at the lesion. Moreover, Fisetin administration inhibited glial scar formation, modulated microglia/macrophage polarization, and reduced neuroinflammation. Network pharmacology, RNA-seq, and molecular biology revealed that Fisetin inhibited the activation of the JAK2/STAT3 signaling pathway. Notably, Colivelin TFA, an activator of JAK2/STAT3 signaling, attenuated Fis-mediated neuroinflammation inhibition and therapeutic effects on SCI mice. Collectively, Fisetin promotes functional recovery after SCI by inhibiting microglia/macrophage M1 polarization and the JAK2/STAT3 signaling pathway. Thus, Fisetin may be a promising therapeutic drug for the treatment of SCI.


Asunto(s)
Flavonoles , Janus Quinasa 2 , Macrófagos , Microglía , Factor de Transcripción STAT3 , Transducción de Señal , Traumatismos de la Médula Espinal , Animales , Humanos , Masculino , Ratones , Ratas , Polaridad Celular/efectos de los fármacos , Flavonoides/farmacología , Flavonoides/administración & dosificación , Flavonoles/farmacología , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/inmunología , Células PC12 , Recuperación de la Función/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/inmunología , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética
12.
Neurotherapeutics ; 21(5): e00431, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39153914

RESUMEN

Glioblastoma (GBM) is a brain tumor characterized by its aggressive and invasive properties. It is found that STAT3 is abnormally activated in GBM, and inhibiting STAT3 signaling can effectively suppress tumor progression. In this study, novel pyrimidine compounds, BY4003 and BY4008, were synthesized to target the JAK3/STAT3 signaling pathway, and their therapeutic efficacy and mechanisms of action were evaluated and compared with Tofacitinib in U251, A172, LN428 and patient-derived glioblastoma cells. The ADP-Glo™ kinase assay was utilized to assessed the inhibitory effects of BY4003 and BY4008 on JAK3, a crucial member of the JAK family. The results showed that both compounds significantly inhibited JAK3 enzyme activity, with IC50 values in the nanomolar range. The antiproliferative effects of BY4003, BY4008, and Tofacitinib on GBM and patient-derived glioblastoma cells were evaluated by MTT and H&E assays. The impact of BY4003 and BY4008 on GBM cell migration and apoptosis induction was assessed through wound healing, transwell, and TUNEL assays. STAT3-regulated protein expression and relative mRNA levels were analyzed by western blotting, immunocytochemistry, immunofluorescence, and qRT-PCR. It was found that BY4003, BY4008 and Tofacitinib could inhibit U251, A172, LN428 and patient-derived glioblastoma cells growth and proliferation. Results showed decreased expression of STAT3-associated proteins, including p-STAT3, CyclinD1, and Bcl-2, and increased expression of Bax, a pro-apoptotic protein, as well as significant down-regulation of STAT3 and STAT3-related genes. These findings suggested that BY4003 and BY4008 could inhibit GBM growth by suppressing the JAK3/STAT3 signaling pathway, providing valuable insights into the therapeutic development of GBM.


Asunto(s)
Neoplasias Encefálicas , Proliferación Celular , Glioblastoma , Janus Quinasa 3 , Pirimidinas , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Glioblastoma/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Pirimidinas/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Janus Quinasa 3/metabolismo , Janus Quinasa 3/antagonistas & inhibidores , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Piperidinas
14.
Biol Proced Online ; 26(1): 27, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187810

RESUMEN

To explore the effects and mechanisms of the Xianhecao-Huanglian drug pair on autophagy-mediated intervention in acute inflammatory bowel disease (IBD) via the JAK2/STAT3 pathway. The study examined the underlying mechanisms of action of Xianhecao (APL) and Huanglian (CR) using a mouse model of dextran sodium sulfate (DSS)-induced acute inflammatory bowel disease (IBD) and in an in vitro model of IBD induced by lipopolysaccharide (LPS). The assessment of the therapeutic efficacy of the Xianhecao-Huanglian drug combination in a mouse model of IBD caused by DSS included the following parameters: Assessment of weight loss or gain. Measurement of the disease activity index (DAI). Assessment of histological damage. Determination of organ index. Measurement of colon length. Ascertain the levels of inflammatory cytokines in the intestinal tissues and serum of mice. Immunohistochemistry (IHC) for the measurement of tight junction protein concentrations in the colon mucosa, including ZO-1, claudin-1, and occludin. Measurement of mucin levels, specifically Mucin 2 (Muc2). Hematoxylin and eosin (HE) staining for the observation of histopathological alterations in colonic tissues. Examining the effect on goblet cells using periodic acid-Schiff (PAS) labeling. Application of Western blot and immunofluorescence techniques for the detection of autophagy-related markers in colonic tissues and proteins associated with the JAK2/STAT3 pathway. A cell inflammation model of IBD was induced through LPS stimulation, and a serum containing the Xianhecao-Huanglian drug pair (referred to as ACHP-DS) was formulated. Cell viability, anti-proinflammatory cytokines, tight junction proteins, mucins, autophagy-related markers, and the JAK2/STAT3 signaling pathway were assessed. The Xianhecao-Huanglian drug pair significantly ameliorated the symptoms and survival quality of acute IBD mice, reducing the disease activity index score, raising MUC2 secretion and tight junction protein expression to improve the integrity of the intestinal barrier, and preserving goblet cell function; thus, protecting the intestines. It effectively restrained triggering the signaling pathway that involves JAK2 and STAT3, leading to the suppression of inflammation and amelioration of colonic inflammation damage. Additionally, it induced autophagy in mouse colonic tissues.The in vitro experiments demonstrated that the Xianhecao-Huanglian drug combination enhanced the viability of LOVO and NCM460 cells when exposed to LPS stimulation. Furthermore, it suppressed the production of inflammatory cytokines such as IL-6, IL-1ß, as well as TNF-α, whilst increasing the production of IL-10, ZO-1, along with MUC2. These effects collectively led to the alleviation of inflammation and the restoration of mucosal integrity. The results were consistent with what was shown in the in vivo trial. Moreover, the medication demonstrated effectiveness in reducing JAK2 along with STAT3 phosphorylation levels in the LPS-induced inflammatory model of IBD cells. The intervention with either the Xianhecao-Huanglian drug combination-containing serum or the JAK2/STAT3 pathway inhibitor AG490 reversed the pro-inflammatory effects and increased autophagy levels in the LPS-stimulated cells. The Xianhecao-Huanglian drug combination modulates the JAK2/STAT3 pathway, leading to the induction of autophagy, which serves as an intervention for IBD.

15.
Mol Divers ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158620

RESUMEN

The pachysandra alkaloids found in Sarcococca ruscifolia demonstrate notable anti-hepatocellular carcinoma activity. Despite their efficacy, the structural diversity of these compounds remains limited, and their precise antitumor mechanism is still unclear. In pursuit of identifying novel lead compounds with high efficacy and low toxicity for combating hepatocellular carcinoma, twenty-three compounds of C20-ketone pachysandra alkaloid derivatives were designed and synthesized by using 3-dimethylamine pachysandra alkaloids as scaffolds. Subsequent in vitro anticancer activity experiments showed that synthetic pachysandra alkaloids had a stronger effect on HepG2 cells than did their natural counterparts, with low toxicity and high selectivity. The most potent derivative, 6k, had an IC50 value of 0.75 µM, demonstrating 25.7-fold greater anticancer activity than sarcovagine D against HepG2 cells. Through network pharmacology and molecular docking analysis, it was revealed that synthetic pachysandra alkaloids may exert their effects by inhibiting the JAK2/STAT3 pathway, thereby preventing the proliferation of liver cancer cells. Further research through scratch tests, immunofluorescence experiments, and Western blot analysis revealed that compound 6k effectively inhibited the migration of HepG2 cells and induced mitochondria-mediated intrinsic apoptosis of HepG2 cells by regulating the JAK2/STAT3 signaling pathway. The aforementioned results indicate that compound 6k could be developed as a potential candidate for the treatment of hepatocellular carcinoma.

16.
Adv Sci (Weinh) ; : e2400381, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119928

RESUMEN

Histones methyltransferase NSD3 targeting H3K36 is frequently disordered and mutant in various cancers, while the function of NSD3 during cancer initiation and progression remains unclear. In this study, it is proved that downregulated level of NSD3 is linked to clinical features and poor survival in lung adenocarcinoma. In vivo, NSD3 inhibited the proliferation, immigration, and invasion ability of lung adenocarcinoma. Meanwhile, NSD3 suppressed glycolysis by inhibiting HK2 translation, transcription, glucose uptake, and lactate production in lung adenocarcinoma. Mechanistically, as an intermediary, NSD3 binds to PPP1CB and p-STAT3 in protein levels, thus forming a trimer to dephosphorylate the level of p-STAT3 by PPP1CB, leading to the suppression of HK2 transcription. Interestingly, the phosphorylation function of PPP1CB is related to the concentration of carbon dioxide and pH value in the culture environment. Together, this study revealed the critical non-epigenetic role of NSD3 in the regulation of STAT3-dependent glycolysis, providing a piece of compelling evidence for targeting the NSD3/PPP1CB/p-STAT3 in lung adenocarcinoma.

17.
Bioact Mater ; 41: 137-157, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39131627

RESUMEN

Non-small cell lung cancer (NSCLC) is a major disease with high incidence, low survival rate and prone to develop drug resistance to chemotherapy. The mechanism of secondary drug resistance in NSCLC chemotherapy is very complex, and studies have shown that the abnormal activation of STAT3 (Signal Transducer and Activator of Transcription 3) plays an important role in it. In this study, the pGPU6/GFP/Neo STAT3-shRNA recombinant plasmid was constructed with STAT3 as the precise target. By modifying hydrophilic and hydrophobic blocks onto chitosan, a multifunctional vitamin E succinate-chitosan-polyethylene glycol monomethyl ether histidine (VES-CTS-mPEG-His) micelles were synthesized. The micelles could encapsulate hydrophobic drug doxorubicin through self-assembly, and load the recombinant pGPU6/GFP/Neo STAT3-shRNA (pDNA) through positive and negative charges to form dual-loaded nanoparticles DOX/VCPH/pDNA. The co-delivery and synergistic effect of DOX and pDNA could up-regulate the expression of PTEN (Phosphatase and Tensin Homolog), down-regulate the expression of CD31, and induce apoptosis of tumor cells. The results of precision targeted therapy showed that DOX/VCPH/pDNA could significantly down-regulate the expression level of STAT3 protein, further enhancing the efficacy of chemotherapy. Through this study, precision personalized treatment of NSCLC could be effectively achieved, reversing its resistance to chemotherapy drugs, and providing new strategies for the treatment of drug-resistant NSCLC.

18.
Eur J Pharmacol ; 983: 176957, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39214271

RESUMEN

BACKGROUND: Gastric cancer (GC) is regarded as a major health burden all over the world. WYC-209 inhibits the growth and metastasis of tumor-repopulating cells (TRCs). However, its effectiveness on GC was unexplored. Herein, this study aims to investigate the effect of WYC-209 on GC and elucidate its underlying mechanism. METHODS: We examined the effects of WYC-209 on cell survival, migration, invasion, and colony-forming capacities of two GC cell lines (AGS and HGC-27). Subsequently, RNA-seq and enrichment analyses were performed to screen the differentially expressed genes (DEGs) and the enriched signaling pathways. To further explore the underlying mechanism, loss- and gain-function experiments, Chromatin immunoprecipitation, and luciferase reporter were conducted. Finally, xenograft models were constructed to examine the effects of WYC-209 in vivo. RESULTS: WYC-209 significantly inhibited cell motility in vitro and tumor growth in vivo. RNA-seq performed in AGS cells after WYC-209 treatment revealed that the inhibition effect of WYC-209 on GCs may be associated with the down-regulation of fibroblast growth factor-18 (FGF18), and pleasantly, FGF18 overexpression abrogated the suppression effect of the drug. In addition, we found that WYC-209 attenuated the activation of the Signal Transducer and Activator of Transcription 3 (STAT3) signaling pathway, and impeded the FGF18 levels expressed in GCs. Importantly, the WYC-209 treatment circumvented the binding of STAT3 to the FGF18 promoter, suggested that WYC-209 down-regulated FGF18 expression via the STAT3 signaling pathway. CONCLUSION: Together, our findings presented the promise of WYC-209 in suppressing GC by down-regulating FGF18 expression through inactivating the STAT3 signaling pathway.


Asunto(s)
Movimiento Celular , Regulación hacia Abajo , Factores de Crecimiento de Fibroblastos , Regulación Neoplásica de la Expresión Génica , Factor de Transcripción STAT3 , Transducción de Señal , Neoplasias Gástricas , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Humanos , Transducción de Señal/genética , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Masculino
19.
Biomed Pharmacother ; 177: 117163, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018876

RESUMEN

Graveoline exhibits various biological activities. However, only limited studies have focused on its hepatoprotective properties. This study evaluated the anti-inflammatory and hepatoprotective activities of graveoline, a minor 2-phenylquinolin-4-one alkaloid isolated from Ruta graveolens L., in a liver injury model in vitro and in vivo. A network pharmacology approach was used to investigate the potential signaling pathway associated with the hepatoprotective activity of graveoline. Subsequently, biological experiments were conducted to validate the findings. Topological analysis of the KEGG pathway enrichment revealed that graveoline mediates its hepatoprotective activity through genes associated with the hepatitis B viral infection pathway. Biological experiments demonstrated that graveoline effectively reduced the levels of alanine transaminase and aspartate transaminase in lipopolysaccharide (LPS)-induced HepG2 cells. Graveoline exerted antihepatitic activity by inhibiting the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and elevated the anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) in vitro and in vivo. Additionally, graveoline exerted its hepatoprotective activity by inhibiting JAK1 and STAT3 phosphorylation both in vitro and in vivo. In summary, graveoline can attenuate acute liver injury by inhibiting the TNF-α inflammasome, activating IL-4 and IL-10, and suppressing the JAK1/STAT3 signaling pathway. This study sheds light on the potential of graveoline as a promising therapeutic agent for treating liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Galactosamina , Janus Quinasa 1 , Lipopolisacáridos , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 1/metabolismo , Janus Quinasa 1/antagonistas & inhibidores , Animales , Humanos , Lipopolisacáridos/toxicidad , Transducción de Señal/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Masculino , Células Hep G2 , Galactosamina/toxicidad , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Citocinas/metabolismo , Quinolinas/farmacología
20.
Sci Rep ; 14(1): 15564, 2024 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971897

RESUMEN

Aortic dissection (AD) is a life-threatening condition with a high mortality rate and without effective pharmacological therapies. Our previous study illustrated that leukocyte immunoglobulin-like receptor B4 (LILRB4) knockdown promoted the contractile phenotypic switch and apoptosis of AD cells. This study aimed to further investigate the role of LILRB4 in animal models of AD and elucidate its underlying molecular mechanisms. Animal models of AD were established using 0.1% beta-aminopropionitrile and angiotensin II and an in vitro model was developed using platelet-derived growth factor BB (PDGF-BB). The effects of LILRB4 knockdown on histopathological changes, pyroptosis, phenotype transition, extracellular matrix (ECM), and Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) pathways were assessed using a series of in vivo and in vitro assays. The effects of the JAK2 inhibitor AG490 on AD cell function, phenotypic transition, and ECM were explored. LILRB4 was highly expressed in AD and its knockdown increased survival rate, reduced AD incidence, and alleviated histopathological changes in the AD mouse model. Furthermore, LILRB4 knockdown promoted contractile phenotype switch, stabilized the ECM, and inhibited pyroptosis. Mechanistically, LILRB4 knockdown inhibited the JAK2/STAT3 signaling pathway. JAK2 inhibitor AG490 inhibited cell viability and migration, enhanced apoptosis, induced G0/G1 cell cycle arrest, and suppressed S-phase progression in PDGF-BB-stimulated human aortic smooth muscle cells. LILRB4 knockdown suppresses AD development by inhibiting pyroptosis and the JAK2/STAT3 signaling pathway.


Asunto(s)
Disección Aórtica , Modelos Animales de Enfermedad , Janus Quinasa 2 , Piroptosis , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Humanos , Masculino , Ratones , Disección Aórtica/metabolismo , Disección Aórtica/patología , Disección Aórtica/genética , Técnicas de Silenciamiento del Gen , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Ratones Endogámicos C57BL , Piroptosis/genética , Factor de Transcripción STAT3/metabolismo , Tirfostinos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA