Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 431
Filtrar
1.
J Hered ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171640

RESUMEN

The ability to self-fertilize often varies among closely related hermaphroditic plant species, though, variation can also exist within species. In the North American Arabidopsis lyrata, the shift from self-incompatibility (SI) to selfing established in multiple regions independently, mostly since recent postglacial range expansion. This has made the species an ideal model for the investigation of the genomic underpinnings of the breakdown of SI and its population genetic consequences. By comparing nearby selfing and outcrossing populations across the entire species' geographic distribution, we investigated variation at the self-incompatibility (S-)locus and across the genome. Furthermore, a diallel crossing experiment on one mixed-mating population was performed to gain insight in the genetics of mating system variation. We confirmed that the breakdown of SI had evolved in several S-locus backgrounds. The diallel suggested the involvement of binuclearly expressed parental genes with dominance relations. Though, the population-level genome-wide association study did not single out clear-cut candidate genes but several regions with one near the S-locus. On the implication side, selfing as compared to outcrossing populations had less than half of the genomic diversity, while the number of runs of homozygosity and their length scaled with the degree of inbreeding. The results highlight that mating system shifts to selfing, its genetic underpinning and the likely negative genomic consequences for evolutionary potential can be strongly interlinked with past range dynamics.

2.
Evol Lett ; 8(4): 550-560, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100231

RESUMEN

The shift from outcrossing to self-fertilization is one of the main evolutionary transitions in plants and has broad effects on evolutionary trajectories. In Brassicaceae, the ability to inhibit self-fertilization is controlled by 2 genes, SCR and SRK, tightly linked within the S-locus. A series of small non-coding RNAs also encoded within the S-locus regulates the transcriptional activity of SCR alleles, resulting in a linear dominance hierarchy between them. In Brassicaceae, natural allopolyploid species are often self-compatible (SC) even when one of the progenitor species is self-incompatible, but the reason why polyploid lineages tend to lose self-incompatibility (SI) and the timing of the loss of SI (immediately after ancestral hybridization between the progenitor species, or at a later stage after the formation of allopolyploid lineages) have generally remained elusive. We used a series of synthetic diploid and tetraploid hybrids obtained between self-fertilizing Capsella orientalis and outcrossing Capsella grandiflora to test whether the breakdown of SI could be observed immediately after hybridization, and whether the occurrence of SC phenotypes could be explained by the dominance interactions between S-haplotypes inherited from the parental lineages. We used RNA-sequencing data from young inflorescences to measure allele-specific expression of the SCR gene and infer dominance interactions in the synthetic hybrids. We then evaluated the seed set from autonomous self-pollination in the synthetic hybrids. Our results demonstrate that self-compatibility of the hybrids depends on the relative dominance between S-alleles inherited from the parental species, confirming that SI can be lost instantaneously upon formation of the ancestral allopolyploid lineage. They also confirm that the epigenetic regulation that controls dominance interactions between S-alleles can function between subgenomes in allopolyploids. Together, our results illustrate how a detailed knowledge of the mechanisms controlling SI can illuminate our understanding of the patterns of co-variation between the mating system and changes in ploidy.

4.
Plant Direct ; 8(7): e622, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39044900

RESUMEN

In Brassicaceae self-incompatibility (SI), self-pollen rejection is initiated by the S-haplotype specific interactions between the pollen S cysteine-rich/S-locus protein 11 (SCR/SP11) ligands and the stigma S receptor kinases (SRK). In Brassica SI, a member of the Plant U-Box (PUB) E3 ubiquitin ligases, ARM-repeat containing 1 (ARC1), is then activated by SRK in this stigma and cellular events downstream of this cause SI pollen rejection by inhibiting pollen hydration and pollen tube growth. During the transition to selfing, Arabidopsis thaliana lost the SI components, SCR, SRK, and ARC1. However, this trait can be reintroduced into A. thaliana by adding back functional copies of these genes from closely related SI species. Both SCR and SRK are required for this, though the degree of SI pollen rejection varies between A. thaliana accessions, and ARC1 is not always needed to produce a strong SI response. For the A. thaliana C24 accession, only transforming with Arabidopsis lyrata SCR and SRK confers a strong SI trait (SI-C24), and so here, we investigated if ARC1-related PUBs were involved in the SI pathway in the transgenic A. thaliana SI-C24 line. Two close ARC1 homologs, PUB17 and PUB16, were selected, and (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology was used to generate pub17 and pub16 mutations in the C24 accession. These mutants were then crossed into the transgenic A. thaliana SI-C24 line and their potential impact on SI pollen rejection was investigated. Overall, we did not observe any significant differences in SI responses to implicate PUB17 and PUB16 functioning in the transgenic A. thaliana SI-C24 stigma to reject SI pollen.

5.
Front Plant Sci ; 15: 1397018, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38872891

RESUMEN

The continuously refined genome assembly of the Chinese cabbage accession Chiifu is widely recognized as the reference for Brassica rapa. However, the high self-incompatibility of Chiifu limits its broader utilization. In this study, we report the development of self-compatible Chiifu lines through a meticulous marker-assisted selection (MAS) strategy, involving the substitution of the Chiifu allele of MLPK (M-locus protein kinase) with that from the self-compatible Yellow Sarson (YS). A YS-based marker (SC-MLPK) was employed to screen 841 B. rapa accessions, confirming that all eight accessions with the mlpk/mlpk (mm) genotype exhibited self-compatibility. Additionally, we designed 131 High-Resolution Melting (HRM) markers evenly distributed across the B. rapa genome as genomic background selection (GBS) markers to facilitate the introgression of self-compatibility from YS into Chiifu along with SC-MLPK. Genome background screening revealed that the BC3S1 population had a proportion of the recurrent parent genome (PR) ranging from 93.9% to 98.5%. From this population, we identified self-compatible individuals exhibiting a high number of pollen tubes penetrating stigmas (NPT) (>25) and a maximum compatibility index (CI) value of 7.5. Furthermore, we selected two individuals demonstrating significant similarity to Chiifu in both genetic background and morphological appearance, alongside self-compatibility. These selected individuals were self-pollinated to generate two novel lines designated as SC-Chiifu Lines. The development of these self-compatible Chiifu lines, together with the SC-MLPK marker and the set of HRM markers, represents valuable tools for B. rapa genetics and breeding.

6.
Plant Mol Biol ; 114(4): 77, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38909327

RESUMEN

As self-incompatibility is a major issue in pummelo breeding and production, its mechanism in citrus was analyzed to improve breeding efficiency and reduce production costs. Rutaceae belongs to S-RNase type of gametophytic self-incompatibility. While the function of S-RNase/SLF and the mechanism of self-incompatibility have been studied extensively, the transcriptional regulation of S-RNase has been less studied. We performed transcriptome sequencing with the styles of 'Shatian' pummelo on the day of anthesis and 1-5 days before anthesis, and found that the transcript level of S-RNase gradually decreased with flower development. By analyzing differentially expressed genes and correlation with the expression trend of S-RNase, we identified a candidate gene, CgHSFB1, and utilized biochemical experiments such as yeast one-hybrid assay, electrophoretic mobility shift assay and dual-luciferase assay, as well as transient transformation of citrus calli and Citrus microcarpa and demonstrated that CgHSFB1 could directly bind to the S1-RNase promoter and repress the expression of S1-RNase, which is involved in the pummelo self-incompatibility response. In contrast, CgHSFB1 did not bind to the promoter of S2-RNase, and there was specificity in the regulation of S-RNase.


Asunto(s)
Citrus , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Ribonucleasas , Autoincompatibilidad en las Plantas con Flores , Citrus/genética , Citrus/fisiología , Citrus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Autoincompatibilidad en las Plantas con Flores/genética , Ribonucleasas/genética , Ribonucleasas/metabolismo , Regiones Promotoras Genéticas/genética , Transcriptoma , Perfilación de la Expresión Génica
7.
Int J Mol Sci ; 25(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38928124

RESUMEN

Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality. Here, we aimed to understand the effects of pollen parentage on fruitlet retention and nut quality in orchards of macadamia (Macadamia integrifolia Maiden & Betche). We identified the pollen parent of macadamia 'cultivar '816' embryos by analysing single nucleotide polymorphisms (SNPs) in their DNA using customised MassARRAY and Single Allele Base Extension Reaction (SABER) methods. This allowed us to determine the proportions of self-fertilised and cross-fertilised progeny during premature fruit drop at 6 weeks and 10 weeks after peak anthesis, as well as at nut maturity. We determined how pollen parentage affected nut-in-shell (NIS) mass, kernel mass, kernel recovery, and oil concentration. Macadamia trees retained cross-fertilised fruitlets rather than self-fertilised fruitlets. The percentage of progeny that were cross-fertilised increased from 6% at 6 weeks after peak anthesis to 97% at nut maturity, with each tree producing on average 22 self-fertilised nuts and 881 cross-fertilised nuts. Three of the four cross-pollen parents provided fruit with significantly higher NIS mass, kernel mass, or kernel recovery than the few remaining self-fertilised fruit. Fruit that were cross-fertilised by '842', 'A4', or 'A203' had 16-29% higher NIS mass and 24-44% higher kernel mass than self-fertilised fruit. Nuts that were cross-fertilised by 'A4' or 'A203' also had 5% or 6% higher kernel recovery, worth approximately $US460-540 more per ton for growers than self-fertilised nuts. The highly selective abscission of self-fertilised fruitlets and the lower nut quality of self-fertilised fruit highlight the critical importance of cross-pollination for macadamia productivity.


Asunto(s)
Frutas , Macadamia , Polimorfismo de Nucleótido Simple , Macadamia/genética , Frutas/genética , Frutas/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Autofecundación , Polen/genética , Polen/crecimiento & desarrollo , Polen/efectos de los fármacos , ADN de Plantas/genética , Nueces/genética , Nueces/crecimiento & desarrollo , Polinización
8.
Ann Bot ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716780

RESUMEN

BACKGROUND AND AIMS: There is ample theoretical and experimental evidence that angiosperms harbouring self-incompatibility (SI) systems are likely to respond to global changes in unique ways relative to taxa with other mating systems. In this paper, we present an updated database on the prevalence of SI systems across angiosperms and examine the relationship between the presence of SI and latitude, biomes, life-history traits and management conditions to evaluate the potential vulnerability of SI taxa to climate change and habitat disturbance. METHODS: We performed literature searches to identify studies that employed controlled crosses, microscopic analyses and/or genetic data to classify taxa as having SI, self-compatibility (SC), partial self-compatibility (PSC) or self-sterility (SS). Where described, the site of the SI reaction and the presence of dimorphic versus monomorphic flowers were also recorded. We then combined this database on the distribution of mating systems with information about the life span, growth habit, management conditions and geographic distribution of taxa. Information about the geographic distribution of taxa was obtained from a manually curated version of the Global Biodiversity Information Facility database, and from vegetation surveys encompassing 9 biomes. We employed multinomial logit regression to assess the relationship between mating system and life-history traits, management condition, latitude and latitude-squared using self-compatible taxa as the baseline. Additionally, we employed LOESS regression to examine the relationship between the probability of SI and latitude. Finally, by summarizing information at the family level, we plotted the distribution of SI systems across angiosperms including information about the presence of SI or dioecy, the inferred reaction site of the SI system when known, as well as the proportion of taxa in a family for which information is available. KEY RESULTS: We obtained information about the SI status of 5686 hermaphroditic taxa, of which 55% exhibited SC, and the remaining 45% harbour SI, self-sterility (SS), or PSC. Highlights of the multinomial logit regression include that taxa with PSC have a greater odds of being short- (OR=1.3) or long- (OR=1.57) lived perennials relative to SC ones, and that SS/SI taxa (pooled) are less likely to be annuals (OR=0.64) and more likely to be long-lived perennials (OR=1.32). SS/SI taxa had a greater odds of being succulent (OR=2.4) or a tree (OR=2.05), and were less likely to be weeds (OR=0.34). Further, we find a quadratic relationship between the probability of being SI with latitude: SI taxa were more common in the tropics, a finding that was further supported by the vegetation surveys which showed fewer species with SS/SI in temperate and northern latitudes compared to mediterranean and tropical biomes. CONCLUSIONS: We conclude that in the short-term habitat fragmentation, pollinator loss and temperature increases may negatively impact plants with SI systems, particularly long-lived perennial and woody species dominant in tropical forests. In the longer term, these and other global changes are likely to select for self-compatible or partially self-compatible taxa which, due to the apparent importance of SI as a driver of plant diversification across the angiosperm tree of life, may globally influence plant species richness.

9.
New Phytol ; 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702970

RESUMEN

Plants employ a diversity of reproductive safeguarding strategies to circumvent the challenge of pollen limitation. Focusing on southern African Lachenalia (Asparagaceae: Scilloideae), we test the hypothesis that the evolution of reproductive safeguarding traits (self-compatibility, autonomous selfing, bird pollination and clonal propagation) is favoured in species occupying conditions of low insect abundance imposed by critically infertile fynbos heathland vegetation and by flowering outside the austral spring insect abundance peak. We trace the evolution of these traits and selective regimes on a dated, multi-locus phylogeny of Lachenalia and assess their evolutionary associations using ordinary and phylogenetic regression. Ancestral state reconstructions identify an association with non-fynbos vegetation and spring flowering as ancestral in Lachenalia, the transition to fynbos vegetation and non-spring flowering taking place multiple times. They also show that self-compatibility, autofertility, bird pollination and production of multiple clonal offsets have evolved repeatedly. Regression models suggest that bird pollination and self-compatibility are selected for in fynbos and in non-spring flowering lineages, with autofertility being positively associated with non-spring flowering. These patterns support the interpretation of these traits as reproductive safeguarding adaptations under reduced insect pollinator abundance. We find no evidence to support the interpretation of clonal propagation as a reproductive safeguarding strategy.

11.
BMC Plant Biol ; 24(1): 441, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778301

RESUMEN

BACKGROUND: Goji (Lycium barbarum L.) is a perennial deciduous shrub widely distributed in arid and semiarid regions of Northwest China. It is highly valued for its medicinal and functional properties. Most goji varieties are naturally self-incompatible, posing challenges in breeding and cultivation. Self-incompatibility is a complex genetic trait, with ongoing debates regarding the number of self-incompatible loci. To date, no genetic mappings has been conducted for S loci or other loci related to self-incompatibility in goji. RESULTS: We used genome resequencing to create a high-resolution map for detecting de novo single-nucleotide polymorphisms (SNP) in goji. We focused on 229 F1 individuals from self-compatible '13-19' and self-incompatible 'new 9' varieties. Subsequently, we conducted a quantitative trait locus (QTL) analysis on traits associated with self-compatibility in goji berries. The genetic map consisted of 249,327 SNPs distributed across 12 linkage groups (LGs), spanning a total distance of 1243.74 cM, with an average interval of 0.002 cM. Phenotypic data related to self-incompatibility, such as average fruit weight, fruit rate, compatibility index, and comparable compatibility index after self-pollination and geitonogamy, were collected for the years 2021-2022, as well as for an extra year representing the mean data from 2021 to 2022 (2021/22). A total of 43 significant QTL, corresponding to multiple traits were identified, accounting for more than 11% of the observed phenotypic variation. Notably, a specific QTL on chromosome 2 consistently appeared across different years, irrespective of the relationship between self-pollination and geitonogamy. Within the localization interval, 1180 genes were annotated, including Lba02g01102 (annotated as an S-RNase gene), which showed pistil-specific expression. Cloning of S-RNase genes revealed that the parents had two different S-RNase alleles, namely S1S11 and S2S8. S-genotype identification of the F1 population indicated segregation of the four S-alleles from the parents in the offspring, with the type of S-RNase gene significantly associated with self-compatibility. CONCLUSIONS: In summary, our study provides valuable insights into the genetic mechanism underlying self-compatibility in goji berries. This highlights the importance of further positional cloning investigations and emphasizes the importance of integration of marker-assisted selection in goji breeding programs.


Asunto(s)
Mapeo Cromosómico , Frutas , Lycium , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Lycium/genética , Lycium/fisiología , Frutas/genética , Frutas/fisiología , Autoincompatibilidad en las Plantas con Flores/genética , Fenotipo , China
12.
Plant Sci ; 345: 112116, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38750797

RESUMEN

Self-incompatibility (SI) is an important genetic mechanism exploited by numerous angiosperm species to prevent inbreeding. This mechanism has been widely used in the breeding of SI trilinear hybrids of Brassica napus. The SI responses in these hybrids can be overcome by using a salt (NaCl) solution, which is used for seed propagation in SI lines. However, the mechanism underlying the NaCl-induced breakdown of the SI response in B. napus remains unclear. Here, we investigated the role of two key proteins, BnaPLDα1 and BnaMPK6, in the breakdown of SI induced by NaCl. Pollen grain germination and seed set were reduced in BnaPLDα1 triple mutants following incompatible pollination with NaCl treatment. Conversely, SI responses were partially abolished by overexpression of BnaC05.PLDα1 without salt treatment. Furthermore, we observed that phosphatidic acid (PA) produced by BnaPLDα1 bound to B. napus BnaMPK6. The suppression and enhancement of the NaCl-induced breakdown of the SI response in B. napus were observed in BnaMPK6 quadruple mutants and BnaA05.MPK6 overexpression lines, respectively. Moreover, salt-induced stigmatic reactive oxygen species (ROS) accumulation had a minimal effect on the NaCl-induced breakdown of the SI response. In conclusion, our results demonstrate the essential role of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response to salt treatment in SI B. napus. Additionally, our study provides new insights into the relationship between SI signaling and salt stress response. SIGNIFICANCE STATEMENT: A new molecular mechanism underlying the breakdown of the NaCl-induced self-incompatibility (SI) response in B. napus has been discovered. It involves the induction of BnaPLDα1 expression by NaCl, followed by the activation of BnaMPK6 through the production of phosphatidic acid (PA) by BnaPLDα1. Ultimately, this pathway leads to the breakdown of SI. The involvement of the BnaPLDα1-PA-BnaMPK6 pathway in overcoming the SI response following NaCl treatment provides new insights into the relationship between SI signalling and the response to salt stress.


Asunto(s)
Brassica napus , Proteínas de Plantas , Cloruro de Sodio , Brassica napus/genética , Brassica napus/fisiología , Brassica napus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Autoincompatibilidad en las Plantas con Flores/genética , Regulación de la Expresión Génica de las Plantas , Polinización
13.
Am J Bot ; 111(5): e16329, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38708705

RESUMEN

PREMISE: Gynodioecy is a rare sexual system in which two genders (sensu Lloyd, 1980), cosexuals and females, coexist. To survive, female plants must compensate for their lack of siring capacity and male attractiveness. In European chestnut (Castanea sativa), an outcrossing tree, self-pollination reduces fruit set in cosexual individuals because of late-acting self-incompatibility and early inbreeding depression. Could this negative sexual interaction explain the presence of females in this species? METHODS: We studied gender variation in wild populations of European chestnut. In addition, we compared fruit set (the proportion of flowers giving fruits) and other key female fitness components as well as reproductive allocation between genders. We then performed emasculation experiments in cosexual trees, by removing nectar-producing fertile male inflorescences. We also removed sterile but nectar-producing male inflorescences from female trees, as a control. RESULTS: We found a highly variable proportion of male-sterile individuals in the wild in European chestnut. In the experimental plot, trees from each gender had similar size, flower density, and burr set, but different fruit set. Removing nectar-producing male inflorescences from branches or entire trees increased fruit set in cosexual but not in female trees. CONCLUSIONS: These results show that self-pollination impairs fruit set in cosexual trees. Female trees avoid these problems as they do not produce pollen but continue to attract pollinators thanks to their rewarding male-sterile inflorescences, resulting in a much higher fruit set than in cosexuals. This demonstrates that even outcrossed plants can benefit from the cessation of self-pollination, to the point that unisexuality can evolve.


Asunto(s)
Fagaceae , Frutas , Polinización , Fagaceae/fisiología , Frutas/fisiología , Flores/fisiología , Árboles/fisiología , Autoincompatibilidad en las Plantas con Flores , Reproducción
14.
Plant J ; 119(3): 1258-1271, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38804089

RESUMEN

The successful interaction between pollen and stigma is a critical process for plant sexual reproduction, involving a series of intricate molecular and physiological events. After self-compatible pollination, a significant reduction in reactive oxygen species (ROS) production has been observed in stigmas, which is essential for pollen grain rehydration and subsequent pollen tube growth. Several scavenging enzymes tightly regulate ROS homeostasis. However, the potential role of these ROS-scavenging enzymes in the pollen-stigma interaction in Brassica napus remains unclear. Here, we showed that the activity of ascorbate peroxidase (APX), an enzyme that plays a crucial role in the detoxification of hydrogen peroxide (H2O2), was modulated depending on the compatibility of pollination in B. napus. We then identified stigma-expressed APX1s and generated pentuple mutants of APX1s using CRISPR/Cas9 technology. After compatible pollination, the BnaAPX1 pentuple mutants accumulated higher levels of H2O2 in the stigma, while the overexpression of BnaA09.APX1 resulted in lower levels of H2O2. Furthermore, the knockout of BnaAPX1 delayed the compatible response-mediated pollen rehydration and germination, which was consistent with the effects of a specific APX inhibitor, ρ-Aminophenol, on compatible pollination. In contrast, the overexpression of BnaA09.APX1 accelerated pollen rehydration and germination after both compatible and incompatible pollinations. However, delaying and promoting pollen rehydration and germination did not affect the seed set after compatible and incompatible pollination in APX1 pentuple mutants and overexpression lines, respectively. Our results demonstrate the fundamental role of BnaAPX1 in pollen rehydration and germination by regulating ROS homeostasis during the pollen-stigma interaction in B. napus.


Asunto(s)
Ascorbato Peroxidasas , Brassica napus , Proteínas de Plantas , Ascorbato Peroxidasas/metabolismo , Ascorbato Peroxidasas/genética , Brassica napus/genética , Brassica napus/fisiología , Brassica napus/enzimología , Brassica napus/metabolismo , Flores/genética , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Germinación , Homeostasis , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/fisiología , Tubo Polínico/genética , Tubo Polínico/metabolismo , Polinización , Especies Reactivas de Oxígeno/metabolismo
15.
Plants (Basel) ; 13(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38592914

RESUMEN

Alfalfa (Medicago sativa L.) is an important forage crop worldwide, but molecular genetics and breeding research in this species are hindered by its self-incompatibility (SI). Although the mechanisms underlying SI have been extensively studied in other plant families, SI in legumes, including alfalfa, remains poorly understood. Here, we determined that self-pollinated pollen tubes could germinate on the stigma of alfalfa, grow through the style, and reach the ovarian cavity, but the ovules collapsed ~48 h after self-pollination. A transcriptomic analysis of dissected pistils 24 h after self-pollination identified 941 differently expressed genes (DEGs), including 784 upregulated and 157 downregulated genes. A gene ontology (GO) analysis showed that the DEGs were highly enriched in functions associated with the regulation of pollen tube growth and pollen germination. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that pentose and glucuronate interconversion, plant hormone signal transduction, the spliceosome, and ribosomes might play important roles in SI. Our co-expression analysis showed that F-box proteins, serine/threonine protein kinases, calcium-dependent protein kinases (CDPKs), bHLHs, bZIPs, and MYB-related family proteins were likely involved in the SI response. Our study provides a catalog of candidate genes for further study to understand SI in alfalfa and related legumes.

16.
Plants (Basel) ; 13(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611487

RESUMEN

Self-incompatibility is a widespread genetic mechanism found in flowering plants. It plays a crucial role in preventing inbreeding and promoting outcrossing. The genes that control self-incompatibility in plants are typically determined by the S-locus female determinant factor and the S-locus male determinant factor. In the Solanaceae family, the male determinant factor is often the SLF gene. In this research, we cloned and analyzed 13 S2-LbSLF genes from the L. barbarum genome, which are located on chromosome 2 and close to the physical location of the S-locus female determinant factor S-RNase, covering a region of approximately 90.4 Mb. The amino acid sequence identity of the 13 S2-LbSLFs is 58.46%, and they all possess relatively conserved motifs and typical F-box domains, without introns. A co-linearity analysis revealed that there are no tandemly repeated genes in the S2-LbSLF genes, and that there are two pairs of co-linear genes between S2-LbSLF and the tomato, which also belongs to the Solanaceae family. A phylogenetic analysis indicates that the S2-LbSLF members can be divided into six groups, and it was found that the 13 S2-LbSLFs are clustered with the SLF genes of tobacco and Petunia inflata to varying degrees, potentially serving as pollen determinant factors regulating self-incompatibility in L. barbarum. The results for the gene expression patterns suggest that S2-LbSLF is only expressed in pollen tissue. The results of the yeast two-hybrid assay showed that the C-terminal region of S2-LbSLFs lacking the F-box domain can interact with S-RNase. This study provides theoretical data for further investigation into the functions of S2-LbSLF members, particularly for the identification of pollen determinant factors regulating self-incompatibility in L. barbarum.

17.
Front Genet ; 15: 1360332, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655055

RESUMEN

The S-RNase gene plays an essential role in the gametophytic self-incompatibility (GSI) system of Pyrus. It codes for the stylar-expressed S-RNase protein which inhibits the growth of incompatible pollen tubes through cytotoxicity and the induction of programmed cell death in the pollen tube. While research on the Pyrus GSI system has primarily focused on the S-RNase gene, there is still a lack of insight into its spatiotemporal expression profile and the factors that regulate it. Previous studies have suggested that S-RNase expression in the style is influenced by pollination and is dependent on the compatibility type. We here continue on this basic hypothesis by analyzing the spatiotemporal expression of the S-RNase alleles in Pyrus communis "Conference" styles in response to different types of pollination; namely, upon full- and semi-compatible pollination and upon incompatible selfing. The results revealed that temporal dynamics of S-RNase expression are influenced by the pollen's compatibility type, indicating the presence of a signaling mechanism between pollen and style to control S-RNase production during pollen tube growth. In our experiment, S-RNase expression continuously decreased after cross-pollination and in the unpollinated control. However, after a fully incompatible pollination, S-RNase expression remained constant. Finally, semi-compatible pollination showed a initially constant S-RNase expression for both alleles followed by a strong decrease in expression. Based on these results and previous findings, we propose a regulatory mechanism to explain the effect of pollination and the associated compatibility type on S-RNase expression in the style. This proposed mechanism could be used as a starting point for future research.

18.
J Exp Bot ; 75(14): 4300-4313, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38660967

RESUMEN

Olive (Olea europaea L.) is an important Mediterranean tree species with a longstanding history of cultivation, boasting a diverse array of local cultivars. While traditional olive orchards are valued for their cultural and aesthetic significance, they often face economic sustainability challenges in the modern context. The success of both traditional and newly introduced cultivars (e.g. those obtained by cross-breeding) is hindered by self-incompatibility, a prevalent issue for this species that results in low fruit set when limited genetic diversity is present. Further, biological, environmental, and agronomic factors have been shown to interlink in shaping fertilization patterns, hence impacting on the final yield. Climatic conditions during pollination, such as excessive rainfall or high temperatures, can further exacerbate the problem. In this work, we provide an overview of the various factors that trigger the phenomenon of suboptimal fruit set in olive trees. This work provides a comprehensive understanding of the interplay among these factors, shedding light on potential mechanisms and pathways that contribute to the observed outcomes in the context of self-incompatibility in olive.


Asunto(s)
Olea , Olea/fisiología , Polinización , Reproducción , Frutas/fisiología , Frutas/crecimiento & desarrollo , Frutas/genética , Ambiente , Autoincompatibilidad en las Plantas con Flores
19.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(4): 264-280, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38599847

RESUMEN

Self-incompatibility (SI) is a mechanism for preventing self-fertilization in flowering plants. SI is controlled by a single S-locus with multiple haplotypes (S-haplotypes). When the pistil and pollen share the same S-haplotype, the pollen is recognized as self and rejected by the pistil. This review introduces our research on Brassicaceae and Solanaceae SI systems to identify the S-determinants encoded at the S-locus and uncover the mechanisms of self/nonself-discrimination and pollen rejection. The recognition mechanisms of SI systems differ between these families. A self-recognition system is adopted by Brassicaceae, whereas a collaborative nonself-recognition system is used by Solanaceae. Work by our group and subsequent studies indicate that plants have evolved diverse SI systems.


Asunto(s)
Brassicaceae , Solanaceae , Humanos , Brassicaceae/genética , Solanaceae/genética , Plantas , Polen , Flores , Proteínas de Plantas
20.
New Phytol ; 242(6): 2832-2844, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581189

RESUMEN

Nicotiana attenuata styles preferentially select pollen from among accessions with corresponding expression patterns of NaS-like-RNases (SLRs), and the postpollination ethylene burst (PPEB) is an accurate predictor of seed siring success. However, the ecological consequences of mate selection, its effect on the progeny, and the role of SLRs in the control of ethylene signaling remain unknown. We explored the link between the magnitude of the ethylene burst and expression of the SLRs in a set of recombinant inbred lines (RILs), dissected the genetic underpinnings of mate selection through genome-wide association study (GWAS), and examined its outcome for phenotypes in the next generation. We found that high levels of PPEB are associated with the absence of SLR2 in most of the tested RILs. We identified candidate genes potentially involved in the control of mate selection and showed that pollination of maternal genotypes with their favored pollen donors produces offspring with longer roots. When the maternal genotypes are only able to select against nonfavored pollen donors, the selection for such positive traits is abolished. We conclude that plants' ability of mate choice contributes to measurable changes in progeny phenotypes and is thus likely a target of selection.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Fenotipo , Polen , Ribonucleasas , Polen/genética , Polen/fisiología , Ribonucleasas/genética , Ribonucleasas/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Etilenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinización , Estudio de Asociación del Genoma Completo , Cigoto/metabolismo , Genotipo , Endogamia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA