Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
J Affect Disord ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142581

RESUMEN

BACKGROUND: Childhood trauma is closely tied to adult depression, but the neurobiological mechanisms remain unclear. Previous studies suggested associations between depression and large-scale brain networks such as the Ventral Attention Network (VAN) and Somatosensory Motor Network (SMN). This study hypothesized that functional connectivity (FC) within and between these networks mediates the link between childhood trauma and adult depression. METHODS: The Childhood Trauma Questionnaire (CTQ) assessed developmental experiences, and the Hamilton Rating Scale for Depression (HAMD-17) gauged depressive symptoms. Resting-state functional magnetic resonance imaging (fMRI) analyzed FC within and between the VAN and SMN. RESULTS: Depression group exhibited significantly higher HAMD and CTQ scores, as well as elevated FC within the VAN and between the VAN and SMN (P < 0.05). Positive correlations were found between HAMD total score and FC within the VAN (P < 0.05, r = 0.35) and between the VAN and SMN (P < 0.05, r = 0.34), as well as with CTQ total score (P < 0.05, r = 0.27). Positive correlations were also observed between CTQ total score and FC within the VAN (P < 0.05, r = 0.31) and between the VAN and SMN (P < 0.05, r = 0.29). In the mediation model, FC within and between the VAN and SMN significantly mediated childhood trauma and depression. LIMITATIONS: The cross-sectional design limits causal inference. The sample size for different trauma types is relatively small, urging caution in generalizing findings. CONCLUSIONS: The study underscores the association between depression severity, VAN dysfunction, abnormal VAN-SMN FC, and childhood trauma. These findings contribute to understanding the neurobiological mechanisms underlying childhood trauma and depression.

2.
J Psychiatr Res ; 177: 378-391, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39083996

RESUMEN

The role of cerebellar-cerebral functional connectivity (CC-FC) in obsessive-compulsive disorder (OCD), its trajectory post-pharmacotherapy, and its potential as a prognostic biomarker and genetic mechanism remain uncertain. To address these gaps, this study included 37 drug-naive OCD patients and 37 healthy controls (HCs). Participants underwent baseline functional magnetic resonance imaging (fMRI), followed by four weeks of paroxetine treatment for patients with OCD, and another fMRI scan post-treatment. We examined seed-based CC-FC differences between the patients and HCs, and pre- and post-treatment patients. Support vector regression (SVR) based on CC-FC was performed to predict treatment response. Correlation analysis explored associations between CC-FC and clinical features, as well as gene profiles. Compared to HCs, drug-naive OCD patients exhibited reduced CC-FC in executive, affective-limbic, and sensorimotor networks, with specific genetic profiles associated with altered CC-FC. Gene enrichment analyses highlighted the involvement of these genes in various biological processes, molecular functions, and pathways. Post-treatment, the patients showed partial clinical improvement and partial restoration of the previously decreased CC-FC. Abnormal CC-FC at baseline correlated negatively with compulsions severity and social functional impairment, while changes in CC-FC correlated with cognitive function changes post-treatment. CC-FC emerged as a potential predictor of symptom severity in patients following paroxetine treatment. This longitudinal resting-state fMRI study underscores the crucial role of CC-FC in the neuropsychological mechanisms of OCD and its pharmacological treatment. Transcriptome-neuroimaging spatial correlation analyses provide insight into the neurobiological mechanisms underlying OCD pathology. Furthermore, SVR analyses hold promise for advancing precision medicine approaches in treating patients with OCD.

3.
Sci Rep ; 14(1): 17654, 2024 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-39085330

RESUMEN

Motor fatigue in Multiple Sclerosis (MS) is due to reduced motor cortex (M1) output and altered sensorimotor network (SMN) modulation. Natalizumab, a disease-modifying therapy, reduces neuroinflammation and improves fatigue. However, some patients treated with natalizumab experience fatigue recurrence ('wearing-off') before subsequent infusions. Wearing-off provides a valuable window into MS-related motor fatigue mechanisms in a controlled, clinically stable, setting. This study investigates whether wearing-off is associated with worsening motor fatigue and its neurophysiological mechanisms and assesses natalizumab's effect on MS-related fatigue. Forty-five relapsing-remitting MS patients with wearing-off symptoms were evaluated pre- and post-natalizumab infusion. Assessments included evaluating disability levels, depressive symptoms, and the impact of fatigue symptoms on cognitive, physical, and psychosocial functioning. The motor fatigue index was computed through the number of blocks completed during a fatiguing task and peripheral, central, and supraspinal fatigue (M1 output) were evaluated by measuring the superimposed twitches evoked by peripheral nerve and transcranial magnetic stimulation of M1. Transcranial magnetic stimulation-electroencephalography assessed M1 effective connectivity by measuring TMS-evoked potentials (TEPs) within the SMN before- and after the task. We found that wearing-off was associated with increased motor fatigue index, increased central and supraspinal fatigue, and diminished task-related modulation of TEPs compared to post-natalizumab infusion. Wearing-off was also associated with worsened fatigue impact and depression symptom scores. We conclude that the wearing-off phenomenon is associated with worsening motor fatigue due to altered M1 output and modulation of the SMN. Motor fatigue in MS may reflect reversible, inflammation-related changes in the SMN that natalizumab can modulate. Our findings apply primarily to MS patients receiving natalizumab, emphasizing the need for further research on other treatments with wearing-off.


Asunto(s)
Natalizumab , Estimulación Magnética Transcraneal , Humanos , Natalizumab/uso terapéutico , Natalizumab/efectos adversos , Femenino , Masculino , Adulto , Fatiga/etiología , Corteza Motora/fisiopatología , Corteza Motora/efectos de los fármacos , Persona de Mediana Edad , Potenciales Evocados Motores/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/fisiopatología , Esclerosis Múltiple Recurrente-Remitente/complicaciones , Factores Inmunológicos/uso terapéutico , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/administración & dosificación , Fatiga Muscular/efectos de los fármacos , Electroencefalografía
4.
Front Neurol ; 15: 1373125, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903166

RESUMEN

Objective: To investigate whether changes occur in the dynamic functional connectivity (dFC) of motor cerebellum with cerebral cortex in juvenile myoclonic epilepsy (JME). Methods: We adopted resting-state electroencephalography-functional magnetic resonance imaging (EEG-fMRI) and a sliding-window approach to explore the dFC of motor cerebellum with cortex in 36 JME patients compared with 30 and age-matched health controls (HCs). The motor cerebellum was divided into five lobules (I-V, VI, VIIb, VIIIa, and VIIIb). Additionally, correlation analyses were conducted between the variability of dFC and clinical variables in the Juvenile Myoclonic Epilepsy (JME) group, such as disease duration, age at disease onset, and frequency score of myoclonic seizures. Results: Compared to HCs, the JME group presented increased dFC between the motor cerebellum with SMN and DMN. Specifically, connectivity between lobule VIIb and left precentral gyrus and right inferior parietal lobule (IPL); between lobule VIIIa and right inferior frontal gyrus (IFG) and left IPL; and between lobule VIIIb and left middle frontal gyrus (MFG), bilateral superior parietal gyrus (SPG), and left precuneus. In addition, within the JME group, the strength of dFC between lobule VIIIb and left precuneus was negatively (r = -0.424, p = 0.025, Bonferroni correction) related with the frequency score of myoclonic seizures. Conclusion: In patients with JME, there is a functional dysregulation between the motor cerebellum with DMN and SMN, and the variability of dynamic functional connectivity may be closely associated with the occurrence of motor symptoms in JME.

5.
Neurosci Biobehav Rev ; 162: 105712, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733896

RESUMEN

Substance use disorders (SUDs) are severe psychiatric illnesses. Seed region and independent component analyses are currently the dominant connectivity measures but carry the risk of false negatives due to selection. They can be complemented by a data-driven and whole-brain usage of voxel-wise intrinsic measures (VIMs). We meta-analytically integrated VIMs, namely regional homogeneity (ReHo), amplitude of low-frequency fluctuations (ALFF), voxel-mirrored homotopy connectivity (VMHC) and degree centrality (DC) across different SUDs using the Activation Likelihood Estimation (ALE) algorithm, functionally decoded emerging clusters, and analysed their connectivity profiles. Our systematic search identified 51 studies including 1439 SUD participants. Although no overall convergent pattern of alterations across VIMs in SUDs was found, sensitivity analyses demonstrated two ALE-derived clusters of increased ReHo and ALFF in SUDs, which peaked in the left pre- and postcentral cortices. Subsequent analyses showed their involvement in action execution, somesthesis, finger tapping and vibrotactile monitoring/discrimination. Their numerous clinical correlates across included studies highlight the under-discussed role of sensorimotor cortices in SUD, urging a more attentive exploration of their clinical significance.


Asunto(s)
Corteza Sensoriomotora , Trastornos Relacionados con Sustancias , Humanos , Trastornos Relacionados con Sustancias/fisiopatología , Trastornos Relacionados con Sustancias/diagnóstico por imagen , Corteza Sensoriomotora/diagnóstico por imagen , Corteza Sensoriomotora/fisiopatología , Imagen por Resonancia Magnética , Mapeo Encefálico
6.
Mult Scler Relat Disord ; 86: 105601, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604003

RESUMEN

BACKGROUND: Motor preparation and execution can be impaired in patients with multiple sclerosis (pwMS). These neural processes can be assessed using electroencephalography (EEG). During a self-paced movement, EEG signal amplitude decreases before movement (event-related desynchronization, ERD) and increases after movement (event-related synchronization, ERS). OBJECTIVE: To reappraise ERD/ERS changes in pwMS compared to healthy controls (HC). METHODS: This single-center study included 13 pwMS and 10 sex/age-matched HC. 60-channel EEG was recorded during two self-paced movements of the right hand: a simple index finger extension task and a more complex finger tapping task. Clinical variables included MS type, sex, age, disease duration, disability, grip strength, fatigue and attentional performance. EEG variables included ERD and ERS onset latency, duration, and amplitude determined using two methods of signal analyses (based on visual or automated determination) in the alpha and beta frequency bands in five cortical regions: right and left frontocentral and centroparietal regions and a midline region. Neuroimaging variables included the volumes of four deep brain structures (thalamus, putamen, pallidum and caudate nucleus) and the relative lesion load. RESULTS: ERD/ERS changes in pwMS compared to HC were observed only in the beta band. In pwMS, beta-ERD had a delayed onset in the midline and right parietocentral regions and a shortened duration or increased amplitude in the parietocentral region; beta-ERS had a shorter duration, delayed onset, or reduced amplitude in the left parieto/frontocentral region. In addition, pwMS with a more delayed beta-ERD in the midline region had less impaired executive functions but increased caudate nuclei volume, while pwMS with a more delayed beta-ERS in the parietocentral region contralateral to the movement had less fatigue but increased thalami volume. CONCLUSION: This study confirms an alteration of movement preparation and execution in pwMS, mainly characterized by a delayed cortical activation (ERD) and a delayed and reduced post-movement inhibition (ERS) in the beta band. Compensatory mechanisms could be involved in these changes, associating more preserved clinical performance and overactivation of deep brain structures.


Asunto(s)
Electroencefalografía , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/diagnóstico por imagen , Sincronización Cortical/fisiología , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Desempeño Psicomotor/fisiología
7.
Front Hum Neurosci ; 18: 1295859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38439937

RESUMEN

Background: Motor imagery therapy (MIT) showed positive effects on upper limbs motor function. However, the mechanism by which MIT improves upper limb motor function is not fully understood. Therefore, our purpose was to investigate the changes in functional connectivity (FC) within and outside the sensorimotor network (SMN) induced by MIT associated with improvement in upper limb motor function in stroke patients. Methods: A total of 26 hemiplegic stroke patients were randomly divided into MIT (n = 13) and control (n = 13) groups. Fugl-Meyer Assessment Upper Extremity Scale (FMA-UL), Modified Barthel Index (MBI) and resting-state functional magnetic resonance imaging (rs-fMRI) were evaluated in the two groups before treatment and 4 weeks after treatment. The efficacy of MIT on motor function improvement in stroke patients with hemiplegia was evaluated by comparing the FMA-UL and MBI scores before and after treatment in the two groups. Furthermore, the FC within the SMN and between the SMN and the whole brain was measured and compared before and after different treatment methods in stroke patients. The correlation analysis between the improvement of upper limbs motor function and changes in FC within the SMN and between the SMN and the whole brain was examined. Results: The FCs between ipsilesional primary motor cortex (M1.I) and contralateral supplementary motor area (SMA.C), M1.I and ipsilesional SMA (SMA.I), and SMA.C and contralateral dorsolateral premotor cortex (DLPM.C) significantly increased in the control group but decreased in the MIT group; while the FC between SMA.C and contralateral primary somatosensory cortex (S1.C) significantly increased in the control group but showed no significant difference in the MIT group. The FCs between M1.I and the ipsilesional hippocampal gyrus and ipsilesional middle frontal gyrus significantly decreased in the control group but increased in the MIT group; while the FC in the contralateral anterior cingulate cortex significantly increased in the MIT group but there was no significant difference in the control group. The results of the correlation analysis showed that the differences in abnormal intra-FCs within the SMN negatively correlated with the differences in FMA and MBI, and the difference in abnormal inter-FCs of the SMN positively correlated with the differences in FMA and MBI. Conclusions: MIT can improve upper limb motor function and daily activities of stroke patients, and the improvement effect of conventional rehabilitation therapy (CRT) combined with MIT is significantly higher than that of CRT alone. CRT may improve the upper limb motor function of stroke patients with hemiplegia mainly through the functional reorganization between SMN, while MIT may mainly increase the interaction between SMN and other brain networks.

8.
Psychol Med ; 54(8): 1735-1748, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38193344

RESUMEN

BACKGROUND: Fatigue is a central feature of myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), but many ME/CFS patients also report comorbid pain symptoms. It remains unclear whether these symptoms are related to similar or dissociable brain networks. This study used resting-state fMRI to disentangle networks associated with fatigue and pain symptoms in ME/CFS patients, and to link changes in those networks to clinical improvements following cognitive behavioral therapy (CBT). METHODS: Relationships between pain and fatigue symptoms and cortico-cortical connectivity were assessed within ME/CFS patients at baseline (N = 72) and after CBT (N = 33) and waiting list (WL, N = 18) and compared to healthy controls (HC, N = 29). The analyses focused on four networks previously associated with pain and/or fatigue, i.e. the fronto-parietal network (FPN), premotor network (PMN), somatomotor network (SMN), and default mode network (DMN). RESULTS: At baseline, variation in pain and fatigue symptoms related to partially dissociable brain networks. Fatigue was associated with higher SMN-PMN connectivity and lower SMN-DMN connectivity. Pain was associated with lower PMN-DMN connectivity. CBT improved SMN-DMN connectivity, compared to WL. Larger clinical improvements were associated with larger increases in frontal SMN-DMN connectivity. No CBT effects were observed for PMN-DMN or SMN-PMN connectivity. CONCLUSIONS: These results provide insight into the dissociable neural mechanisms underlying fatigue and pain symptoms in ME/CFS and how they are affected by CBT in successfully treated patients. Further investigation of how and in whom behavioral and biomedical treatments affect these networks is warranted to improve and individualize existing or new treatments for ME/CFS.


Asunto(s)
Terapia Cognitivo-Conductual , Síndrome de Fatiga Crónica , Imagen por Resonancia Magnética , Humanos , Síndrome de Fatiga Crónica/terapia , Síndrome de Fatiga Crónica/fisiopatología , Femenino , Terapia Cognitivo-Conductual/métodos , Masculino , Adulto , Persona de Mediana Edad , Fatiga/terapia , Fatiga/fisiopatología , Dolor/fisiopatología , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen
9.
J Neurosci Res ; 102(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284840

RESUMEN

The trajectory of voxel-mirrored homotopic connectivity (VMHC) after medical treatment in obsessive-compulsive disorder (OCD) and its value in prediction of treatment response remains unclear. This study aimed to investigate the pathophysiological mechanism of OCD, as well as biomarkers for prediction of pharmacological efficacy. Medication-free patients with OCD and healthy controls (HCs) underwent magnetic resonance imaging. The patients were scanned again after a 4-week treatment with paroxetine. The acquired data were subjected to VMHC, support vector regression (SVR), and correlation analyses. Compared with HCs (36 subjects), patients with OCD (34 subjects after excluding two subjects with excessive head movement) exhibited significantly lower VMHC in the bilateral superior parietal lobule (SPL), postcentral gyrus, and calcarine cortex, and VMHC in the postcentral gyrus was positively correlated with cognitive function. After treatment, the patients showed increased VMHC in the bilateral posterior cingulate cortex/precuneus (PCC/PCu) with the improvement of symptoms. SVR results showed that VMHC in the postcentral gyrus at baseline could aid to predict a change in the scores of OCD scales. This study revealed that SPL, postcentral gyrus, and calcarine cortex participate in the pathophysiological mechanism of OCD while PCC/PCu participate in the pharmacological mechanism. VMHC in the postcentral gyrus is a potential predictive biomarker of the treatment effects in OCD.


Asunto(s)
Trastorno Obsesivo Compulsivo , Lóbulo Parietal , Humanos , Lóbulo Parietal/diagnóstico por imagen , Corteza Somatosensorial , Cognición , Giro del Cíngulo , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/tratamiento farmacológico
10.
Eur Arch Psychiatry Clin Neurosci ; 274(1): 3-18, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36599959

RESUMEN

Despite decades of massive neuroimaging research, the comprehensive characterization of short-range functional connectivity in autism spectrum disorder (ASD) remains a major challenge for scientific advances and clinical translation. From the theoretical point of view, it has been suggested a generalized local over-connectivity that would characterize ASD. This stance is known as the general local over-connectivity theory. However, there is little empirical evidence supporting such hypothesis, especially with regard to pediatric individuals with ASD (age [Formula: see text] 18 years old). To explore this issue, we performed a coordinate-based meta-analysis of regional homogeneity studies to identify significant changes of local connectivity. Our analyses revealed local functional under-connectivity patterns in the bilateral posterior cingulate cortex and superior frontal gyrus (key components of the default mode network) and in the bilateral paracentral lobule (a part of the sensorimotor network). We also performed a functional association analysis of the identified areas, whose dysfunction is clinically consistent with the well-known deficits affecting individuals with ASD. Importantly, we did not find relevant clusters of local hyper-connectivity, which is contrary to the hypothesis that ASD may be characterized by generalized local over-connectivity. If confirmed, our result will provide a valuable insight into the understanding of the complex ASD pathophysiology.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Niño , Adolescente , Trastorno del Espectro Autista/diagnóstico por imagen , Mapeo Encefálico/métodos , Vías Nerviosas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen
11.
Front Neurol ; 14: 1273935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020657

RESUMEN

Objective: Primary blepharospasm (BSP) is a clinically heterogeneous disease that manifests not only as spasmodic closure of the eyelids but also sometimes with apraxia of eyelid opening (AEO). This cross-sectional study aimed to investigate differences in the neural mechanisms of isolated BSP and BSP-associated AEO subtypes, which may reveal the pathophysiology underlying different phenotypes. Methods: A total of 29 patients manifested as isolated BSP, 17 patients manifested as BSP associated with AEO, and 28 healthy controls underwent resting-state functional near-infrared spectroscopy (fNIRS). We assessed functional connectivity (FC) between regions of interest (ROIs) in the fronto-parietal control network (PFCN) and sensorimotor network (SMN). We also examined the relationship between altered FC and behavioral data. Results: In the FPCN, ROI- analyses showed decreased FC between the left premotor cortex and supramarginal gyrus in the BSP with AEO group compared to the isolated BSP group. In the SMN, both subgroups showed hypoconnectivity of the left premotor cortex with the right primary motor cortex, primary sensory cortex, and somatosensory association cortex. This hypoconnectivity was positively correlated with the total number of botulinum toxin A treatments, which suggests that long-term botulinum toxin A treatment may modulate motor sequence planning and coordination. Conclusion: These findings showed different connectivity alterations in neural networks associated with motor and cognitive control among different behavioral phenotypes of BSP. The identification of specific alterations in various networks that correspond to clinical heterogeneity may inform the identification of potential biomarkers for early diagnosis and personalized neuromodulation targets for treating different BSP subphenotypes.

12.
Hum Brain Mapp ; 44(17): 6258-6274, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37837646

RESUMEN

In complex regional pain syndrome (CRPS), the representation area of the affected limb in the primary sensorimotor cortex (SM1) reacts abnormally during sensory stimulation and motor actions. We recorded 3T functional magnetic resonance imaging resting-state data from 17 upper-limb CRPS type 1 patients and 19 healthy control subjects to identify alterations of patients' SM1 function during spontaneous pain and to find out how the spatial distribution of these alterations were related to peripheral symptoms. Seed-based correlations and independent component analyses indicated that patients' upper-limb SM1 representation areas display (i) reduced interhemispheric connectivity, associated with the combined effect of intensity and spatial extent of limb pain, (ii) increased connectivity with the right anterior insula that positively correlated with the duration of CRPS, (iii) increased connectivity with periaqueductal gray matter, and (iv) disengagement from the other parts of the SM1 network. These findings, now reported for the first time in CRPS, parallel the alterations found in patients suffering from other chronic pain conditions or from limb denervation; they also agree with findings in healthy persons who are exposed to experimental pain or have used their limbs asymmetrically. Our results suggest that CRPS is associated with a sustained and somatotopically specific alteration of SM1 function, that has correspondence to the spatial distribution of the peripheral manifestations and to the duration of the syndrome.


Asunto(s)
Síndromes de Dolor Regional Complejo , Distrofia Simpática Refleja , Corteza Sensoriomotora , Humanos , Síndromes de Dolor Regional Complejo/diagnóstico por imagen , Imagen por Resonancia Magnética , Dolor
13.
Neuropharmacology ; 240: 109692, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37652260

RESUMEN

The study aimed to investigate the functional connectivity (FC) between the cerebellum and intrinsic cerebral networks in patients with panic disorder (PD), and to observe changes in the cerebellar-cerebral FC following pharmacotherapy. Fifty-four patients with PD and 54 healthy controls (HCs) underwent clinical assessments and functional magnetic resonance imaging scans before and after a 5-week paroxetine treatment. Seed-based cerebellar-cerebral FC was compared between the PD and HC groups, as well as between patients with PD before and after treatment. Additionally, the correlations between FC and clinical features of PD were analyzed. Compared to HCs, patients with PD had altered cerebellar-cerebral FC in the default mode, affective-limbic, and sensorimotor networks. Moreover, a negative correlation between cerebellar-insula disconnection and the severity of depressive symptoms in patients with PD (Pearson correlation, r = -0.424, p = 0.001, Bonferroni corrected) was found. After treatment, most of the enhanced FCs observed in patients with PD at baseline returned to levels similar to those observed in HCs. However, the reduced FC at baseline did not significantly change after treatment. The findings suggest that patients with PD have specific deficits in resting-state cerebellar-cerebral FC and that paroxetine may improve PD by restoring the balance of cerebellar-cerebral FC. These findings emphasize the crucial involvement of cerebellar-cerebral FC in the neuropsychological mechanisms underlying PD and in the potential pharmacological mechanisms of paroxetine for treating PD.

14.
Brain Res ; 1818: 148513, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499729

RESUMEN

BACKGROUND: Previous functional magnetic resonance imaging studies have identified brain-connectivity alterations across multiple regions in people with migraine when compared to healthy controls. Few studies have focused on such changes throughout the different phases of the migraine cycle. We aimed to investigate functional connectivity during spontaneous occurring episodic migraine attacks, in comparison to interictal periods. METHODS: Eleven women with episodic migraine without aura underwent two sessions of resting-state fMRI, during and outside of a spontaneous migraine attack. Functional connectivity changes were assessed across canonical resting-state networks, identified by independent component analysis. Significantly altered connectivity was correlated with migraine attack symptoms. RESULTS: Decreased functional connectivity between subregions of the sensorimotor network (specifically, the primary somatosensory and motor cortices) and the posterior insula, bilaterally, was found during attacks. In both sessions, the functional connectivity between these regions was lower in patients who usually suffered longer attacks. DISCUSSION: The sensorimotor and insular regions are involved in nociceptive, autonomic, and somatosensory processing so the finding of reduced connectivity between these structures within a migraine attack is likely associated to the perception of pain and the heighten sensitivity to stimuli experienced in this disorder.


Asunto(s)
Epilepsia , Trastornos Migrañosos , Humanos , Femenino , Imagen por Resonancia Magnética/métodos , Trastornos Migrañosos/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
15.
CNS Neurosci Ther ; 29(10): 3094-3107, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37144606

RESUMEN

AIMS: This study aimed to investigate the causal interaction between significant sensorimotor network (SMN) regions and other brain regions in Parkinson's disease patients with drooling (droolers). METHODS: Twenty-one droolers, 22 PD patients without drooling (non-droolers), and 22 matched healthy controls underwent 3T-MRI resting-state scans. We performed independent component analysis and Granger causality analysis to determine whether significant SMN regions help predict other brain areas. Pearson's correlation was computed between imaging characteristics and clinical characteristics. ROC curves were plotted to assess the diagnostic performance of effective connectivity (EC). RESULTS: Compared with non-droolers and healthy controls, droolers showed abnormal EC of the right caudate nucleus (CAU.R) and right postcentral gyrus to extensive brain regions. In droolers, increased EC from the CAU.R to the right middle temporal gyrus was positively correlated with MDS-UPDRS, MDS-UPDRS II, NMSS, and HAMD scores; increased EC from the right inferior parietal lobe to CAU.R was positively correlated with MDS-UPDRS score. ROC curve analysis showed that these abnormal ECs are of great significance in diagnosing drooling in PD. CONCLUSION: This study identified that PD patients with drooling have abnormal EC in the cortico-limbic-striatal-cerebellar and cortio-cortical networks, which could be potential biomarkers for drooling in PD.


Asunto(s)
Enfermedad de Parkinson , Sialorrea , Humanos , Sialorrea/diagnóstico por imagen , Sialorrea/etiología , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Lóbulo Parietal , Imagen por Resonancia Magnética
16.
J Neurosci ; 43(18): 3365-3378, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36977585

RESUMEN

Temporal orienting of attention plays an important role in our day-to-day lives and can use timing information from exogenous or endogenous sources. Yet, it is unclear what neural mechanisms give rise to temporal attention, and it is debated whether both exogenous and endogenous forms of temporal attention share a common neural source. Here, older adult nonmusicians (N = 47, 24 female) were randomized to undergo 8 weeks of either rhythm training, which places demands on exogenous temporal attention, or word search training as a control. The goal was to assess (1) the neural basis of exogenous temporal attention and (2) whether training-induced improvements in exogenous temporal attention can transfer to enhanced endogenous temporal attention abilities, thereby providing support for a common neural mechanism of temporal attention. Before and after training, exogenous temporal attention was assessed using a rhythmic synchronization paradigm, whereas endogenous temporal attention was evaluated via a temporally cued visual discrimination task. Results showed that rhythm training improved performance on the exogenous temporal attention task, which was associated with increased intertrial coherence within the δ (1-4 Hz) band as assessed by EEG recordings. Source localization revealed increased δ-band intertrial coherence arose from a sensorimotor network, including premotor cortex, anterior cingulate cortex, postcentral gyrus, and the inferior parietal lobule. Despite these improvements in exogenous temporal attention, such benefits were not transferred to endogenous attentional ability. These results support the notion that exogenous and endogenous temporal attention uses independent neural sources, with exogenous temporal attention relying on the precise timing of δ band oscillations within a sensorimotor network.SIGNIFICANCE STATEMENT Allocating attention to specific points in time is known as temporal attention, and may arise from external (exogenous) or internal (endogenous) sources. Despite its importance to our daily lives, it is unclear how the brain gives rise to temporal attention and whether exogenous- or endogenous-based sources for temporal attention rely on shared brain regions. Here, we demonstrate that musical rhythm training improves exogenous temporal attention, which was associated with more consistent timing of neural activity in sensory and motor processing brain regions. However, these benefits did not extend to endogenous temporal attention, indicating that temporal attention relies on different brain regions depending on the source of timing information.


Asunto(s)
Música , Humanos , Femenino , Anciano , Percepción Visual , Encéfalo , Lóbulo Parietal , Corteza Somatosensorial
17.
Heliyon ; 9(2): e13423, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36814614

RESUMEN

Background: Although homeostasis of the cardiovascular system is regulated by the cerebral cortex via the autonomic nervous system, the role of abnormal brain functional connectivity (FC) networks in patients with cardiac dysfunction remains unclear. Here, we report thalamus-based FC alterations and their relationship with clinical characteristics in patients with coronary heart disease (CHD). Methods: We employed resting-state functional magnetic resonance imaging (rs-fMRI) to acquire imaging data in twenty-six patients with CHD alongside sixteen healthy controls (HCs). Next, we performed a thalamus-based FC analysis to profile abnormal FC patterns in the whole brain. Subsequently, the mean time series of the brain regions that survived in the FC analysis were used to determine correlations with clinical parameters in patients with CHD. Results: We found no statistically significant differences in demographic and clinical data between patients with CHD and HCs. Patients with CHD showed decreased FC patterns between bilateral thalami and left hemisphere, encompassing supplementary motor area, superior frontal gyrus, superior parietal gyrus, inferior parietal gyrus, middle cingulate cortex, lingual gyrus and calcarine sulcus. Conclusions: These findings not only have implications in clarifying the relationship between cerebral functional imbalance and cardiovascular system, but also provide valuable insights to guide future evaluation and management of cardiac autonomic regulation via the brain-heart axis.

18.
Hum Brain Mapp ; 44(4): 1565-1578, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36413054

RESUMEN

Prior evidence suggests that sensorimotor regions play a crucial role in habit formation. Yet, whether and how their global functional network properties might contribute to a more comprehensive characterization of habit formation still remains unclear. Capitalizing on advances in Elastic Net regression and predictive modeling, we examined whether learning-related functional connectivity alterations distributed across the whole brain could predict individual habit strength. Using the leave-one-subject-out cross-validation strategy, we found that the habit strength score of the novel unseen subjects could be successfully predicted. We further characterized the contribution of both, individual large-scale networks and individual brain regions by calculating their predictive weights. This highlighted the pivotal role of functional connectivity changes involving the sensorimotor network and the cingulo-opercular network in subject-specific habit strength prediction. These results contribute to the understanding the neural basis of human habit formation by demonstrating the importance of global functional network properties especially also for predicting the observable behavioral expression of habits.


Asunto(s)
Encéfalo , Individualidad , Humanos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Aprendizaje , Hábitos , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen
19.
Parkinsonism Relat Disord ; 106: 105218, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442365

RESUMEN

BACKGROUND: Emerging evidence suggests that repetitive transcranial magnetic stimulation (rTMS) generally improves Parkinson's disease (PD) motor symptoms. However, personal responses to rTMS might be different. In this study, we explore the connectivity changes in PD patients with different responses to rTMS. METHODS: Among PD patients, 25 were treated with 10Hz-rTMS and seven were with sham rTMS over the supplementary motor area for 10 days. Resting-state functional connectivity magnetic resonance imaging (rs-fMRI) was performed in PD patients before and after rTMS stimulation. Neuropsychological scales such as Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) were collected synchronously with rs-fMRI. To explore the connectivity changes after rTMS, degree centrality was calculated. RESULTS: 13 out of 25 participants were responsive to 10Hz rTMS. Degree centrality patterns in the left sensorimotor regions are primarily responsible for the differences between responsive and non-responsive individuals. Improvement in motor symptoms was substantially related to the baseline degree centrality in the left PreCG and the left PoCG. The performance in distinguishing non-responders from responders was further validated by the ROC analysis utilizing DC characteristics. Lastly, we found that connectivity increased in left PreCG and PoCG in patients with a better response to the rTMS. CONCLUSION: Taken together, these results suggest that the sensorimotor network is involved in the motor improvement following rTMS treatment, with patients with lower sensorimotor connectivity showing a tendency for greater motor improvement to HF-rTMS.


Asunto(s)
Corteza Motora , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Estimulación Magnética Transcraneal/métodos , Pruebas de Estado Mental y Demencia , Imagen por Resonancia Magnética
20.
Can J Psychiatry ; 68(1): 22-32, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35244484

RESUMEN

OBJECTIVES: Up to 70%-80% of patients with bipolar disorder are misdiagnosed as having major depressive disorder (MDD), leading to both delayed intervention and worsening disability. Differences in the cognitive neurophysiology may serve to distinguish between the depressive phase of type 1 bipolar disorder (BDD-I) from MDD, though this remains to be demonstrated. To this end, we investigate the discriminatory signal in the topological organization of the functional connectome during a working memory (WM) task in BDD-I and MDD, as a candidate identification approach. METHODS: We calculated and compared the degree centrality (DC) at the whole-brain voxel-wise level in 31 patients with BDD-I, 35 patients with MDD, and 80 healthy controls (HCs) during an n-back task. We further extracted the distinct DC patterns in the two patient groups under different WM loads and used machine learning approaches to determine the distinguishing ability of the DC map. RESULTS: Patients with BDD-I had lower accuracy and longer reaction time (RT) than HCs at high WM loads. BDD-I is characterized by decreased DC in the default mode network (DMN) and the sensorimotor network (SMN) when facing high WM load. In contrast, MDD is characterized by increased DC in the DMN during high WM load. Higher WM load resulted in better classification performance, with the distinct aberrant DC maps under 2-back load discriminating the two disorders with 90.91% accuracy. CONCLUSIONS: The distributed brain connectivity during high WM load provides novel insights into the neurophysiological mechanisms underlying cognitive impairment of depression. This could potentially distinguish BDD-I from MDD if replicated in future large-scale evaluations of first-episode depression with longitudinal confirmation of diagnostic transition.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Humanos , Trastorno Bipolar/diagnóstico , Imagen por Resonancia Magnética/métodos , Trastorno Depresivo Mayor/diagnóstico , Memoria a Corto Plazo/fisiología , Depresión , Encéfalo/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA