Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
Heliyon ; 10(15): e35611, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170275

RESUMEN

The quality profile, extraction yield, and fermentation chemistry of palm sap depend on various factors such as extraction technique, weather conditions, and preservation methods. This review aims to provide a detailed overview of palm sap extraction techniques and the methods for its preservation. The compositional analysis of palm sap, including physical and chemical parameters such as sugar content, acidity, and mineral composition, is discussed thoroughly. The role of microorganisms in fermentation and the effects of various influencing factors are also critically examined. Additionally, this review evaluates different preservation methods, including thermal processes, refrigeration, and electrical techniques, highlighting their effectiveness in extending the shelf life of palm sap. The review further explores the emerging impact of nanotechnology on palm sap preservation, offering insights into the latest industry challenges, developments, and future prospects. By presenting these findings, this review aims to enhance the scientific understanding of palm sap and stimulate additional research and innovation in the field, paving the way for improved production practices and product quality.

2.
Biodivers Data J ; 12: e128431, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171079

RESUMEN

Background: Discoveries of new species often depend on one or a few specimens, leading to delays as researchers wait for additional context, sometimes for decades. There is currently little professional incentive for a single expert to publish a stand-alone species description. Additionally, while many journals accept taxonomic descriptions, even specialist journals expect insights beyond the descriptive work itself. The combination of these factors exacerbates the issue that only a small fraction of marine species are known and new discoveries are described at a slow pace, while they face increasing threats from accelerating global change. To tackle this challenge, this first compilation of Ocean Species Discoveries (OSD) presents a new collaborative framework to accelerate the description and naming of marine invertebrate taxa that can be extended across all phyla. Through a mode of publication that can be speedy, taxonomy-focused and generate higher citation rates, OSD aims to create an attractive home for single species descriptions. This Senckenberg Ocean Species Alliance (SOSA) approach emphasises thorough, but compact species descriptions and diagnoses, with supporting illustrations and with molecular data when available. Even basic species descriptions carry key data for distributions and ecological interactions (e.g., host-parasite relationships) besides universally valid species names; these are essential for downstream uses, such as conservation assessments and communicating biodiversity to the broader public. New information: This paper presents thirteen marine invertebrate taxa, comprising one new genus, eleven new species and one re-description and reinstatement, covering wide taxonomic, geographic, bathymetric and ecological ranges. The taxa addressed herein span three phyla (Mollusca, Arthropoda, Echinodermata), five classes, eight orders and twelve families. Apart from the new genus, an updated generic diagnosis is provided for four other genera. The newly-described species of the phylum Mollusca are Placiphorellamethanophila Voncina, sp. nov. (Polyplacophora, Mopaliidae), Lepetodrilusmarianae Chen, Watanabe & Tsuda, sp. nov. (Gastropoda, Lepetodrilidae), Shinkailepasgigas Chen, Watanabe & Tsuda, sp. nov. (Gastropoda, Phenacolepadidae) and Lyonsiellaillaesa Machado & Sigwart, sp. nov. (Bivalvia, Lyonsiellidae). The new taxa of the phylum Arthropoda are all members of the subphylum Crustacea: Lepechinellanaces Lörz & Engel, sp. nov. (Amphipoda, Lepechinellidae), Cuniculomaeragrata Tandberg & Jazdzewska, gen. et sp. nov. (Amphipoda, Maeridae), Pseudionellapumulaensis Williams & Landschoff, sp. nov. (Isopoda, Bopyridae), Mastigoniscusminimus Wenz, Knauber & Riehl, sp. nov. (Isopoda, Haploniscidae), Macrostylispapandreas Jonannsen, Riehl & Brandt, sp. nov. (Isopoda, Macrostylidae), Austroniscusindobathyasellus Kaiser, Kniesz & Kihara, sp. nov. (Isopoda, Nannoniscidae) and Apseudopsisdaria Esquete & Tato, sp. nov. (Tanaidacea, Apseudidae). In the phylum Echinodermata, the reinstated species is Psychropotesbuglossa E. Perrier, 1886 (Holothuroidea, Psychropotidae).The study areas span the North and Central Atlantic Ocean, the Indian Ocean and the North, East and West Pacific Ocean and depths from 5.2 m to 7081 m. Specimens of eleven free-living and one parasite species were collected from habitats ranging from an estuary to deep-sea trenches. The species were illustrated with photographs, line drawings, micro-computed tomography, confocal laser scanning microscopy and scanning electron microscopy images. Molecular data are included for nine species and four species include a molecular diagnosis in addition to their morphological diagnosis.The five new geographic and bathymetric distribution records comprise Lepechinellanaces Lörz & Engel, sp. nov., Cuniculomaeragrata Tandberg & Jazdzewska, sp. nov., Pseudionellapumulaensis Williams & Landschoff, sp. nov., Austroniscusindobathyasellus Kaiser, Kniesz & Kihara, sp. nov. and Psychropotesbuglossa E. Perrier, 1886, with the novelty spanning from the species to the family level. The new parasite record is Pseudionellapumulaensis Williams & Landschoff, sp. nov., found in association with the hermit crab Pagurusfraserorum Landschoff & Komai, 2018.

3.
Meat Sci ; 218: 109630, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39173458

RESUMEN

Physicochemical quality, fatty acids, volatile compounds and shelf-life profiles of the longissimus thoracis et lumborum muscle of three game species: impala, mountain reedbuck and springbok harvested from a private game estate were measured. Average live weight at slaughter that ranged from 28 to 36 kg was included in the study. The carcass weights were recorded 24 h after slaughter. The longissimus thoracis et lumborum (LTL) muscle was sampled for meat analyses. Impala and springbok LTL had higher (P ≤ 0.05) pH24 and cooking loss values than the mountain reedbuck. In addition, the springbok had more tender (P ≤ 0.05) meat than the impala and mountain reedbuck. The mountain reedbuck and springbok had higher (P ≤ 0.05) proportions of oleic acid, total monounsaturated fatty acids (FA), linoleic acid, omega (n)-6 polyunsaturated FA, and alpha-linolenic acid compared to impala. During retail display, redness and chroma decreased over time, while yellowness and hue showed an upward trend for all species (P ≤ 0.05). It was observed that species affected meat quality, total proportions of fatty acids and volatile compounds.

4.
Food Sci Biotechnol ; 33(11): 2477-2496, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39144196

RESUMEN

Fruits and vegetables are important for the nutrition and health of individuals. They are highly perishable in nature because of their susceptibility to microbial growth. Foodborne pathogens create a significant problem for consumers, food businesses, and food safety. Postharvest factors, including transportation, environment, and preservation techniques, cause a reduction in product quality. The present world is using synthetic preservatives, which have negative impacts on consumer health. Food safety and demand for healthy foods among consumers, the scientific community, and the food industry resulted in the exploitation of natural preservatives, which play an important role in their effectiveness, prolonged shelf life, and safety. Natural preservatives include plants, animals, and microbiological sources with polymers to extend shelf life, improve quality, and enhance food safety. This review specifically focuses on mechanism of action of natural preservatives, spoilage of fruit and vegetables, the importance of edible film and coating on fruits and vegetables.

5.
Int J Food Microbiol ; 425: 110866, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39146626

RESUMEN

Pathogenic microbial contamination (bacteria and fungi) in food products during production poses a significant global health risk, leading to food waste, greenhouse gas emissions, and aesthetic and financial losses. Bacteria and fungi, by forming solid biofilms, enhance their resistance to antimicrobial agents, thereby increasing the potential for cross-contamination of food products. Curcumin molecule-mediated photodynamic inactivation (Cur-m-PDI) technology has shown promising results in sterilizing microbial contaminants and their biofilms, significantly contributing to food preservation without compromising quality. Photosensitizers (curcumin) absorb light, leading to a chemical reaction with oxygen and producing reactive oxygen species (ROS) that effectively reduce bacteria, fungi, and biofilms. The mechanism of microorganism inhibition is caused by exposure to ROS generated via the type 1 pathway involving electron transfer (such as O2•-, H2O2, -OH•, and other radicals), the type 2 pathway involving energy transfer (such as 1O2), secondary ROS, and weakening of antioxidant enzymes. The effectiveness of the inactivation of microorganisms is influenced by the concentration of curcumin, light (source type and energy density), oxygen availability, and duration of exposure. This article reviews the mechanism of reducing microbial food contamination and inhibiting their biofilms through Cur-m-PDI. It also highlights future directions, challenges, and considerations related to the effects of ROS in oxidizing food, the toxicity of PDI to living cells and tissues, conditions/types of food products, and the stability and degradation of curcumin.

6.
Food Chem ; 461: 140839, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39154463

RESUMEN

This study explores the potential of Curcuma longa byproducts, called Curcuminoid removed turmeric oleoresin (CRTO), to extend the shelf life of peanut butter. CRTO, rich in curcuminoids, was added to peanut butter formulations to assess its preservative effects, flavour impact, and nutritional benefits. Results demonstrated that CRTO oil and curcuminoids effectively prolonged peanut butter shelf life by delaying rancidity. The study also compared results using oxygen scavenger film (OSF) packaging. Over time, water activity and oil separation increased, but CRTO oil and OSF helped to mitigate these effects. Sensory evaluations favored CRTO oil and curcuminoids, while microbial analysis confirmed safety of both the control and OSF samples for six months at 27 °C and 65% RH, and for four months at 37 °C and 95% RH. This study proposes a natural and sustainable method for extending peanut butter shelf life while enriching it with curcuminoids, with significant implications for the food industry.

7.
J Food Sci ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39175180

RESUMEN

This study targets explicitly finding an alternative to petroleum-based plastic films that burden the environment, which is a high priority. Hence, polymeric films were prepared with carboxymethyl cellulose (CMC) (4%), pectin (2%), and polyhydroxybutyrate (PHB) (0.5%) with different concentrations of thymol (0.3%, 0.9%, 1.8%, 3%, and 5%) and glycerol as a plasticizer by solution casting technique. The prepared films were tested for mechanical, optical, antimicrobial, and antioxidant properties. Film F5 (CMC + P + PHB + 0.9%thymol) showed an excellent tensile strength of 15 MPa, Young's modulus of 395 MPa, antioxidant activity (AA) (92%), rapid soil biodegradation (21 days), and strong antimicrobial activity against bacterial and fungal cultures such as Klebsiella pneumoniae, Staphylococcus aureus, Escherichia coli, Aspergillus niger, and Aspergillus flavus. The thymol content increase in films F6 (1.8%), F7 (3%), and F8 (5%) displayed a decrease in mechanical properties due to thymol's hydrophobicity. For shelf life studies on tomatoes, F2, a film without thymol (poor antimicrobial and antioxidant activities), F5 (film with superior mechanical, optical, antimicrobial, and antioxidant properties), and F7 (film with low mechanical properties) were selected. Film F5 coatings on tomato fruit enhanced the shelf life of up to 15 days by preventing weight loss, preserving firmness, and delaying changes in biochemical constituents like lycopene, phenols, and AA. Based on the mechanical, optical, antimicrobial, antioxidant, and shelf life results, the film F5 is suitable for active food packaging and preservation. PRACTICAL APPLICATION: The developed active biodegradable composite can be utilized as a coating to extend the shelf life of fruits and vegetables. These coatings are easy to produce and apply, offering a sustainable solution to reduce food waste. On an industrial scale, they can be applied to food products, ensuring longer freshness without any technical challenges.

8.
Int J Biol Macromol ; 278(Pt 2): 134859, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39163966

RESUMEN

Strawberry fruits are popular all over the world due to their rich organoleptic properties and enormous health benefits. However, it is highly susceptible to postharvest spoilage due to various factors, including moisture loss, nutrient oxidation, and microbial spoilage. Recently, various researchers have studied the effect of chitosan-based flexible films and surface coatings on the shelf life of strawberries. Despite various reviews providing general information on the effects of chitosan-based films and coatings on various food products, no review has focused solely on their effects on postharvest preservation and the shelf life of strawberries. The purpose of this review is to summarize the current research on chitosan-based formulations for extending the shelf life of strawberries. Chitosan, a cationic carbohydrate polymer, possesses excellent properties such as film formation, mechanical strength, non-toxicity, biodegradability, edibility, UV-blocking ability, antioxidant activity, and antibacterial functionality, justifying its potential as packaging/coating material for fresh agricultural products, including strawberries. This review covers the various factors responsible for strawberry spoilage and the properties of chitosan that help counteract these factors. Additionally, the advantages of chitosan-based preservation technology compared to existing strawberry preservation methods were explained, efficiency was evaluated, and future research directions were suggested.

9.
J Sci Food Agric ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118447

RESUMEN

BACKGROUND: The composition of extra virgin olive oil (EVOO) defines its sensory, nutritional, and human health benefits, and distinguishes it as a key component of the Mediterranean diet. Nevertheless, EVOO constituents are susceptible to degradation during processing and storage, which reduces the olive oil's quality and limits its shelf life. The present study investigated the effect of molecular filtration before storage and the effect of cool storage at 4 °C on the stability of 'Kolovi' EVOO, a variety originating from the Greek island of Lesvos, over a 24 month period. RESULTS: Storing EVOO at 4 °C positively affected free acidity, peroxide value, K268, fruity qualities, and concentrations of hydroxytyrosol, tyrosol, ligstroside aglycone, lutein, and squalene, in comparison with the control sample stored at room temperature, particularly after 1 year. Molecular filtration significantly affected the ratio of unsaturated fatty acids to saturated fatty acids (UFAs/SFAs). Optimal preservation of parameters such as acidity value and lutein content was achieved by combining molecular filtration with refrigeration. CONCLUSIONS: The present study recommends storing EVOO in the refrigerator for up to 18 months. Based on the regulatory limits of the quality characteristics of acidity, peroxide value, K232 value and fruity sensory attributes, the shelf-life of the protected geographical indication (PGI) 'Kolovi' EVOO can reach 2 years under cool storage (4 °C) and with molecular filtration before storage. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

10.
Plant Biol (Stuttg) ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150996

RESUMEN

The postharvest lifespan of horticultural products is closely related to loss of nutritional quality, accompanied by a rapid decline in shelf life, commercial value, and marketability. Melatonin (MT) application not only maintains quality but also delays senescence in horticultural products. This paper reviews biosynthesis and metabolism of endogenous MT, summarizes significant effects of exogenous MT application on postharvest horticultural products, examines regulatory mechanisms of MT-mediated effects, and provides an integrated review for understanding the positive role of MT in senescence delay and quality maintenance. As a multifunctional molecule, MT coordinates other signal molecules, such as ABA, ETH, JA, SA, NO, and Ca2+, to regulate postharvest ripening and senescence. Several metabolic pathways are involved in regulation of MT during postharvest senescence, including synthesis and signal transduction of plant hormones, redox homeostasis, energy metabolism, carbohydrate metabolism, and degradation of pigment and cell wall components. Moreover, MT regulates expression of genes related to plant hormones, antioxidant systems, energy generation, fruit firmness and colour, membrane integrity, and carbohydrate storage. Consequently, MT could become an emerging and eco-friendly preservative to extend shelf life and maintain postharvest quality of horticultural products.

11.
Food Chem ; 460(Pt 3): 140672, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39106749

RESUMEN

Post-harvest loss of fruits and vegetables, and health risks and environmental impact of current plastic packaging warrant new biodegradable packaging. To this end, cellulosic residue from agricultural processing byproducts is suitable due to its renewability and sustainability. Herein, soyhulls cellulosic residue was extracted, solubilized in ZnCl2 solution, and crosslinked with calcium ions and glycerol to prepare biodegradable films. The film combination was optimized using Box Behnken Design and film properties were characterized. The optimized film is translucent and exhibits tensile strength, elongation at break, water vapor permeability, hydrophobicity, and IC50 of 6.3 ± 0.6 MPa, 30.2 ± 0.9%, 0.9 ± 0.3 × 10-10 gm-1 s-1 Pa-1, 72.6°, and 0.11 ± 0.1 g/mL, respectively. The water absorption kinetics follow the Peleg model and biodegrade within 25 days at 24% soil moisture. The film extends the shelf life of raspberries by 6 more days compared to polystyrene film. Overall, the value-added soyhull cellulosic films are advantageous in minimizing post-harvest loss and plastic-related issues, emphasizing the principles of the circular bioeconomy.

12.
Int J Biol Macromol ; 277(Pt 3): 134438, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39098676

RESUMEN

Long-chain acyl-CoA synthetases (LACSs), belonging to the acyl-activating enzyme superfamily, play crucial roles in lipid biosynthesis and fatty acid catabolism. Here, we identified 11 LACS genes in the tomato reference genome, and these genes were clustered into six subfamilies. Gene structure and conserved motif analyses indicated that LACSs from the same subfamily shared conserved gene and protein structures. Expression analysis revealed that SlLACS1 was highly expressed in the outer epidermis of tomato fruits and leaves. Subcellular localization assay results showed that SlLACS1 was located in the endoplasmic reticulum. Compared with wild-type plants, the wax content on leaves and fruits decreased by 22.5-34.2 % in SlLACS1 knockout lines, confirming that SlLACS1 was involved in wax biosynthesis in both leaves and fruits. Water loss, chlorophyll extraction, water-deficit, and toluidine blue assays suggested that cuticle permeability was elevated in SlLACS1 knockout lines, resulting in reduction in both drought stress resistance and fruit shelf-life. Overall, our analysis of the LACSs in tomato, coupled with investigations of SlLACS1 function, yielded a deeper understanding of the evolutionary patterns of LACS members and revealed the involvement of SlLACS1 in wax accumulation contribute to drought resistance and extended fruit shelf-life in tomato.

13.
Food Sci Nutr ; 12(8): 6011-6021, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139922

RESUMEN

In this study, three different groups of sausages were produced from thornback ray (Raja clavata) without additives (control group), waste pomegranate peel extract (natural group), and ascorbic acid (synthetic group). Biochemical, physicochemical, and microbiological changes of sausages were examined under refrigerator conditions (+4°C), and the shelf life was determined. The best results in terms of nutritional and physicochemical values were obtained in sausages treated with pomegranate peel extract. All sausage groups were spoiled on the 15th day in terms of the total volatile basic nitrogen (TVB-N); however, the pomegranate peel extract group showed a more positive effect compared to the other sausage groups. However, this value was not considered because cartilaginous fish such as stingrays contain higher levels of nonprotein nitrogenous compounds. It was observed that microbial growth was less in the natural group and the antimicrobial effect of pomegranate peel extract was higher than that of ascorbic acid. In addition, it was determined that the pomegranate peel extract group extended the shelf life up to 6 days in terms of total viable count (TVC) and yeast/mold compared to the control and synthetic groups, respectively. This study showed that pomegranate peel extract has a better protective effect than ascorbic acid and it can be used as a natural additive in preserving the quality of seafood products.

14.
Food Sci Nutr ; 12(8): 5858-5871, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139946

RESUMEN

Incorporating soy whey into pineapple juice can enhance nutritional and nutraceutical potential. The present study was conducted to develop soy whey-fortified pineapple juice beverage and impact of ambient storage conditions on physicochemical, antioxidant, rheological, and sensory properties of functional beverage. Increasing the storage period decreased pH from 4.1 to 3.7 for control and 4.0 to 3.8 for soy whey-treated samples. TSS increased from 8.3 to 10.6 on 0th day for control and soy whey-treated beverage samples while on the 30th day, the TSS ranged from 8.9 to 11.1°B. Up to 30% soy whey incorporation, the DPPH, reducing power, and ABTS of beverages increased from 5.58%-57.01%, 56.35%-56.90%, and 4.84%-47.01%, respectively. The flow index (n) of the beverage formulations ranged between 0.4758 and 0.6521, and the yield stress between 0.018 and 0.025 Pa, hence showing Herschel-Bulkley character. With the increase in concentration and storage period, both G' and G″ values decreased considerably (p < .05). The standard plate and yeast and mold count decreased considerably with an increase in soy whey and increased with an increase in storage. The sensory score of the beverages up to 30% soy whey exhibited best sensory score results compared to control and samples with 30% above soy whey content.

15.
Food Sci Nutr ; 12(8): 5734-5749, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139958

RESUMEN

The study aimed to investigate the antioxidant properties of ginseng and red quinoa extract nanoemulsion and its effect on the shelf life of dairy cream. Nanoemulsion includes dairy cream, Tween 80, chitosan, whey protein powder, chitosan/whey protein powder, red quinoa extract, ginseng extract, and a mixture of extracts (1:1). The highest total phenol content and total flavonoid content were related to ginseng extract (24,009.55 mg of gallic acid equivalent/kg, 883.16 mg quercetin/kg) with ethanol-water solvent (80:20). Most of the phenolic and flavonoid compounds of ginseng and red quinoa extracts were related to p-coumaric acid (211.3 µg/g), catechin (29.6 µg/g), ellagic acid (73.88 µg/g), and rutin (34.12 µg/g), respectively. Considerable antioxidant power in the concentration of 800 ppm of red quinoa and ginseng extracts (ethanol-water solvent (50:50), (80:20)) in 2,2-diphenyl-1-picrylhydrazyl radical scavenging (80%, 82%, 80%, and 78%), bleaching ß-carotene: linoleic acid (81%, 73%, 77%, and 86%), and ferric reducing antioxidant power assays (70%, 73%, 72%, and 76%) was observed. Nanoemulsions of red quinoa extract with chitosan wall had the smallest particle size (250.67 nm), the highest encapsulation efficiency (72.79%), and the polydispersity index (0.34). Nanoemulsions containing ginseng + quinoa (1:1) with chitosan/whey protein powder wall showed the highest viscosity (5.30 mPa/s) and the mostzeta potential (-32.6 mv). Also, nanoemulsions of red quinoa extract showed the lowest amount of peroxide value and the thiobarbituric acid value (12 milliequivalent O2/kg-0.48 µg/mL) in dairy cream oil. In general, the red quinoa extract with chitosan wall was superior to other samples due to the delay in oxidation and positive effect on the shelf life of dairy cream.

16.
Food Sci Nutr ; 12(8): 5561-5571, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39139972

RESUMEN

The quality of pistachio, one of the export products of Iran, will be decreased during storage as a result of mold spoilage, toxins production, and oil oxidation. This study aimed to investigate the capability of pistachio hull extract (PHE) loaded in fenugreek seed gum (FSG):whey protein isolate (WPI) nanoemulsion to control oil oxidation, and fungi growth in fresh pistachio nut during storage at 4°C. The total anthocyanin and total phenolic content of the PHE were 125.44 µg/g and 675.18 mg/g, respectively. The DPPH radical scavenging activity of PHE at 100 ppm was higher than that of tert-butylhydroquinon (TBHQ). In comparison with other concentrations, 50 ppm showed the strongest antifungal activity against Aspergillus flavus, Aspergillus parasiticus, and Aspergillus nomius. All nanoemulsions have a mean size lower than 265 nm. The polydispersity index (PDI) of different nanoemulsions was lower than 0.3, and a negative zeta potential was observed. The encapsulation efficiency was higher than 67.0% and all nanoemulsions had spherical morphology. The pistachio nuts were coated with different coating solutions containing 0 and 100 ppm of PHE and stored at 4°C for 8 weeks. The results showed that the pistachio sample coated with a composite coating of WPI and FSG containing 100 ppm of PHE has a higher moisture content and lower changes in L*, a*, and b* indexes, oil oxidation, fungi development, and total mold and yeast count. This treatment exhibited higher overall acceptance than other samples at the end of storage time. The results of this study suggest the use of biodegradable coatings enriched with natural extracts that have high antioxidant and antifungal activities.

17.
Meat Sci ; 217: 109627, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39141968

RESUMEN

Pork belly is a meat cut valued for its rich flavour and texture, attributed to its high fat content, which also makes it susceptible to oxidation. Therefore, meat producers and processors must carefully select packaging options to maximise shelf life while meeting consumer preferences. This study aimed to develop customised packaging strategies for sliced pork belly with varying fat content to extend shelf life while minimizing environmental impact. The research compared three packaging solutions: modified atmosphere packaging (MAP1: 70:30% O2:CO2, MAP2: 30:40:30% O2:CO2:N2) and vacuum skin packaging (VSP) for pork bellies with low (LF: 16.07 ± 1.87%), medium (MF: 37.39 ± 4.41%), and high fat content (HF: 57.57 ± 2.36%). Samples packaged in VSP exhibited the longest shelf life (13-14 days) with lower purge and reduced fat and colour oxidation compared to MAP-packaged samples for all studied belly types. Nonetheless, the impact of MAP on shelf life depended on the belly type. HF bellies, with lower proportions of unsaturated fatty acids, showed less purge, and greater colour and fat stability, resulting in a longer shelf life compared to LF and MF bellies. LF and MF bellies in MAP2 showed the shortest shelf life (around 6 days), followed by LF and MF in MAP1 (around 7-8 days). Life Cycle Assessment indicated VSP generally as the most environmentally favourable option for LF and MF bellies, whereas for HF bellies, the choice among the three packaging solutions depended on the specific impact category under consideration.

18.
Food Chem X ; 23: 101614, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39108624

RESUMEN

Kiwi starch (KS) is a new fruit-derived starch-based food material. In this study, wheat flour was partially replaced with 10-20% KS to make bread, and the influence of this substitution on mixed flour, dough processing performance, bread quality, and shelf life was investigated. KS substitution improved the water-binding ability of mixed flour, making it easier to gelatinize while improving viscoelasticity but reducing the integrity of the dough's gluten network structure. As the substitution rate increases, the hardness, air-cell ratio, and width-to-height ratio of bread significantly increased, while the springiness, resilience, baking loss, and specific volume reduced significantly (p < 0.05). KS enriched the bread's color and flavor by promoting the Maillard reaction during baking. Overall acceptability of 10% KS group was highest in sensory evaluation. KS substitution significantly reduced starch digestibility and expected glycemic index (GI), inhibited mold growth and reproduction during storage and prolonged the shelf life of the bread at 25 °C.

19.
Nanomaterials (Basel) ; 14(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39120349

RESUMEN

Reducing fruit and vegetable waste and maintaining quality has become challenging for everyone. Nanotechnology is a new and intriguing technology that is currently being implemented in fruit and vegetable preservation. Silver nanomaterials provide superior antibacterial qualities, biodegradability, and biocompatibility, which expands their potential applications in fruit and vegetable preservation. Silver nanomaterials include silver nanocomposites and Ag-MOF, of which silver nanocomposites are mainly composed of silver nanoparticles. Notably, not all kinds of silver nanoparticles utilized in the preservation of fruits and vegetables are thoroughly described. Therefore, the synthesis, mechanism of action, and advancements in research on silver nanocomposites for fruit and vegetable preservation were discussed in this study.

20.
J Food Sci ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126692

RESUMEN

Pulsed light (PL) pasteurization is being explored as a substitute for the conventional thermal pasteurization of juices in recent times due to better retention of nutrients and overall quality. However, the long-term stability of the PL-pasteurized juice must be investigated to promote its application by the industry. The effect of PL treatment (effective fluence of 1.15 J·cm-2) and thermal treatment (90°C for 60 s) on microbial quality, enzyme activity, bioactive compounds, sensory acceptance, and color profile of table grape juice during storage at 4 and 25°C was investigated in this study. The PL pasteurization enhanced the microbial shelf-life of the juice (<6 log10cfu·mL-1) from 5 to 35 days at 4°C. The PL and thermally-pasteurized juice demonstrated a shelf-life of only 10 days when stored at 25°C. The total soluble solids and titratable acidity did not alter significantly throughout the storage period. The peroxidase, polyphenol oxidase, and pectin methylesterase activities were below 10% for the PL and thermally-treated beverage when stored at 4°C. The sensory acceptability of the PL-pasteurized juice after 35 days of refrigerated storage (6.9 ± 0.3) was close to the untreated juice (7.2 ± 0.3) and greater than thermally-treated juice (6.2 ± 0.2). After the 35th day of storage at 4°C, PL-treated grape juice retained 55%, 12%, and 15.3% more phenolics, flavonoids, and antioxidant capacity, respectively, than the thermally-pasteurized juice. Hence, PL pasteurization can effectively prolong the shelf-life of table grape juice while achieving microbial and enzymatic stability, along with high sensory and nutritional appeal. PRACTICAL APPLICATION: Exploring non-thermal methods like pulsed light (PL) pasteurization as a substitute for conventional thermal methods is gaining recognition for its ability to retain nutrients and improve overall juice quality. However, the industry's adoption depends on understanding the shelf-stability of PL-pasteurized juice. This study specifically investigates the practical applications of PL treatment in comparison with conventional thermal treatment in enhancing microbial safety and enzymatic stability in table grape juice. The findings contribute insights into optimizing the shelf life of table grape juice and preserving its quality, supported by microbial, enzymatic, and sensory evaluations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA