Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.101
Filtrar
1.
Curr Genomics ; 25(3): 153-157, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086997

RESUMEN

Diabetic Kidney Disease (DKD) remains the leading cause of Chronic and End Stage Kidney Disease (ESKD) worldwide, with an increasing epidemiological burden. However, still, the disease awareness remains low, early diagnosis is difficult, and therapeutic management is ineffective. These might be attributed to the fact that DKD is a highly heterogeneous disease, with disparities and variability in clinical presentation and progression patterns. Besides environmental risk factors, genetic studies have emerged as a novel and promising tool in the field of DKD. Three decades ago, family studies first reported that inherited genetic factors might confer significant risk to DKD development and progression. During the past decade, genome-wide association studies (GWASs) screening the whole genome in large and multi-ethnic population-based cohorts identified genetic risk variants associated with traits defining DKD in both type 1 and 2 diabetes. Herein, we aim to summarize the existing data regarding the progress in the field of genomics in DKD, present how the revolution of GWAS expanded our understanding of pathophysiologic disease mechanisms and finally, suggest potential future directions.

2.
Forensic Sci Int Genet ; 68: 102971, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39090851

RESUMEN

Cannabis sativa can be classified in two main types, according to psychotropic cannabinoid ∆9-tetrahydrocannabinol (∆9-THC) content: the drug-type and the fiber-type. According to the European Monitoring Center for Drugs and Drug Addiction, most of the European Union countries consider the possession of cannabis, for personal use, a minor offense with possibility of incarceration. Despite of the model of legal supply (i.e., Spanish cannabis clubs, Netherlands coffee shops) or medical use (i.e., Italy), cannabis remains the most used and trafficked illicit plant in the European Union. Differentiating cannabis crops or tracing the biogeographical origin is crucial for law enforcement purposes. Chloroplast DNA (cpDNA) markers may assist to determine biogeographic origin and to differentiate hemp from marijuana. This research aims: to identify and to evaluate nine C. sativa cpDNA polymorphic SNP sites to differentiate crop type and to provide information about its biogeographical origin. Five SNaPshot™ assays for nine chloroplast markers were developed and conducted in marijuana samples seized in Chile, the USA-Mexico border and Spain, and hemp samples grown in Spain and in Italy. The SNapShot™ assays were tested on 122 cannabis samples, which included 16 blind samples, and were able to differentiate marijuana crop type from hemp crop type in all samples. Using phylogenetic analysis, genetic differences were observed between marijuana and hemp samples. Moreover, principal component analysis (PCA) supported the relationship among hemp samples, as well as for USA-Mexico border, Spanish, and Chilean marijuana samples. Genetic differences between groups based on the biogeographical origin and their crop type were observed. Increasing the number of genetic markers, including the most recently studied ones, and expanding the sample database will provide more accurate information about crop differentiation and biogeographical origin.


Asunto(s)
Cannabis , ADN de Cloroplastos , Polimorfismo de Nucleótido Simple , Cannabis/genética , Marcadores Genéticos , ADN de Cloroplastos/genética , México , Reacción en Cadena de la Polimerasa , Europa (Continente) , Italia , Chile , España
3.
Biomed Rep ; 21(3): 134, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39091598

RESUMEN

Schizophrenia (SZ) is a multifactorial and neurodegenerative disorder that results from the interaction between genetic and environmental factors. Notably, hundreds of single nucleotide polymorphisms (SNPs) are associated with the susceptibility to SZ. Vitamin D (VD) plays an essential role in regulating several genes important for maintaining brain function and health. To the best of the authors' knowledge, no studies have yet been conducted on the association between the VD pathway and patients with SZ. Therefore, the present study aimed to assess the potential association between eight SNPs in genes related to the VD pathway, including CYP2R1, CYP27B1, CYP24A1 and VDR among patients with SZ. A case-control study was conducted, involving a total of 400 blood samples drawn from 200 patients and 200 healthy controls. Genomic DNA was extracted and variants were genotyped using the tetra-amplification refractory mutation system-polymerase chain reaction method. The present study revealed statistically significant differences between patients with SZ and controls regarding the genotypes and allele distributions of three SNPs [CYP2R1 (rs10741657), CYP27B1 (rs10877012) and CYP24A1 (rs6013897) (P<0.0001)]. The AA genotype of rs10741657 was identified to be associated with SZ (P<0.0001) and the frequency of the A allele was higher in patients with SZ (P<0.0001) compared with the control group. Similarly, the TT genotype of rs10877012 was revealed to be associated with SZ (P<0.0001) and the T allele was more frequent in patients with SZ (P<0.0001) than in the control group. Moreover, the AA genotype of rs6013897 was revealed to be associated with SZ (P<0.0001), although no significant difference was detected between the two groups regarding the A allele (P=0.055). VDR (rs2228570, rs1544410, rs731236 and rs7975232) and CYP27B1 (rs4646536) gene polymorphisms did not exhibit a significant association with SZ. While the studied SNPs revealed promising discriminatory capacity between patients with SZ and controls, the rs10741657 SNP exhibited the most optimal area under the curve value at 0.615. A logistic model was applied considering only the significant SNPs and VD levels, which revealed that rs6013897 (T/A) and VD may have protective effects (0.267, P<0.001; 0.888, P<0.001, respectively). Moreover, a low serum VD level was highly prevalent in patients with SZ compared with the controls. Based on this finding, an association between serum 25(OH)D and SZ could be demonstrated. The present study revealed that CYP2R1 (rs10741657), CYP27B1 (rs10877012) and CYP24A1 (rs6013897) gene SNPs may be associated with SZ susceptibility.

4.
Med Int (Lond) ; 4(6): 59, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39092011

RESUMEN

Intracranial aneurysms (IAs) are present in ~2% of the general population, and genetic factors cannot be excluded for the risk of their development. The gene factors that result in the changes in the vascular extracellular matrix (ECM) may also be a key reason for IAs being hereditary. The VCAN gene [also known as chondroitin sulfate proteoglycan 2 (CSPG2)] plays various roles in maintaining ECM functions. The present systematic review and meta-analysis aimed to investigate all eligible articles involving IAs on the association with germ line SNPs of DNA repair genes (up to January, 2024). The total number of patients was 2,308 [987 cases (poor outcomes) and 1,321 controls (good outcomes)]. The results revealed that rs2287926 G/G genotype and G allele and rs251124 T/T genotype and minor allele T increased the risk of developing IAs. However, further studies are required to examine these gene polymorphisms as screening markers for IAs.

5.
Front Genet ; 15: 1413500, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156961

RESUMEN

The most prevalent hip disease in neonates is developmental dysplasia of the hip (DDH). A timely and accurate diagnosis is required to provide the most effective treatment for pediatric patients with DDH. Heredity and gene variation have been the subject of increased attention and research worldwide as one of the factors contributing to the pathogenesis of DDH. Genome-wide association studies (GWAS), genome-wide linkage analyses (GWLA), and exome sequencing (ES) have identified variants in numerous genes and single-nucleotide polymorphisms (SNPs) as being associated with susceptibility to DDH in sporadic and DDH family patients. Furthermore, the DDH phenotype can be observed in animal models that exhibit susceptibility genes or loci, including variants in CX3CR1, KANSL1, and GDF5. The dentification of noncoding RNAs and de novo gene variants in patients with DDH-related syndrome has enhanced our understanding of the genes implicated in DDH. This article reviews the most recent molecular mechanisms and genetic factors that contribute to DDH.

6.
J Oral Maxillofac Pathol ; 28(2): 232-239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157834

RESUMEN

Background: Oral squamous cell carcinoma (OSCC) poses a significant global health burden, particularly prevalent in regions like India. Despite advancements in diagnostics, early detection of OSCC remains challenging, necessitating novel diagnostic modalities. Toll-like receptors (TLRs) and their polymorphisms have emerged as potential contributors to OSCC pathogenesis. Methods: This retrospective case-control study examined 120 individuals, including 60 OSCC cases and 60 healthy controls. Genotyping of TLR3 single-nucleotide polymorphisms (SNPs) rs3775290 and rs3775291 was conducted using TaqMan allelic discrimination real-time polymerase chain reaction. Functional consequence analysis and TLR3 expression profiling were performed to elucidate their role in OSCC pathogenesis. Results: Significant associations were observed between TLR3 SNPs and OSCC susceptibility, particularly at loci rs3775290 and rs3775291. Functional consequence analysis revealed pathogenic mutations in TLR3 genes, potentially affecting protein structure and function. TLR3 overexpression was detected in OSCC lesions, implicating its involvement in disease progression. Conclusion: TLR3 polymorphisms play a pivotal role in OSCC pathogenesis, offering potential biomarkers for diagnosis and prognosis. Targeting TLR3-mediated pathways may hold promise in personalised OSCC management. Further research is warranted to elucidate the precise mechanisms underlying TLR3-mediated carcinogenesis in OSCC, facilitating the development of tailored therapeutic strategies.

7.
Mol Ecol ; : e17503, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162219

RESUMEN

Weather is an important short-term, local driver of population size and dispersal, which in turn contribute to patterns of genetic diversity and differentiation within species. Climate change is leading to greater weather variability and more frequent extreme weather events. While the effects of long-term and broad-scale mean climate conditions on genetic variation are well studied, our understanding of the effects of weather variability and extreme conditions on genetic variation is less developed. We assessed the influence of temperature and snow depth on genetic diversity and differentiation of populations of the alpine butterfly, Parnassius smintheus. We examined the relationships between a suite of variables, including those representing extreme conditions, and population-level genetic diversity and differentiation across 1453 single nucleotide polymorphisms, using both linear and gravity models. We additionally examined effects of land cover variables known to influence dispersal and gene flow in this species. We found that extreme low temperature events and the lowest recorded mean snow depth were significant predictors of genetic diversity. Extreme low temperature events, mean snow depth and land cover resistance were significant predictors of genetic differentiation. These results are congruent with known effects of early winter weather on population size and habitat connectivity on dispersal in P. smintheus. Our results demonstrate the potential for changes in the frequency or magnitude of extreme weather events to alter patterns of genetic diversity and differentiation.

8.
Eur J Clin Invest ; : e14297, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099542

RESUMEN

BACKGROUND: An individual's genetic fingerprint is emerging as a pivotal predictor of numerous disease- and treatment-related factors. Single nucleotide polymorphisms (SNPs) in drug-metabolizing enzymes play key roles in an individual's exposure to a malignancy-associated risk, such as Aflatoxin B1 (AFB1)-induced hepatocellular carcinoma (HCC). AIM: This study aimed at reviewing literature on the polymorphisms that exist in CYP enzymes and their possible link with susceptibility to AFB1-induced HCC. MATERIALS & METHODS: A set of keywords associated with the study subject of interest was used to search the Google Scholar and the PubMed database. The last ten years' worth of research projects were included in the results filter. The research involved HCC patients and any connection between polymorphic forms of CYP enzymes and their susceptibility to AFB1-induced HCC, including older but significant data. RESULTS: Variations in CYP1A2 and CYP3A4 were reported to impact the rate and magnitude of AFB1 bio-activation, thus influencing an individual's vulnerability to develop HCC. In HCC patients, the activity of CYP isoforms varies, where increased activity has been reported with CYP2C9, CYP2D6, and CYP2E1, while CYP1A2, CYP2C8, and CYP2C19 exhibit decreased activity. CYP2D6*10 frequency has been discovered to differ considerably in HCC patients. Rs2740574 (an upstream polymorphism in CYP3A4 as detected in CYP3A4*1B) and rs776746 (which affects CYP3A5 RNA splicing), both of which influence CYP3A expression, thus impacting the variability of AFB1-epoxide adducts in HCC patients. DISCUSSION: CYP1A2 is the primary enzyme accountable for the formation of harmful AFBO globally. CYP3A4, CYP3A5, CYP3A7, CYP2B7, and CYP3A3 are also implicated in the bio-activation of AFB1 to mutagenic metabolites. It is thought that CYP3A4 is the protein that interacts with AFB1 metabolism the most. CONCLUSION: Polymorphic variants of CYP enzymes have a functional impact on the susceptibility to AFB1-induced HCC. Outlining such variation and their implications may provide deeper insights into approaching HCC in a more personalized manner for guiding future risk-assessment, diagnosis, and treatment.

9.
BMC Cancer ; 24(1): 1007, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138392

RESUMEN

BACKGROUND: Chemokines and cytokines are components of the tumor microenvironment and also influence tumorigenesis and its composition. However, whether they genetically proxy tumorigenesis is unclear. For causal inferences, eQTL and pQTL were used to determine the role of chemokines and cytokines in pan-cancer. The impact on the tumor immune microenvironment was also explored. METHODS: This study leveraged summary statistics from respective genome-wide association studies (GWAS) of 109 cytokines and chemokines in 18 types of solid tumors. Single nucleotide polymorphisms (SNPs) robustly associated with the cytokines and chemokines, located in or close to their coding gene (cis), were used as instrumental variables. A two-sample MR design was employed, followed by comprehensive sensitivity analyses to validate the robustness of results. The impact on immune infiltration was investigated using the TIMER and TISIDB websites. Survival analysis was conducted using the K-M plotter and TIMER 2.0 websites. The TISCH and GEO databases were used to carry out scRNA cell analysis.Analyzing relevant proteins using the STRING database and conducting enrichment pathways for GO analysis of the identified proteins. RESULTS: The results of the inverse-variance weighted (IVW) method using cis-protein QTL (cis-pQTL) instruments showed the causal effects of TNF in reducing the risk of squamous cell lung cancer (LUSC) and HGF in reducing the risk of head and neck cancer (HNSC).The results were consistent with the eQTL. HGF was associated with better overall survival (OS) in HNSC, regardless of the types of cells enriched. However, high expression of the ligand MET for HGF leads to a decrease in overall survival in LUSC. TNF was related to poor OS in LUSC with no significant impact. However, in CD8 + T cell-enriched, eosinophil-enriched, macrophage-enriched, and NK cell-deficient types of LUSC, high expression of TNF leads to a poor prognosis, and there is statistical significance. The results showed a significant positive correlation between TNF and most immune cell infiltration, immunomodulator and chemokine in LUSC. HGF is positively correlated with the majority of immune cells except CD56 + cells, as well as some immune regulatory factors and chemotactic factors. According to single-cell sequencing results, HGF is mainly secreted by fibroblasts and myofibroblasts in HNSC, while in LUSC, it is primarily secreted by macrophages and CD8 + T cells secrete TNF. The GO/KEGG analysis suggests that proteins related to HGF are mainly involved in regulating peptidyl-tyrosine phosphorylation and positive regulation of the MAPK cascade. Proteins related to TNF are primarily associated with the regulation of I-kappaB kinase/NF-kappaB signaling and cytokine-mediated signaling pathway. CONCLUSIONS: HGF is primarily secreted by fibroblasts in HNSC and may have a protective effect on the occurrence and prognosis of HNSC. These effects are independent of immune cell influence, and this role may not necessarily be mediated through the HGF/MET pathway. On the other hand, TNF in LUSC is mainly secreted by immune cells like CD8 + T cell, and it may have a protective effect on the occurrence of LUSC. However, it's impact on the prognosis of LUSC through the immune microenvironment may have a different effect.


Chemokines and cytokines are not only components of the tumor microenvironment but also affect tumorigenesis and the composition of the tumor microenvironment. However, whether they genetically proxy tumorigenesis is unclear. For causal inferences, eQTL and pQTL were used to define the role of chemokines and cytokines in pan-cancer. The impact on the tumor immune microenvironment was also explored. This study leveraged the summary statistic from respective genome wide association study (GWAS) of 109 cytokines and chemokines to 18 types of solid tumor. Single nucleotide polymorphisms (SNPs) robustly associated with the cytokines and chemokines, located in or close to their coding gene (cis), were used as instrumental variables. A two-sample MR design was employed, followed by comprehensive sensitivity analyses to validate the robustness of results. The results showed HGF is primarily secreted by fibroblasts in HNSC, and it may have a protective effect on the occurrence and prognosis of HNSC. These effects are independent of immune cell influence, and this role may not be mediated through the HGF/MET pathway. On the other hand, TNF in LUSC is mainly secreted by immune cells like CD8 + T cell, and it may have a protective effect on the occurrence of LUSC. However, it's impact on the prognosis of LUSC through the immune microenvironment may have a different effect.


Asunto(s)
Citocinas , Estudio de Asociación del Genoma Completo , Neoplasias , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Microambiente Tumoral , Humanos , Citocinas/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/mortalidad
10.
Cytokine ; 182: 156730, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39133967

RESUMEN

Acute myeloid leukemia (AML) is one of the most common and fatal malignancies that affect adults, which can quickly become aggressive if left untreated, and leukemia cells invade the bone marrow. TLR-9 is an innate immune cell receptor sensitive to various PAMPs and encoded by the TLR-9 gene. As is often known, genetic polymorphisms in any gene can help the development of the disease, and these three polymorphisms, rs187084, rs5743836, and rs352140 of TLR-9, have been studied in many different cancer disorders. Therefore, this study aimed to discover the multiple forms of a TLR-9 gene in a sample of Iraqi AML patients. A total of 120 participants in a case-control study were enrolled in the current study. Using CBC, some hematological parameters were evaluated, and the serum level of TLR-9 was assessed using the ELISA technique. DNA was extracted directly from blood, and a high-resolution melting (HRM) analysis was then carried out. The results revealed a significant difference in some blood parameters among patients and healthy control, while WBC and lymphocytes were without an evident difference between the two groups of the current investigation. The serum concentration of TLR-9 showed an elevated level in patients (P value < 0.01). Nonetheless, this increase was not affected by the genotype patterns of polymorphisms. According to the P-value, there was a significant difference in wild genotypes of the three polymorphisms (rs187084, rs5743836, and rs352140). At the same time, the odds ratio revealed the association with the disease as a protective factor. In contrast, there was a significant difference in the heterozygous and mutant genotypes of TLR-9 polymorphisms, though the odds ratio confirmed the association with the AML as a risk factor. The results of rs352140 were compatible with H.W.E since there were no significant differences between the observed and expected values for either patients or healthy controls. In contrast, the result of rs5743836 was not consistent with the HWE. Furthermore, although it corresponds with the healthy one, the finding of rs187084 conflicted with H.W.E. in the patient group. In conclusion, High serum levels of TLR-9 in patients could act as biomarkers for AML. The TLR-9 gene polymorphisms (rs187084, rs5743836, and rs352140) have been linked to an increased risk of AML and may impact the disease progression in the Iraqi population.

11.
Eur J Pharmacol ; : 176907, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154825

RESUMEN

Cardiovascular diseases (CVDs) have a high mortality rate, and despite the several available therapeutic targets, non-response to antihypertensives remains a common problem. Angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) are important classes of drugs recommended as first-line therapy for several CVDs. However, response to ACEIs and ARBs varies among treated patients. Pharmacogenomics assesses how an individual's genetic characteristics affect their likely response to drug therapy. Currently, numerous studies suggest that genetic polymorphisms may contribute to variability in drug response. Moreover, further studies evaluating gene-gene interactions within signaling pathways in response to antihypertensives might help to unravel potential genetic predictors for antihypertensive response. This review summarizes the pharmacogenetic data for ACEIs and ARBs in patients with CVD, and discusses the potential pharmacogenetics of these classes of antihypertensives in clinical practice. However, replication studies in different populations are needed. In addition, studies that evaluate gene-gene interactions that share signaling pathways in the response to antihypertensive drugs might facilitate the discovery of genetic predictors for antihypertensive response.

12.
Front Mol Biosci ; 11: 1414164, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165641

RESUMEN

In recent years, protein homeostasis imbalance caused by endoplasmic reticulum stress has become a major hallmark of cancer. Studies have shown that endoplasmic reticulum stress is closely related to the occurrence, development, and drug resistance of non-small cell lung cancer, however, the role of various endoplasmic reticulum stress-related genes in non-small cell lung cancer is still unclear. In this study, we established an endoplasmic reticulum stress scores based on the Cancer Genome Atlas for non-small cell lung cancer to reflect patient features and predict prognosis. Survival analysis showed significant differences in overall survival among non-small cell lung cancer patients with different endoplasmic reticulum stress scores. In addition, endoplasmic reticulum stress scores was significantly correlated with the clinical features of non-small cell lung cancer patients, and can be served as an independent prognostic indicator. A nomogram based on endoplasmic reticulum stress scores indicated a certain clinical net benefit, while ssGSEA analysis demonstrated that there was a certain immunosuppressive microenvironment in high endoplasmic reticulum stress scores. Gene Set Enrichment Analysis showed that scores was associated with cancer pathways and metabolism. Finally, weighted gene co-expression network analysis displayed that CAV1 was closely related to the occurrence of non-small cell lung cancer. Therefore, in order to further analyze the role of this gene, Chinese non-smoking females were selected as the research subjects to investigate the relationship between CAV1 rs3779514 and susceptibility and prognosis of non-small cell lung cancer. The results showed that the mutation of rs3779514 significantly reduced the risk of non-small cell lung cancer in Chinese non-smoking females, but no prognostic effect was found. In summary, we proposed an endoplasmic reticulum stress scores, which was an independent prognostic factor and indicated immune characteristics in the microenvironment of non-small cell lung cancer. We also validated the relationship between single nucleotide polymorphism locus of core genes and susceptibility to non-small cell lung cancer.

13.
Biol Res Nurs ; : 10998004241268088, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137431

RESUMEN

OBJECTIVES: Shortness of breath is a common symptom in patients with cancer. However, the mechanisms that underlie this troublesome symptom are poorly understood. Therefore, this study aimed to determine the prevalence of and associated risk factors for shortness of breath in women prior to breast cancer surgery and identify associations between shortness of breath and polymorphisms for potassium channel genes. METHODS: Patients were recruited prior to breast cancer surgery and completed a self-report questionnaire on the occurrence of shortness of breath. Genotyping of single nucleotides polymorphism (SNPs) in potassium channel genes was performed using a custom array. Multiple logistic regression analyses were done to identify associations between the occurrence of shortness of breath and SNPs in ten candidate genes. RESULTS: Of the 398 patients, 11.1% reported shortness of breath. These patients had a lower annual household income, a higher comorbidity burden, and a lower functional status. After controlling for functional status, comorbidity burden, genomic estimates of ancestry and self-reported race and ethnicity, the genetic associations that remained significant in the multiple regression analyses were for potassium voltage-gated channel subfamily D (KCND2) rs12673992, potassium voltage-gated channel modifier subfamily S (KCNS1) rs4499491, and potassium two pore channel subfamily K (KCNK2) rs4411107. CONCLUSIONS: While these findings warrant replication, they suggest that alterations in potassium channel function may contribute to the occurrence of shortness of breath in women prior to breast cancer surgery.

14.
Pregnancy Hypertens ; 37: 101144, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39111192

RESUMEN

Preeclampsia or high blood pressure in pregnancy is one of the special disorders during pregnancy. It seems that oxidative stress plays an important role in the occurrence of this disease. The purpose of this study is to investigate the relationship between the A313G polymorphism in exon five of the glutathione S-transferase gene (GSTP1) and the risk of preeclampsia in a case-control study. In this study, blood samples were collected from 70 healthy pregnant women and 70 women with preeclampsia. After genomic DNA extraction, the PCR-RFLP method was performed to check the genotype in GSTP1-A313G and the genotypic frequencies of AA, AG, and GG were determined in all samples. Also, using bioinformatics software, the effect of the above polymorphism on the protein structure was investigated. Statistical analysis for A313G polymorphism showed that AG (OR: 1.1684, 95 % CI: 0.5877-2.3228, p = 0.657) and GG (OR: 1.3793, 95 % CI: 0.3376-5.6359, p = 0.654) genotypes were not associated with risk of preeclampsia in the population of northern Iran. However, bioinformatic analyzes have shown that this polymorphism does have a destructive effect on the protein structure. However, more studies with larger sample sizes are needed to draw firm conclusions.

15.
J Adv Vet Anim Res ; 11(2): 302-305, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39101091

RESUMEN

Objective: The study was conducted to identify the sequence variation of Toll-like receptor 4 (TLR4) in exon 2 of South African Dorper sheep. Materials and Methods: Blood samples were collected from fifty (n = 50) South African Dorper sheep aged between 3 and 4 years. The Deoxyribonucleic acid (DNA) was extracted, amplified, and sequenced for the TLR4 gene. DNA sequencing was used to identify the sequence variations of the TLR4 gene in South African Dorper sheep. Results: The results showed that one synonymous single nucleotide polymorphism (SNP) of the TLR4 gene in exon 2 position T2249C was identified. Two genotypes (TT and TC) were discovered from the identified SNP. The dominant genotype was TT (0.60) over TC (0.40), with the dominant allele T (0.80) over C (0.20). The results also indicated that the used population was in the Hady-Weinberg Equilibrium. Polymorphism genetic analysis findings suggest that the identified sequence variation of TLR4 in exon 2 of South African Dorper sheep was moderate polymorphism. Conclusion: TLR4 gene at exon 2 of South African Dorper sheep had the SNP (T>C) at position 2249 bp with two genotypes (TT and TC).

16.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125744

RESUMEN

Carcinogenesis is closely related to the expression, maintenance, and stability of DNA. These processes are regulated by one-carbon metabolism (1CM), which involves several vitamins of the complex B (folate, B2, B6, and B12), whereas alcohol disrupts the cycle due to the inhibition of folate activity. The relationship between nutrients related to 1CM (all aforementioned vitamins and alcohol) in breast cancer has been reviewed. The interplay of genes related to 1CM was also analyzed. Single nucleotide polymorphisms located in those genes were selected by considering the minor allele frequency in the Caucasian population and the linkage disequilibrium. These genes were used to perform several in silico functional analyses (considering corrected p-values < 0.05 as statistically significant) using various tools (FUMA, ShinyGO, and REVIGO) and databases such as the Kyoto Encyclopedia of Genes and Genomes (KEGG) and GeneOntology (GO). The results of this study showed that intake of 1CM-related B-complex vitamins is key to preventing breast cancer development and survival. Also, the genes involved in 1CM are overexpressed in mammary breast tissue and participate in a wide variety of biological phenomena related to cancer. Moreover, these genes are involved in alterations that give rise to several types of neoplasms, including breast cancer. Thus, this study supports the role of one-carbon metabolism B-complex vitamins and genes in breast cancer; the interaction between both should be addressed in future studies.


Asunto(s)
Neoplasias de la Mama , Carbono , Polimorfismo de Nucleótido Simple , Complejo Vitamínico B , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Complejo Vitamínico B/metabolismo , Carbono/metabolismo , Ácido Fólico/metabolismo , Bases de Datos Genéticas , Simulación por Computador , Regulación Neoplásica de la Expresión Génica , Vitamina B 6/metabolismo , Desequilibrio de Ligamiento
17.
Talanta ; 280: 126686, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39128314

RESUMEN

G-quadruplex/thioflavin T (G4/THT) is one of the ideal label-free fluorescent light-emitting elements in the field of biosensors due to its good programmability and adaptability. However, the unsatisfactory luminous efficiency of single-molecule G4/THT limits its more practical applications. Here, we developed a G4 embedded semi-catalytic hairpin assembly (G4-SCHA) reaction by rationally modifying the traditional CHA reaction, and combined with the invasive reaction, supplemented by magnetic separation technology, for label-free sensitive detection of single nucleotide polymorphisms (SNPs). The invasive reaction enabled specific recognition of single-base mutations in DNA sequences as well as preliminary signal cycle amplification. Then, magnetic separation was used to shield the false positive signals. Finally, the G4-SCHA was created for secondary amplification and label-free output of the signal. This dual-signal amplified label-free biosensor has been shown to detect mutant targets as low as 78.54 fM. What's more, this biosensor could distinguish 0.01 % of the mutant targets from a mixed sample containing a large number of wild-type targets. In addition, the detection of real and complex biological samples also verified the practical application value of this biosensor in the field of molecular design breeding. Therefore, this study improves a label-free fluorescent light-emitting element, and then proposes a simple, efficient and universal label-free SNP biosensing strategy, which also provides an important reference for the development of other G4/THT based biosensors.

18.
Heliyon ; 10(15): e35160, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170419

RESUMEN

Background: Previous observational studies have investigated the correlation between calcium homeostasis modulator levels and endometriosis risk. Yet, the genetic association between body calcium homeostasis and endometriosis risk remains to be elucidated. Methods: Four tiers of Mendelian randomization (MR) analysis were conducted, as follows: (1) single univariate MR and (2) multivariate MR to evaluate the correlation between calcium homeostasis regulators and endometriosis; (3) inverse MR to probe the influence of endometriosis on body calcium homeostasis; (4) two-sample MR to scrutinize the connection between calcium levels and endometriosis categories. Results: The two-sample MR analysis unveiled a robust positive correlation between genetically inferred calcium levels and endometriosis risk (IVW: OR = 1.15, 95 % CI: 1.02-1.29, p = 0.018). The MVMR analysis corroborated that the positive correlation of calcium levels with endometriosis persisted after adjusting for 25(OH)D and PTH. The inverse MR analysis disclosed a significant association between endometriosis and 25(OH)D (ß = 0.01, 95 % CI: 0.00-0.02, p = 0.007) and calcium (ß = 0.02, 95 % CI: 0.00-0.04, p = 0.035). The two-sample MR analysis further demonstrated that calcium levels were positively linked solely to endometriosis of uterus (i.e. adenomyosis, IVW: OR = 1.23, 95 % CI: 1.01-1.49, p = 0.038), with no evidence of a influence on other endometriosis categories. Conclusions: This study, employing various types of MR, offers some genetic evidence for the relationship between calcium homeostasis and endometriosis, augmenting the current comprehension of the complex association between the two and suggesting that calcium levels are a risk factor for endometriosis. These findings provide a unique genetic perspective that may spur further investigation and may inform future strategies for managing patients with endometriosis.

19.
Biotechniques ; : 1-7, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119680

RESUMEN

Investigative leads are not generated by traditional forensic DNA testing, if the source of the forensic evidence or a 1st degree relative of unidentified human remains is not in the DNA database. In such cases, forensic genetic genealogy (FGG) can provide valuable leads. However, FGG generated genetic data contain private and sensitive information. Therefore, it is essential to deploy approaches that minimize unnecessary disclosure of these data to mitigate potential risks to individual privacy. We recommend protective practices that need not impact effective reporting of relationship identifications. Examples include performing one-to-one comparisons of DNA profiles of third-party samples and evidence samples offline with an "air gap" to the internet and shielding the specific shared single nucleotide polymorphisms (SNP) states and locations by binning adjacent SNPs in forensic reports. Such approaches reduce risk of unwanted access to or reverse engineering of third-party individuals' genetic data and can give these donors greater confidence to support use of their DNA profiles in FGG investigation.


[Box: see text].

20.
ACS Sens ; 9(8): 4207-4215, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39088458

RESUMEN

ß-Thalassemia is a prevalent type of severe inherited chronic anemia, primarily identified in developing countries. The identification of single nucleotide polymorphisms (SNPs) plays a vital role in the early diagnosis of genetic diseases. Here, we reported the development of an amplification-free fiber optic nanogold-linked sorbent assay method using a fiber optic particle plasmon resonance (FOPPR) biosensor for rapid and ultrasensitive detection of SNPs. Herein, MutS protein was selected as the biorecognition capture probe and immobilized on the sensing region to capture the target mutant DNA, which was hybridized with a single-base mismatched single-stranded DNA labeled by a gold nanoparticle (AuNP). The AuNP acts as a signaling agent to be detected by the FOPPR biosensor when it is bound on the fiber core surface. The method effectively differentiates mismatched double-stranded DNA by MutS protein from perfectly matched/complementary dsDNA. It exhibits an impressively low detection limit for the detection of SNPs at approximately 10-16 M using low-cost sensor chips and devices. By determination of the ratio of mutant DNA to normal DNA in cell-free genomic DNA from blood samples, this method is promising for diagnosing ß-thalassemia in fetuses without invasive testing techniques.


Asunto(s)
Ácidos Nucleicos Libres de Células , Oro , Nanopartículas del Metal , Polimorfismo de Nucleótido Simple , Talasemia beta , Talasemia beta/diagnóstico , Talasemia beta/genética , Talasemia beta/sangre , Humanos , Oro/química , Nanopartículas del Metal/química , Ácidos Nucleicos Libres de Células/sangre , Diagnóstico Prenatal/métodos , Tecnología de Fibra Óptica , Pruebas Genéticas/métodos , Técnicas Biosensibles/métodos , Embarazo , Femenino , Límite de Detección , Resonancia por Plasmón de Superficie/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA