Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Adv Colloid Interface Sci ; 331: 103165, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964197

RESUMEN

Colloid particles (CP, 10-8-10-6 m = 10-1000 nm) are used as models for atom scale processes, such as crystallization since the process is experimentally observable. Packing of atoms in crystals resemble mono-, bi-, and trimodal packing of noncharged hard spheres (particles). When the size of one particle exceeds the two others an excluded volume consisting of small particles is created around large particles. This is also the case when colloid particles are dispersed in water. The formation of an excluded volume does not require attraction forces, but it is enforced by the presence of dissolved primary (cations) and secondary (protons of surface hydroxyls) potential determining ions. The outcome is an interfacial solid-liquid charge. This excluded volume, denoted Stern layer is characterized by the surface potential and charge density. Charge neutrality is identified by point of zero charge (pHpzc and pcpzc). Outside Stern layer another excluded volume is formed of loosely bound counterions which interact with Stern layer. The extent of this diffuse layer is given by inverse Debye length and effective ζ-potential. The overall balance between attractive and repulsive energies is provided by Derjaguin-Landau-Veerwey-Overbeek (DLVO) model. Charge neutrality is identified at isoelectric point (pHiep and pciep). The dependence of viscosity and yield stress on shear rate may be modeled by von Smoluchowski's volumetric collision frequency multiplied by some total interaction energy given by DLVO model. Equilibrium and dynamic models for settling and enforced particle movement (viscosity) are presented. Both compressive yield stress (sedimentation) and cohesive energy (viscoelasticity) are characterized by power law exponents of volume fraction. The transition of disperse suspensions (sols) to spanning clusters (gels) is identified by oscillatory rheology. The slope of linear plots of logarithmic storage (G´) and loss (G") moduli against logarithm of frequency or logarithm of volume fraction provide power law exponents from the slopes. These exponents relate to percolation and fractal dimensions characterizing the particle network. Moreover, it identifies the structure formation process either as diffusion limited cluster-cluster (DLCCA) or as reaction limited cluster-cluster (RLCCA) aggregation.

2.
Pharmaceutics ; 16(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38931933

RESUMEN

In this study, we present a new type of polymer-free hydrogel made only from nonionic surfactants, oil, and water. Such a system is produced by taking advantage of the physicochemical behavior and interactions between nonionic surfactants and oil and water phases, according to a process close to spontaneous emulsification used in the production of nano-emulsions. Contrary to the classical process of emulsion-based gel formulation, we propose a simple one-step approach. Beyond the originality of the concept, these nanoemulgels appear as very promising systems able to encapsulate and deliver various molecules with different solubilities. In the first section, we propose a comprehensive investigation of the gel formation process and its limits through oscillatory rheological characterization, characterization of the sol/gel transitions, and gel strength. The second section is focused on the follow-up of the release of an encapsulated model hydrophilic molecule and on the impact of the rheological gel properties on the release profiles.

3.
Gels ; 10(6)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38920931

RESUMEN

A combination of Poloxamer 407 (P407) and hydroxypropyl methylcellulose (HPMC) hydrosols is proposed as an in situ thermo-gelling vehicle for the nasal drug delivery of chlorhexidine-silver nanoparticles conjugates (SN-CX). Optimization of the formulation was carried out by applying varying ratios of P407 and HPMC in the presence and absence of SN-CX so that gelation would occur in the temperature range of the nasal cavity (30-34 °C). Mechanisms for the observed gelation phenomena were suggested based on viscosimetry, texture analysis, and dynamic light scattering. Tests were carried out for sprayability, washout time, in vitro drug release, ex vivo permeation, and antimicrobial activity. When applied separately, HPMC was found to lower the P407 gelation temperature (Tg), whereas SN-CX increased it. However, in the presence of HPMC, SN-CX interfered with the P407 micellar organization in a principally contrasting way while leading to an even further decrease in Tg. SN-CX-loaded nasal formulations composed of P407 16% and HPMC 0.1% demonstrated a desired gelation at 31.9 °C, good sprayability (52.95% coverage of the anterior nasal cavity), mucoadhesion for 70 min under simulated nasal clearance, expedient release and permeation, and preserved anti-infective activity against seasonal Influenza virus and beta-coronavirus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and other pathogens. Our findings suggest that the current development could be considered a potential formulation of a protective nasal spray against respiratory infections.

4.
Gels ; 10(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38786206

RESUMEN

Thermoresponsive sol-gel transition polymers are of significant interest because of their fascinating biomedical applications, including as drug reservoirs for drug delivery systems and scaffolds for tissue engineering. Although extensive research has been conducted on lower critical solution temperature (LCST)-type sol-gel transition polymers, there have been few reports on upper critical solution temperature (UCST)-type sol-gel transition polymers. In this study, we designed an ABA-type triblock copolymer composed of a poly(ethylene glycol) (PEG) block and zwitterionic polymer blocks that exhibit UCST-type thermoresponsive phase transitions. A sulfobetaine (SB) monomer with both ammonium and sulfonate (-SO3) groups in its side chain or a sulfabetaine (SaB) monomer with both ammonium and sulfate (-OSO3) groups in its side chain was polymerized from both ends of the PEG block via reversible addition-fragmentation chain-transfer (RAFT) polymerization to obtain PSB-PEG-PSB and PSaB-PEG-PSaB triblock copolymers, respectively. Although an aqueous solution containing the PSB-PEG-PSB triblock copolymer showed an increase in viscosity upon cooling, it did not undergo a sol-to-gel transition. In contrast, a sol-to-gel transition was observed when a phosphate-buffered saline containing PSaB-PEG-PSaB was cooled from 80 °C to 25 °C. The PSaB blocks with -OSO3 groups exhibited a stronger dipole-dipole interaction than conventional SB with -SO3 groups, leading to intermolecular association and the formation of a gel network composed of PSaB assemblies bridged with PEG. The fascinating UCST-type thermoresponsive sol-gel transition properties of the PSaB-PEG-PSaB triblock copolymer suggest that it can provide a useful platform for designing smart biomaterials, such as drug delivery reservoirs and cell culture scaffolds.

5.
J Colloid Interface Sci ; 669: 754-765, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38739967

RESUMEN

Thermally-induced in-situ gelation of polymers and nanogels is of significant importance for injectable non-invasive tissue engineering and delivery systems of drug delivery system. In this study, we for the first time demonstrated that the interpenetrating (IPN) nanogel with two networks of poly (N-isopropylacrylamide) (PNIPAM) and poly (N-Acryloyl-l-phenylalanine) (PAphe) underwent a reversible temperature-triggered sol-gel transition and formed a structural color gel above the phase transition temperature (Tp). Dynamic light scattering (DLS) studies confirmed that the Tp of IPN nanogels are the same as that of PNIPAM, independent of Aphe content of the IPN nanogels at pH of 6.5 âˆ¼ 7.4. The rheological and optical properties of IPN nanogels during sol-gel transition were studied by rheometer and optical fiber spectroscopy. The results showed that the gelation time of the hydrogel photonic crystals assembled by IPN nanogel was affected by temperature, PAphe composition, concentration, and sequence of interpenetration. As the temperature rose above the Tp, the Bragg reflection peak of IPN nanogels exhibited blue shift due to the shrinkage of IPN nanogels. In addition, these colored IPN nanogels demonstrated good injectability and had no obvious cytotoxicity. These IPN nanogels will open an avenue to the preparation and thermally-induced in-situ gelation of novel NIPAM-based nanogel system.

6.
Int J Biol Macromol ; 269(Pt 2): 131890, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692534

RESUMEN

The rheological and morphological characteristics of Ca-crosslinked alginate hydrogels with two different M/G ratios, α-L-guluronate (G)-rich and ß-D-mannuronate (M)-rich, each with one alginic acid concentration, were investigated. It was found that the stiffness and elasticity of alginate hydrogels are derived from the thickness and density of the fibril network structures. In aqueous alginate solution, ball-like aggregates of alginates are present. Time-resolved small-angle X-ray scattering and time-domain nuclear magnetic resonance measurements suggest that the disaggregation of alginate aggregates and loose fibrillation occur in the early stage of the sol-gel transition. After these induction stage, direct gelation is finally caused by the formation of the egg-box junction. G-rich alginate hydrogel has a higher stiffness and a thicker and denser fibril network structure than M-rich alginate hydrogel. The former also exhibits faster and more significant changes in physical properties during the sol-gel transition.


Asunto(s)
Alginatos , Hidrogeles , Transición de Fase , Reología , Alginatos/química , Hidrogeles/química , Dispersión del Ángulo Pequeño , Ácidos Hexurónicos
7.
Small Methods ; : e2301550, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597753

RESUMEN

Nanoporous aerogel fibers enjoy the luxury of being one of the most attractive nanomaterials. However, the representative fabrication pathways have faced up with low production rates due to significant speed mismatch between slow sol-gel transition and as fast as possible spinning in the same period. Herein, a novel gas-blows-liquid spinning (GS) strategy with a spinning speed of 300-700 m s-1 is developed to get the high-speed and high-efficiency production of aerogel fibers/fabrics. The spinning speed of the GS strategy is 900 times higher than various techniques reported for aerogel fibers. The resulting aerogel fibers exhibit a high specific surface area (180 m2 g-1). In comparison, the aerogel fiber possesses the highest tensile strength (58.7±3.9 MPa) among its counterparts and aerogel fabric with surprising water-absorption and microparticle-blocking performances exhibits the application prospect for better hemostasis than that of commercial gauze and cotton ball. Besides, the GS aerogel fabrics with hierarchical aligned structures show better thermal insulation (≈0.035 Wm-1K-1) than wet spinning aerogel fabric and commercial insulation felts. This work has provided inspiration for fast fabricating more aerogel fibers/fabrics with this GS strategy, and the resulting aerogel fibers/fabrics may find significant application in the fields of 5G smart phones, wound hemostasis, etc.

8.
Microsc Res Tech ; 87(7): 1647-1653, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38461470

RESUMEN

The synaptic basal lamina of the electrocytes was disclosed to be electron-translucent to some extent when viewed in an en-face direction in embedment-free section transmission electron microscopy (EFS-TEM), and synaptic vesicles located close to the presynaptic membrane were seen through the synaptic basal lamina together with the presynaptic and postsynaptic membranes. This feature of translucency has the potential to analyze possible spatial interrelations in situ between bioactive molecules in the synaptic basal lamina and the synaptic vesicles in further studies. The synaptic basal lamina, appearing as an electron-dense line sandwiched by two parallel lines representing the presynaptic and postsynaptic membranes in ultrathin sections cut right to the synaptic junctional plane in conventional TEM, was not fully continuous but randomly intermittent along its trajectory. Compatible with the intermittent line appearance, the en-face 3D view in embedment-free section TEM revealed for the first time partial irregular defects of the synaptic basal lamina. Considering the known functional significance of several molecules contained in the synaptic basal lamina in the maintenance and exertion of the synapse, its partial defects may not represent its rigid structural features, but its immature structure under remodeling or its dynamic changes in consistency such as the sol/gel transition, whose validity needs further examination. RESEARCH HIGHLIGHTS: In embedment-free section TEM, a 3D en-face view of synaptic basal lamina in situ is reliably possible. The basal lamina en-face is electron-translucent, which makes it possible to analyze spatial interrelation between pre- and post-synaptic components. Partial irregular defects in the basal lamina are revealed in Torpedo electrocytes, suggesting its remodeling or dynamic changes in consistency.


Asunto(s)
Microscopía Electrónica de Transmisión , Animales , Microscopía Electrónica de Transmisión/métodos , Vesículas Sinápticas/ultraestructura , Sinapsis Eléctricas/ultraestructura , Sinapsis Eléctricas/fisiología , Sinapsis/ultraestructura , Membranas Sinápticas/ultraestructura , Imagenología Tridimensional/métodos
9.
Int J Biol Macromol ; 265(Pt 1): 130865, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490387

RESUMEN

Temperature-responsive inks were formulated using k-carrageenan, fenugreek gum (FG), rose extracts, and sugar, of which the first two were used as the gelling agents. The interactions among components in these mixed ink formulations were investigated. Sol-gel transition and rheological properties of these inks were also correlated with extrusion, shape formation, and self (shape)-supporting aspects of 3D printing. Results indicated that incorporating FG increased inks' gelation temperature from 39.7 °C to 44.7-49.6 °C, affecting the selection of printing temperature (e.g., 0 % FG: 40 °C, 0.15 % FG: 45 °C, 0.3 % FG-0.6 % FG: 50 °C). Inks in solution states with lower viscosity (<5 Pa·s) were amenable to ensure their smooth extrusion through the tip of the printing nozzle. A shorter sol-gel transition time (approximately 100 s) during the shape formation stage facilitated the solidification of inks after extrusion. The addition of FG significantly (p<0.05) improved the mechanical properties (elastic modulus, hardness, etc.) of the printed models, which facilitated their self-supporting behavior. Low field nuclear magnetic resonance indicated that the inclusion of FG progressively restricted water mobility, consequently reducing the water syneresis rate of the mixed inks by 0.86 %-3.6 %. FG enhanced hydrogen bonding interactions among the components of these mixed inks, and helped to form a denser network.


Asunto(s)
Trigonella , Carragenina , Temperatura , Impresión Tridimensional , Agua
10.
J Colloid Interface Sci ; 663: 554-565, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38428113

RESUMEN

Thermally induced physical hydrogels formed through the sol-gel transition of nanogels usually lose structural color above phase transition temperature (Tp). Herein, temperature/pH/redox-responsive nanogels that undergo sol-gel transition still keep structural colors above the Tp have been synthesized and studied. N-isopropylacrylamide (NIPAm) was copolymerized with N-tert-butylacrylamide (TBA) and N-acrylamido-l-phenylalanine (Aphe) to form P(NIPAm/TBA/Aphe) nanogel crosslinked with N,N'-bis(acryloyl)cystine (BISS) (referred to as PNTA-BISS). PNTA-BISS nanogel with a broad range of biodegradable crosslinker BISS content can achieve a reversible sol-gel transition above the Tp, surprisingly, while PNTA nanogels with a comparable content of biodegradable N,N'-Bis(acryloyl)cystam (BAC) crosslinker (referred to as PNTA-BAC) didn't form sol-gel transition. Although BISS and BAC possess same disulfide bonds with redox properties, BISS, unlike BAC, is water-soluble and features two carboxyl groups. The mechanism by which PNTA-BISS nanogels form hydrogel photonic crystals has been deeply explored with temperature-variable NMR. The results showed the introduction of Aphe with both steric hindrance and carboxyl groups greatly slowed down the shrinkage of PNTA-BISS nanogels. Therefore, PNTA-BISS nanogels can form sol-gel transition and further structural color of hydrogel photonic crystals due to carboxyl groups above the Tp. Furthermore, the properties of biodegradable hydrogel photonic crystals above the Tp were investigated for the first time, attributed to the presence of the strong reducing agent 1,4-dithiothreitol (DTT). When loaded with doxorubicin (DOX), PNTA-BISS exhibited favorable degradation properties under the influence of DTT. In summary, the PNTA-BISS nanogel, in addition to its in-situ gelation capabilities, demonstrated degradability, potentially providing a novel nanoplatform for applications in drug delivery, biotechnology, and related fields.


Asunto(s)
Hidrogeles , Polietilenglicoles , Nanogeles , Hidrogeles/química , Polietileneimina
11.
Methods Mol Biol ; 2783: 177-193, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478233

RESUMEN

With the increase in decellularization of different tissue sources, an understanding of the viscoelastic properties of these soft materials is important for determining practical applications. The purpose of this chapter is to better define a series of experiments to profile important rheological properties for adipose-based hydrogels. While there are numerous mechanical characterizations that are done experimentally, the protocol outlined in this chapter provides a step-wise approach to determine the gelation characteristics and native hydrogel network properties. A more complete understanding of adipose-derived hydrogel mechanical properties would provide vital information for downstream applicability in fields such as disease modeling or soft tissue regeneration.


Asunto(s)
Adipocitos , Hidrogeles , Células del Estroma , Cicatrización de Heridas , Células Madre
12.
Angew Chem Int Ed Engl ; 63(9): e202317457, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38169125

RESUMEN

Quasi-solid zinc-ion batteries using hydrogel electrolytes show great potential in energy storage devices owing to their intrinsic safety, fewer side reactions and wide electrochemical windows. However, the dendrite issues on the zinc anodes cannot be fundamentally eliminated and the intrinsic anode-electrolyte interfacial interspace is rarely investigated. Here, we design a dynamically healable gelatin-based hydrogel electrolyte with a highly reversible sol-gel transition, which can construct a conformal electrode-electrolyte interface and further evolve into a stable solid-solid interface by in situ solidification. The unique helical gelatin chain structure provides a uniform channel for zinc ion transport by the bridging effect of sulfate groups. As a consequence, the dynamically healable interface enables dendrite-free zinc anodes and repeatedly repairs the anode-electrolyte interfacial interspaces by the reversible sol-gel transition of gelatin electrolyte to retain long-lasting protection for sustainable zinc-ion batteries.

13.
Gels ; 9(12)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38131951

RESUMEN

A simple model is introduced to describe phase behaviours of binary mixtures of a thermoreversible gel and a low-molecular-weight liquid crystal (LC). We predict novel phase diagrams on the temperature-concentration plane, including sol-gel transition, nematic-isotropic phase transition, and phase separation. At high temperatures, the phase separation between the isotropic sol and gel phases appears. As the temperature decreases, we have the phase separation between nematic sol and isotropic gel phases, in which the nematic domains are dispersed in the isotropic gel phase. We suggest that thermoreversible gelation of reactive molecules mixed with LCs will become one of the new classes of polymer-dispersed liquid crystals.

14.
ACS Appl Mater Interfaces ; 15(36): 42113-42129, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37639647

RESUMEN

Local anesthetics are important for the treatment of postoperative pain. Since a single injection of the solution of a drug such as bupivacaine (BUP) works only for a few hours, it is much required to develop a long-term injectable formulation that maintains its efficacy for more than 1 day. Herein, an intelligent copolymer hydrogel loaded with BUP microcrystals was invented. The biodegradable block copolymer was synthesized by us and composed of a central hydrophilic poly(ethylene glycol) (PEG) block and two hydrophobic poly(lactide-co-glycolide) (PLGA) blocks. The aqueous system of the amphiphilic copolymer underwent a sol-gel transition between room temperature and body temperature and, thus, physically gelled after injection. Considering the decrease of solubility of BUP with the increase of pH and the internal acidic environment due to the hydrolysis of PLGA, calcium carbonate (CaCO3) powder was introduced as a pH regulator. Then, the internal pH was found to be nearly neutral and many BUP microcrystals were dispersed in the gel network. In this way, BUP had achieved a sustained release out of the thermogel. The maximum possible effect (MPE) in a rat sciatic nerve blockade model was used to describe the sensory blockade effect. In vivo analgesic effects evaluated with a hot plate experiment of rats demonstrated that the thermogel encapsulated with BUP microcrystal and CaCO3 powder significantly prolonged analgesia up to 44 h, the duration time with respect to 50% MPE. The intramuscularly injected implant exhibited biocompatibility in histological analyses. Besides, the untreated leg of the rats was not influenced by the treated leg, indicating no obvious systematic anesthesia of this hydrogel formulation. Such an intelligent and composite formulation represents a potential strategy for long-acting analgesia therapy.


Asunto(s)
Analgesia , Hidrogeles , Animales , Ratas , Hidrogeles/farmacología , Polvos , Manejo del Dolor , Bupivacaína , Concentración de Iones de Hidrógeno
15.
Gels ; 9(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37233000

RESUMEN

There are various types of gel materials used in a wide range of fields, and their gelation mechanisms are extremely diverse. Furthermore, in the case of hydrogels, there exist some difficulties in understanding complicated molecular mechanisms especially with water molecules interacting through hydrogen bonding as solvents. In the present work, the molecular mechanism of the structural formation of fibrous super-molecular gel by the low molecular weight gelator, N-oleyl lactobionamide/water mixture was elucidated using the broadband dielectric spectroscopy (BDS) method. The dynamic behaviors observed for the solute and water molecules indicated hierarchical structure formation processes in various time scales. The relaxation curves obtained at various temperatures in the cooling and heating processes showed relaxation processes respectively reflecting the dynamic behaviors of water molecules in the 10 GHz frequency region, solute molecules interacting with water in MHz region, and ion-reflecting structures of the sample and electrode in kHz region. These relaxation processes, characterized by the relaxation parameters, showed remarkable changes around the sol-gel transition temperature, 37.8 °C, determined by the falling ball method and over the temperature range, around 53 °C. The latter change suggested a structure formation of rod micelles appearing as precursors before cross-linking into the three-dimensional network of the supramolecular gels. These results clearly demonstrate how effective relaxation parameter analysis is for understanding the gelation mechanism in detail.

16.
Int J Biol Macromol ; 242(Pt 3): 124888, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196718

RESUMEN

Since succinoglycan (SG) produced by Sinorhizobium meliloti is an anionic polysaccharide having substituents such as succinate and pyruvate groups, a polyelectrolyte composite hydrogel can be made together with chitosan (CS), a cationic polysaccharide. We fabricated polyelectrolyte SG/CS hydrogels using the semi-dissolving acidified sol-gel transfer (SD-A-SGT) method. The hydrogel showed optimized mechanical strength and thermal stability at an SG:CS weight ratio of 3:1. This optimized SG/CS hydrogel exhibited a high compressive stress of 497.67 kPa at 84.65 % strain and a high tensile strength of 9.14 kPa when stretched to 43.73 %. Additionally, this SG/CS hydrogel showed a pH-controlled drug release pattern for 5-fluorouracil (5-FU), where a change from pH 7.4 to 2.0 increased the release from 60 % to 94 %. In addition, this SG/CS hydrogel not only showed a cell viability of 97.57 %, but also showed synergistic antibacterial activity of 97.75 % and 96.76 % against S. aureus and E. coli, respectively. These results indicate the potential of this hydrogel as a biocompatible and biodegradable hydrogel material for wound healing, tissue engineering, and drug release systems.


Asunto(s)
Quitosano , Hidrogeles , Polielectrolitos , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Concentración de Iones de Hidrógeno
17.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37108653

RESUMEN

For biomedical applications, gelatin is usually modified with methacryloyl groups to obtain gelatin methacryloyl (GelMA), which can be crosslinked by a radical reaction induced by low wavelength light to form mechanically stable hydrogels. The potential of GelMA hydrogels for tissue engineering has been well established, however, one of the main disadvantages of mammalian-origin gelatins is that their sol-gel transitions are close to room temperature, resulting in significant variations in viscosity that can be a problem for biofabrication applications. For these applications, cold-water fish-derived gelatins, such as salmon gelatin, are a good alternative due to their lower viscosity, viscoelastic and mechanical properties, as well as lower sol-gel transition temperatures, when compared with mammalian gelatins. However, information regarding GelMA (with special focus on salmon GelMA as a model for cold-water species) molecular conformation and the effect of pH prior to crosslinking, which is key for fabrication purposes since it will determine final hydrogel's structure, remains scarce. The aim of this work is to characterize salmon gelatin (SGel) and salmon methacryloyl gelatin (SGelMA) molecular configuration at two different acidic pHs (3.6 and 4.8) and to compare them to commercial porcine gelatin (PGel) and methacryloyl porcine gelatin (PGelMA), usually used for biomedical applications. Specifically, we evaluated gelatin and GelMA samples' molecular weight, isoelectric point (IEP), their molecular configuration by circular dichroism (CD), and determined their rheological and thermophysical properties. Results showed that functionalization affected gelatin molecular weight and IEP. Additionally, functionalization and pH affected gelatin molecular structure and rheological and thermal properties. Interestingly, the SGel and SGelMA molecular structure was more sensitive to pH changes, showing differences in gelation temperatures and triple helix formation than PGelMA. This work suggests that SGelMA presents high tunability as a biomaterial for biofabrication, highlighting the importance of a proper GelMA molecular configuration characterization prior to hydrogel fabrication.


Asunto(s)
Gelatina , Ingeniería de Tejidos , Animales , Gelatina/química , Temperatura de Transición , Viscosidad , Suspensiones , Ingeniería de Tejidos/métodos , Metacrilatos/química , Salmón , Hidrogeles/química , Conformación Molecular , Agua , Mamíferos
18.
Polymers (Basel) ; 15(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37112056

RESUMEN

Thermally-induced gelling systems based on Poloxamer 407 (PL) and polysaccharides are known for their biomedical applications; however, phase separation frequently occurs in mixtures of poloxamer and neutral polysaccharides. In the present paper, the carboxymethyl pullulan (CMP) (here synthesized) was proposed for compatibilization with poloxamer (PL). The miscibility between PL and CMP in dilute aqueous solution was studied by capillary viscometry. CMP with substitution degrees higher than 0.5 proved to be compatible with PL. The thermogelation of concentrated PL solutions (17%) in the presence of CMP was monitored by the tube inversion method, texture analysis and rheology. The micellization and gelation of PL in the absence or in the presence of CMP were also studied by dynamic light scattering. The critical micelle temperature and sol-gel transition temperature decrease with the addition of CMP, but the concentration of CMP has a peculiar influence on the rheological parameters of the gels. In fact, low concentrations of CMP decrease the gel strength. With a further increase in polyelectrolyte concentration, the gel strength increases until 1% CMP, then the rheological parameters are lowered again. At 37 °C, the gels are able to recover the initial network structure after high deformations, showing a reversible healing process.

19.
Int J Biol Macromol ; 236: 123828, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36858090

RESUMEN

This research evaluated the use of different polymer ratios, hydroxypropyl methylcellulose (HPMC) and methylcellulose (MC) with chitosan (CHI), in the production of emulgel by emulsification. The concentration was fixed at 2 % (w/v) for all polymers. 60/40 sunflower oil-in-water emulgels were made with a cellulosic polymer:chitosan ratio of (80:20), (70:30), and (60:40), respectively. The objective was to study how different proportions of a cellulosic polymer combined with chitosan can affect the stability, microstructure, and rheology of the emulgels to be used as potential oil carrier systems. Droplet size and microscopy results show oil-in-water (O/W) emulgels, and their interface was stabilized by mixing polymeric pairs, HPMC:CHI or MC:CHI. In the thermal analysis, it was identified in the entire temperature range studied (5 to 85 °C) that both emulgels, HPMC:CHI and MC:CHI, were presented as gels (G' > G″). Thus, the addition of CHI to the systems modified their gelling behavior. Microscopy revealed that the emulsions at the 7th and 10th week of storage showed similar characteristics to the fresh emulsion. Therefore, these results indicate that the emulgels present good thermal resistance, the predominance of elastic behavior, and can retain high concentrations of oil in their structure (96 to 99 %).


Asunto(s)
Quitosano , Polímeros , Polímeros/química , Quitosano/química , Emulsiones/química , Geles/química , Reología , Derivados de la Hipromelosa , Agua/química
20.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768318

RESUMEN

A base-catalysed methyltrimethoxysilane (MTMS) colloidal gel formation was implemented as a cellular automaton (CA) system, specifically diffusion and/or reaction-limited aggregation. The initial characteristic model parameters were determined based on experimental synthesis of MTMS-based, ambient-pressure-dried aerogels. The applicability of the numerical approach to the prediction of gels' condensation kinetics and their structure was evaluated. The developed model reflects the kinetics properly within the investigated chemical composition range (in strongly reaction-limited aggregation conditions) and, to a slightly lesser extent, the structural properties of aggregates. Ultimately, a relatively simple numerical model reflecting silica-based gel formation was obtained and verified experimentally. The CA simulations have proved valid for understanding the relation between the initial chemical composition and kinetics constants of MTMS-based synthesis and their impact on secondary particle aggregation process kinetics.


Asunto(s)
Dióxido de Silicio , Dióxido de Silicio/química , Cinética , Geles/química , Gel de Sílice , Difusión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA